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ABSTRACT

In spite of decades of research in bug detection tools, there is a surprising
dearth of ground-truth corpora that can be used to evaluate the efficacy
of such tools. Recently, systems such as LAVA and EvilCoder have been
proposed to automatically inject bugs into software to quickly generate large
bug corpora, but the bugs created so far differ from naturally occurring
bugs in a number of ways. In this work, we propose a new automated
bug injection system, Apocalypse, that uses formal techniques—symbolic
execution, constraint-based program synthesis and model counting—to
automatically inject realistic (uses the program’s control and data-flow), deep
(requires a long sequence of dependencies to be satisfied to fire), uncorrelated
(each bug behaves independent of others), reproducible (comes with a trigger
input) and rare (fires on a very few program inputs) bugs in large software
code bases. In our evaluation, we inject bugs into thirty Coreutils programs
as well as the TCAS test suite. We find that Apocalypse’s bugs are highly
realistic under a variety of metrics, that they do not favor a particular bug-
finding strategy (unlike bugs produced by LAVA), and that they are more
difficult to find than hand-injected bugs, requiring up around 240× more
tests to discover with a state-of-the-art symbolic execution tool.
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1 INTRODUCTION

Bugs in software are widespread, and decades of research have gone
into eliminating bugs through automated bug-finding tools such
as static analyzers, runtime sanitizers, symbolic execution tools,
and fuzzers. Despite this ongoing effort, there is a surprising dearth
of ground-truth corpora with which we can evaluate the efficacy
of such tools: most existing corpora are small, do not come with
triggering inputs, or feature bugs that are unrealistic. Moreover, the
value of any individual dataset drops over time as tools adapt to it.
As a result, in many cases we are forced to judge bug-finding tools
on how many previously unknown bugs they find—which leaves us
in the dark about how many they missed, and will vary depending
on the underlying defect rate of the software being analyzed.

The lack of ground-truth datasets also means that it is very
difficult to perform large-scale studies of bug discovery. For example,
we cannot run bug-finding tools on corpora of millions of bugs and
then attempt to draw conclusions about their relative strengths and
weaknesses, or statistically correlate features of bugs and programs
with their difficulty of discovery.
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In recent work, two new systems, LAVA [12] and EvilCoder [24],
have sought to address the need for ground-truth corpora through
automated vulnerability addition. Briefly, these techniques take ex-
isting programs and seed themwith vulnerabilities, either by adding
new, vulnerable code (in the case of LAVA) or by identifying and
removing safety checks to make existing code vulnerable. These
systems are an important step forward, but fall short in a number
of ways.

We consider that injected bugs should have the following prop-
erties:
• Realistic An injected bug is realistic when it is possible to
unearth it by practical bug detection techniques. For exam-
ple, a bug guarded by a famous mathematical theorem (say,
Fermat’s Last Threorem) is not realistic as it requires the
proof of a difficult mathematical theorem to detect the bug;
common bugs in programs does not resemble such a case.
• Deep An injected bug must require a sequence of data and
control flow conditions to be met for it to trigger. A bug
guarded by a single branch condition is, for the same reason,
not a good bug.
• Uncorrelated Multiple injected bugs must be uncorrelated;
that is, finding one of the bugs by a tool should not increase
(or decrease) the chances of catching the other injected bugs.
• Reproducible An injected bug must come with a triggering
input that proves the existance of the bug.
• Rare The bug should be triggered on a very small fraction
of all possible program inputs.

Considering these properties, we find that existing bug injection
techniques can be improved in several ways. EvilCoder, for example,
cannot currently produce provide triggering inputs, and hence fails
to be reproducible (related technqiues, such as mutation testing [18],
also fail to satisfy this requirement). And we find that LAVA’s bugs,
although rare, uncorrelated, and reproducible, fail to be sufficiently
realistic and deep: the triggers used (a comparision against a 32-
bit “magic” constant) are unusually difficult for techniques such
as random testing to find, and although the bugs manifest deep
within programs, the injected guard is a single branch that can be
systematically targeted [29].

In this work, we introduce a new technique for bug injection,
based on symbolic execution, program synthesis and uniform sam-
pling. We build our ideas into a tool, Apocalypse, and use it to
introduce bugs in thirty coreutils programs. Apocalypse uses con-
straint based program synthesis to embed a transition system, what
we refer to as the Error Transition System (ETS), on a judiciously
chosen program path. When the program is executed, the ETS is
advanced at certain locations along this execution path, leading to
a crash if the final state is reached. The state transitions on the ETS
are guarded by carefully synthesized predicates that ensure that
a few executions can successfully reach the final state, and, there-
fore, trigger the bug. We do so by enabling the synthesis engine to
perform a multi-variate hill climbing on the space of predicates at
the transition locations—searching for predicates that prevent most
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executions from reaching the bug location. We estimate the set of
inputs that a predicate “blocks" from reaching the error location by
model counting (approximated by uniform sampling).

We use Apocalypse to inject multiple bugs in thirty Coreutils
programs, and then attempt to detect these bugs using state-of-the-
art symbolic execution (KLEE [7]) and greybox fuzzing (AFL [1])
tools. The bugs demonstrated discoverability, demonstrating that
the system does not inject unrealistic bugs: KLEE and AFL were
able to discover 31% and 38% of the bugs; at the same time, many
bugs were elusive, showing that these bugs can act as subjects for
further research: 47% of the bugs could not be discovered by either
of the tools. Similar to real bugs, different bugs showed affinity to
different tools: out of the 53% bugs discovered, 15% of the bugs could
be discovered only by KLEE while 22% of the bugs could be found
only by AFL. The Apocalypse injected bugs needed about 240×
more tests to be discovered than the manually seeded bugs (on our
benchmarks). We also compared our tool with LAVA and found that
the bugs injected by LAVA tended to be biased to one of the tools:
about 80% of the bugs injected by LAVA were discovered by KLEE
while only about 41% of these bugs were discovered by AFL; the
bugs injected by Apocalypse responded almost uniformly on both
KLEE and AFL, showing the bug corpora produced by Apocalypse
do not favor a particular bug-finding strategy.

The contributions of this paper are as follows:

• We propose a symbolic execution-based strategy to automat-
ically inject realistic, deep, uncorrelated, reproducible and
rare bugs in programs.
• We propose a model counting-based strategy to reduce the
number of bug inducing inputs to make the injected bugs
difficult to find.
• We build our ideas into a tool, Apocalypse, and use it to
inject bugs into Coreutils programs.
• We attempt to discover the bugs injected using Apocalypse
using a symbolic execution engine (KLEE) and a greybox
fuzzer (AFL). The experiments demonstrate that our injected
bugs indeed show properties close to real bugs.

2 OVERVIEW

Our bug injection system, Apocalypse, begins with a concrete
input and a program trace induced by that input. This input, which
can be taken from the program’s test suite or (as in our current
implementation) discovered through symbolic execution, serves as
a path along which we will add one or more bugs to the program.
In the context of bug injection as a game between the injector (who
wishes to add hard-to-find bugs to the program) and the bug-finder
(who would like to find the bugs added by the injector), the concrete
input serves as a source of asymmetric advantage in favor of the
injector: armed with a concrete input, the injector has knowledge
of an entire program path and all dynamic values along that path,
whereas the bug-finder must search for the same program path
among the space of all program paths.

Into the subset of the program described by the trace, Apoca-
lypse embeds an error transition system (ETS) that incrementally
advances a state machine towards an error state (i.e., the program
point where the injected bug will manifest). Each transition in the
state machine is triggered whenever pre-existing program variables

meet certain conditions. To create a bug satisfying the requirements
described in Section 1, these conditions must be simple (to match
the complexity of real-world program conditionals), non-trivial (i.e.,
not always true or false), and useful, meaning that they are satisfied
by a relatively small number of inputs.

Apocalypse achieves these goals by using program synthesis
to create candidate conditions from variables that are in scope at
different points (transition points) along the trace. Not all points in
the trace are equally promising (in terms of the number of variables
available) as transition points, and so we first scan the trace looking
for program points that are deep in the call graph, guarded by
many predicates, and have many variables in scope. To ensure that
the synthesized constraints that trigger each transition meet our
requirements, we use model counting to estimate the number of
solutions to the conjunction of ETS constraints so far, and iteratively
improve the constraint set by reducing the number of possible
solutions.

The state machine itself is tracked using global program state.
In order to match the surrounding program, the state should be
stored in an appropriate representation. For example, if the program
primarily manipulates integer values, we can use integer variables
to track the state (and this case is what our current prototype
supports). But we could also track state using string matching on
some string embedded in the program, or the position of some node
in an aggregate data structure such as a list or a tree, depending
on what data structures and operations are already in the program.
We give some concrete examples of state machine encodings in
Section 3.7.

Finally, we create a buggy version of the program by adding, at
each transition point, a snippet of code that checks one of our ETS
conditions and then advances the state machine. When the state
machine reaches its accepting state, we trigger buggy behavior in
the program. In our current implementation, we simply add an
assert(false), but we could also add out of bounds memory accesses,
integer errors, etc. depending on the type of bug detector under
test.

Listing 1 shows a program with an injected bug; the statements
synthesized by Apocalypse are shown commented in green; the
program is instrumented with the ETS in Figure 1.

3 ALGORITHM

We define a program trace (or simply a trace ∆) as a sequence of
dynamic instructions. We assume each trace ∆ to have a triggering
input ip, that causes the program to execute the given trace, and
a symbolic path constraint, sym_pc, that encodes the conditions
on the inputs that would follow the given trace. Given a map Γ :
V 7→ E from program variables vi ∈ V to symbolic expressions
s ∈ E, we use the notation Γ[ϕ (v1, . . . ,vn )] to denote the symbolic
constraint formed by replacing each vi ∈ V by the respective
symbolic expression from the map Γ.

3.1 Error Transition System

Apocalypse injects bugs in programs by interweaving an Error
Transition System along a path in the program. The ETS is a tuple
(L,P,δ , l0, lbuд ) where:
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1 vo id ALIM ( )
{

3 othCap = c l imb + a l t V a l ;
L6: / ∗ i f ( ownRate < o t h e rA l t && s t a t e == 6 )

5 s t a t e = 1 9 ; ∗ /
}

7
i n t I n h i b i t B i a s e dC l imb ( )

9 {
i n t up , down ;

11 up = upSep + 100 + a l t V a l ;
down = upSep + Othe rTrackedAl t ;

13 L16: / ∗ i f ( othCap < c l imb && s t a t e == 16 )
s t a t e = 6 ; ∗ /

15 r e t u r n ( c l imb ? up : down ) ;
}

17
vo id main ( )

19 {
i npu t ( curSep , ownAlt , ownRate , o th e rA l t ,

21 a l tV a l , upSep , downSep , othCap , c l imb ) ;
L0:

23 / ∗ s t a t e = 1 6 ; ∗ /
upPre f = I n h i b i t B i a s e dC l imb ( ) + downSep ;

25 upCross = ownAlt + o t h e rA l t ;
ownRate = ownRate + curSep ;

27 ALIM ( ) ;
i f ( uppre f > 5 5 0 0 ) {

29 r e s u l t = a l t V a l ;
L19: / ∗ i f ( c l imb == r e s u l t && s t a t e == 19 )

31 s t a t e = 2 1 ; ∗ /
}

33 L21: / ∗ i f ( o t hA l t < upCros && s t a t e == 21 )
s t a t e = 3 0 ; ∗ /

35 upCross = ownAlt − o t h e rA l t ;
L30: / ∗ i f ( s t a t e == 30 ) a s s e r t ( 0 ) ; ∗ /

37 }

Listing 1: Program with injected bug: the statements

commented in green are statements inserted byApocalypse

(as per the ETS in Figure 1)

Figure 1: ETS for the program in Listing 1

Algorithm 1 Apocalypse
1: procedure Main(P)
2: ∆← IdentifyTrace(P)
3: L ← IdentifyTransitionPoints(∆)
4: sym_pc, Λ← SymbolicExec(∆, L)
5: Ω ← SynthesizeETS(sym_pc, Λ)
6: P′ ← InstrumentETS(P, Ω)
7: return P′

8: end procedure

• L, the set of states, corresponds to program locations that
drive a transition on the ETS;
• P is a set of all predicates that can be constructed using the
program variables;

• δ : L × P → L is the transition function that dictates the
transition on the ETS, given a predicates p ∈ P at a location
li ∈ L;
• l0 ∈ L is the initial state of the ETS; the ETS is set to this
state at the entry point of the program;
• lbuд ∈ L is the program location that is instrumented by the
buggy action (say simulating a program crash).

Figure 1 shows the ETS for the program in Listing 1: the labels
L6, L16 etc. (marked in red) show the transition locations where
the ETS makes its moves; the program entry point (L0) sets the ETS
to the initial state (L16). The transition on location L16 is guarded
by the predicate (othCap < climb); if this predicate holds, the ETS
transitions to state L6. Finally, if the execution can drive the ETS to
the final state (L30), an error is raised (say by simulating a crash or
violating an assertion).

3.2 Identify a program trace

The algorithm driving Apocalypse is shown in Alg 1. Given a pro-
gramP, the algorithm starts off by using IdentifyTrace(P) to iden-
tifying a trace ∆ onwhich an ETSwill be embedded. IdentifyTrace(P)
uses symbolic exploration to collect multiple possible intraprocedu-
ral paths in the program and selects a path based on the following
parameters:
• Complexity of the path:We prefer program paths that con-
tain a large number of dynamic instructions, pass through
a large number of procedures and hit a large number of
branching instructions. As this path represents the secret
information that the adversary (bug detection tool) will need
to discover, a complex path makes the injected bugs more
elusive.
• Number of useful variables: This refers to the quality and
quantity of the variables that are used by the participating
instructions along this path. The quality of a variable is dic-
tated by distance of the instruction that defines the variable
in the program dependence graph from the input statements.
In essence, it captures the “complexity” of constructing a
required value into this variable from the program inputs.
We select paths with abundant good-quality predicates, as
these variables will eventually be used by the ETS synthesizer
to construct transition predicates.

3.3 Identify transition points in the program

Next, IdentifyTransitionPoints(∆) attempts to find good pro-
gram locations on the error trace to embed ETS transitions. A
location is selected if it meets the following criteria:
• Abundant “useful” variables are available at that program
location;
• The program location is deep in the call graph, making it
hard for bug detection tools to reach this location;
• The program location appears deep in the control depen-
dence graph; a location deep in the control dependence graph
is guarded by multiple predicates, making reachability chal-
lenging for bug-detection tools.

The above metrics on identifying a trace and transition locations
can be tuned to inject bugs of varying degrees of hardness, thereby
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allowing one to gauge the effectiveness of different bug detection
techniques. In this project, we have attempted to inject bugs that
are harder to find; we plan to investigate on the above questions in
future work.

3.4 Collect Symbolic Constraints

In the next phase, we run a symbolic execution engine on trace ∆
to collect the following:

• Symbolic Path Condition (sym_pc): The path condition
(sym_pc) for the trace (∆) contains a symbolic summariza-
tion of all possible input values that would drive a program
execution along ∆.
• Symbolic Expression Dictionary (Λ): This dictionary Λ :
L 7→ (V 7→ E) maps each identified transition location li ∈ L
in the program to a dictionary of symbolic expressions E for
each program variable v ∈ V .
• Concrete Value Dictionary (C): This dictionary C : L 7→
(V 7→ ν ) maps each identified transition location li ∈ L in
the program to a dictionary of concrete values ν observed
for each program variable v ∈ V along the execution trace.

3.5 Synthesize the Error Transition System

(ETS)

In this phase, we use constraint solving to synthesize an Error
Transition System (ETS) that can be embedded in the program. The
synthesis algorithm is shown in Algorithm 2.

Synthesis of the ETS essentially involves identification of the
transition predicates that guard the automata transitions. The iden-
tified predicates should satisfy the following properties:

• Simple: The predicate should be simple to compute so as to
not change the dataflow behaviour of the existing program
by much.
• Non-Trivial: The predicates should be non-trivial; for ex-
ample, (x ≥ x ), (x + 42 > x ) etc. should not be produced.
• Useful: The predicate should effectively reduce the number
of inputs that could trigger the bug.

For all the transition locations li ∈ L, let pred : L → Predicate
denote a dictionary of the predicates synthesized, such that pred[i]
is the predicate at the ith location (li ). This map is initialized to
pred : L → true.

We synthesize the predicates for the different locations in a
round-robin manner; each predicate, pred[i], is synthesized subject
to the current values of all other predicates. The predicate for the
kth transition location (denoted as (v1 op v2)k ) is synthesized using
the following synthesis condition:

[Equation Synth]

(v1 op v2)
k ≡∃α1, ...,αn (sym_pc ∧

∏
li ∈L,i,k

pred[i]

∧ J Ck (v1) op Ck (v2) K)

∧ ¬J Λk (v1) op Λk (v2) K

where

JV1 op V2 K =




JV1K < JV2K for op =′<′

JV1K ≤ JV2K for op =′≤′

JV1K = JV2K for op =′=′

The above constraint synthesizes a guard (v1 op v2) for the kth
transition location if there exists a feasible execution (i.e. feasible
values of the input symbolic variables α1, . . . ,αn ) that meet the
following conditions:
• The first two terms ensure that this execution takes the
same execution path as the triggering input (so as to satisfy
sym_pc) and also satisfies the guard conditions synthesized
for all other transition locations (∧∏li ∈L,i,k pred[i]);
• The next term ensures that the concrete values (correspond-
ing to the seed input) of the variables v1 and v2 satisfy the
synthesized guard condition; this term ensures that the in-
jected bug would be triggered by this seed input;
• The final term ensures that there exists a feasible execution
along the false path of the synthesized guard; the term is
designed to ensure that the symbolic values of the variables
v1 and v2 are capable of generating an execution along the
false branch of the guard condition; this prevents genera-
tion of trivial predicates that are always true.

Now, we lay out the complete synthesis algorithm in Algorithm 2.
Lines 3-4 initialize the dictionary pred ; it also initializes the dictio-
nary sols that maintains the set of solutions that we have already
seen earlier. Then, the procedure enters into an iterative refinement
loop to inductively search for good guards for transition predicates:
for each transition location lk ∈ L, Apocalypse tries to find a feasi-
ble guard (v1 op v2) (as per Eqn Synth). To ensure monotonicity, it
searches for a solution (line 10) while ensuring that any new solu-
tion does not include a solution that we have seen earlier (cached
in solk ).

If Ψ is satisfiable, the predicate is extracted (from the model
associated with Ψ); else we move to the next location. The pred
and sols dictionaries are finally updated at lines 19-20 as per the
new solution found.

Figure 2 provides a simplified view on the operation of our syn-
thesizer: assuming Trigger as the seed input, the synthesis con-
straint attempts to seach for a point P1 and predicate (denoted by
the line) that divides the input space into two partitions: white-
region that would induce the bug, and blue-region that would not.
The existence of the point P1 is important to prevent generation of
trivial predicates that do not divide the input space (say as lines that
are tangents to the input space). Futher, in the next iteration, futher
shrink the bug-inducing region by searching for another point P2—
from the bug-inducing region—such that the new predicate separates
Trigger from P2.

To estimate the usefulness of the predicate, we perform a hill-
climing search over the multi-variate predicate space corresponding
to each location (lines 16-19). The hill-climing search uses a model-
counter to estimate the number of feasible inputs corresponding
to the newly synthesized predicate and the older predicate (cached
in pred[k]); we always choose a predicate that shrinks the space
of bug inducing inputs. The search is designed similar to a Gibbs
sampler [cite] for multi-variate problems, wherein we make the
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Figure 2: Input space pruning

decision about one variable conditioned on the current values of
every other variable.

As calling a model-counter twice in each loop iteration is quite
expensive, in our implementation, we approximate the relative
usefulness of the predicates by performing uniform sampling on
sym_pc to create a sampled space of inputs that follow the same
path as the seed input. Then, we generate and execute a program
to count the number of inputs that are satisfied by the competing
guard predicates; we show a sketch of our generated programs in
Listing 2.

Note that the algorithm generates the guard predicates in a
manner such that the seed input ends up as the trigger for the
bug. This was important as the symbolic execution engines often
concretize parts of the execution (for instance, at external library
calls, floating-point operations, system calls etc.). This causes the
map Λ to not have a complete symbolic model, thereby leading to
path divergence [15].

Let us explain the problem: in Listing 3, assuming sqrt is an exter-
nal function, its output will concretized. Hence, the path condition
(of an execition where both branches evaluate to true) would be an
incomplete (a > 42) (rather than (a > 42)∧ (c > 10)). If we desire to
get inputs that would trigger the bug by hitting locations L0, L6, and
L10, we would need to solve the respective path condition (a > 42)
for which a constraint solver can return a solution a = 95, z = 0
(unaware of the branch constraint (c > 10)). This input fails to
trigger the bug as the program diverges to a different path at the
branch “if (c > 10)". We handle this problem by transforming
the seed input (which is consistent with all concretizations) into
the trigger for the bug.

For simplicity, the above algorithm assumes that each program
location is hit at most once. In our actual implementation, if a
program location is hit multiple times (say in a loop or a procedure),
we use only the first few (bounded) instances when the location is
reached as possible transition points.

1 i n t approxModelCount ( o ldPred , newPred ) {
/ ∗ " sample " i s a s e t o f i n pu t s c o n s t r u c t e d by

3 ∗ uni form sampl ing on the path c ond i t i o n ∗ /
wh i l e ( inp = sample . nex t ( ) ) {

5 i f ( o l dP r ed [ inp ] ) countOld ++ ;
i f ( newPred [ inp ] ) countNew ++;

7 }
r e t u r n ( countNew < countOld ) ;

9 }

Listing 2: Approximate model counting

1 L0:
/ ∗ s t a t e = 6 ∗ /

3 make_symbol ic ( a , z ) ;

Algorithm 2 Synthesis Algorithm
1: procedure SynthesizeETS(sym_pc, Λ, C, V )
2: for all li ∈ L do

3: pred[i]← true
4: sols[i]← {}
5: end for

6: tr ies ← 0
7: while tr ies < MAX _TRIES do

8: tr ies ← tr ies + 1
9: for all lk ∈ L do

10: Ψ ← (v1 op v2)k ∧
∏

β⃗∈sols[k ] ¬β⃗ [(v1 op v2)]
11: if IsSAT Ψ then

12: p ← Ψ[(v1 op v2)]
13: else

14: continue

15: end if

16: Φ← sym_pc ∧∏li ∈L,i,k pred[i]
17: countold ← ModelCount (Φ ∧ pred[k])
18: countnew ← ModelCount (Φ ∧ p )
19: if countnew < countold then pred[k]← p
20: sols[k]← sols[k] ∪ Ψ[α1, . . . , αn ]
21: end for

22: end while

23: return pred
24: end procedure

i f ( a > 4 2 ) c = s q r t ( z ) ;
5 i f ( c >10) {

L6:
7 / ∗ i f ( c < a && s t a t e == 6 ) s t a t e = 9 ∗ /

}
9 L10:

/ ∗ i f ( s t a t e == 9 ) a s s e r t ( 0 ) ∗ /

Listing 3: Problem of path divergence

3.6 Embed the synthesized ETS in the program

In the final phase, Apocalypse embeds the synthesized ETS in the
program by instrumenting the transition locations with guarded
state transitions as per the synthesized ETS. Listings 4 and 5 show
two possible instrumentation schemes: Listing 5 is a better scheme
as it avoids creating path explosion, and hence, creates buggy pro-
grams that are closer to the input program in terms of the total
number of paths.

Different instrumentation scheme can be adopted to camouflage
the ETS transitions: for example, Listing 6 for string programs
and Listing 7 for bit manipulating programs. As our current pro-
totype was meant to study the properties of our injected bugs for
automated bug detection systems (and not human subjects), all
our experiments were conducted on the instrumentation scheme
shown in Listing 5.

3.7 Running Example

To begin with, Apocalypse needs to be provided with a seed input
that drives the program through an path on which we are interested
in inducing an error condition; a good path for error-injection can
be discovered by symbolic execution (see §3.2). Let us assume that in
this case we select the seed inputs as (curSep=1258, ownAlt=897,
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i n t s t a t e ;
2

vo id buggy ( ) {
4 i f ( p1 && s t a t e == 0 )

s t a t e = 5 ;
6 i f ( p2 && s t a t e == 5 )

s t a t e = 9 ;
8 i f ( p3 && s t a t e == 9 )

s t a t e = −1;
10 i f ( p4 && s t a t e == −1)

c r a sh ( ) ;
12 }

Listing 4: ETS encoding for

integer programs

i n t s t a t e ;
2

vo id buggy ( ) {
4 s t a t e += 3 ∗ ( p1 ∗ ! ( s t a t e − 0 ) ) ;

s t a t e += 5 ∗ ( p2 ∗ ! ( s t a t e − 3 ) ) ;
6 s t a t e += 3 ∗ ( p3 ∗ ! ( s t a t e − 8 ) ) ;

s t a t e += −11 ∗ ( p4 ∗ ! ( s t a t e − 1 1 ) ) ;
8

i f ( s t a t e == 0 )
10 c r a sh ( ) ;

12 }

Listing 5: ETS smart encoding for integer

programs

char s t r [ 1 0 0 ] = " h e l l o \ 0 world \ 0 f o r \ 0 bug " ;
2 vo id buggyFunct ion ( ) {

i f ( p1 && ( cmp ( s t r + loc , " h e l l o " ) == 0 ) )
4 l o c += ( s t r l e n ( s t r ) +1 ) ;

i f ( p2 && ( cmp ( s t r + loc , " world " ) ==0) )
6 l o c += s t r l e n ( s t r ) ;

i f ( p3 && ( cmp ( s t r + loc , " f o r " ) ==0) )
8 l o c += s t r l e n ( s t r ) ;

i f ( p4 && ( cmp ( s t r + loc , " bug " ) ==0) )
10 c r a sh ( ) ;

}

Listing 6: ETS encoding for string based

programs

1 i n t s t a t e = 0 x f f f f 0 0 1 1 ;
vo id buggy ( ) {

3 i f ( p1 && ( s t a t e
& 0 x 0 0 0 0 f f f f == 3 ) )

5 s t a t e | = 0 x f f 0 0 0 0 2 2 ;
i f ( p2 && ( s t a t e

7 & 0 x 0 0 0 0 f f f f == 0 ) )
s t a t e | = 0 x f f 0 0 f f 0 0 ;

9 i f ( p3 && ( s t a t e
& 0 x 0 0 0 0 f f f f == 3 ) )

11 c r a sh ( ) ;
}

Listing 7: ETS encoding for bit

manipulating programs

ownRate=174, otherAlt=7253, altVal=1, upSep=629, downSep=5000,
otherRAC=0, climb=1).

To embed an Error Transition System (ETS) along this path, Apoc-
alypse also needs a set of good program locations to drive the ETS
transitions (see §3.3). Our system identifies the lines marked as L16,
L6, L19 and L21 as the transition locations.

Armed with the seed inputs and the set of transition locations,
Apocalypse runs symbolic execution along the seed path to col-
lect the symbolic path condition (sym_pc), and the symbolic and
concrete expression maps (Λ and C) (see Table 3).

Apocalypse, now, synthesizes an ETS as follows: for the location
L16, it finds a predicate othCap < climb to move the transition
system by a step. It does so by building a synthesis constraint

that ensures that the predicate is simple, non-trivial (disallowing
predicates like (upPref ≥ downSep) that are invariants) and useful
(discussed next). Similarly, it synthesizes predicates (ownRate <
otherAlt), (upPref < upCros) and (othCap < climb) for loca-
tions L6, L19 and L21.

Next, Apocalypse makes more passes over these locations in a
search for better predicates. Attempting another synthesis cycle
over L19 (and disallowing the previous solution), it synthesizes a
new predicate (climb == result). Now, it checks the model count
for:
sym_pc : (α10 , −1) ∧ (α11 , 0) ∧ (α6 + α8 > 5400) ∧ (α5 − α3 >
0) ∧ (α8 , 0) ∧ (α6 , 0)
Ψ1 : sym_pc ∧ (α11 == α6) ∧ (α10 < α11) ∧ (α0 + α4 < α5) ∧ (α5 <
α3 + α5), and,
Ψ2 : sym_pc∧(α6+α7+α8+100 < α3+α5)∧(α10 < α11)∧(α0+α4 <
α5) ∧ (α5 < α3 + α5).

In this case, it finds that the model count of Ψ2 is smaller than
that of Ψ1, and hence it goes about replacing the older (upPref <
upCros) by the newer (climb == result) predicate. On the other
hand, if the count of Ψ1 was smaller, it would have rejected it and
persisted with the older predicate. This hill climbing over the multi-
variate space of predicates at the different locations allows us to
“shrink” the space of inputs that would trigger the bug. Table 1
shows the set of all predicates produced by Apocalypse, with the
one finally selected marked in blue. In our experiments, this proce-
dure increased the bug detection time of the injected bugs by about
390× (on AFL). The synthesized ETS is shown in Figure 1.

Finally, the generated ETS is inserted into the existing code. We
show the statements injected byApocalypse as comments (in green)
in Listing 1; these statements drive the program to a crash at L30.

Table 1: Synthesized predicates at ETS locations

Loc Predicates Loc Predicates

L16 othCap < climb L6 ownRate < otherAlt
L19 climb == result L21 othAlt < upCros

upPref < upCros climb < othCap

Table 2: Symbolic and Concrete inputs for the trace

Variable Value Variable Value

curSep (α0 , 1258) ownAlt (α3 , 897)
ownrate (α4 , 174) otherAlt (α5 , 7253)
altVal (α6 ,1) upSep (α7 , 629)

downSep (α8 , 5000) othCap (α10 , 0)
climb (α11, 1)

Table 3: Symbolic and concrete maps

Variable Loc16 Loc6 Loc19 Loc21

Sym Conc Sym Conc Sym Conc Sym Conc

othCap α10 0 α6 + α11 2 α6 + α11 2 α6 + α11 2
ownRate α4 174 α0 + α4 1432 α0 + α4 1432 α0 + α4 1432
climb α11 1 α11 1 α11 1 α11 1
othAlt α5 7253 α5 7253 α5 7253 α5 7253
up α6 + α7 730

+ 100
down α5 + α7 7882
uppref α6 + α7 5730 α6 + α7 5730

+ α8 +100 + α8 + 100
upCros α3 + α5 8150 α3 + α5 8150
result α6 1 α6 1

4 EXPERIMENTS

Apocalypse is based on multiple tools: it uses Clang [2] for in-
strumentation (for dynamic analysis for selecting good transition
locations as well as for embedding the ETS in the program). We
modified Crest [6] for running symbolic execution to collect the
symbolic path conditions and the expression maps. The ETS synthe-
sizer uses Z3 [9] for constraint solving. We use a modifed version
of Boolector [23] to create SAT encodings of SMT constraints, and
use QuickSampler [13] for uniform sampling on the boolean path
conditions.

For the purpose of our experiments, we insert assert(false) state-
ments at our bug injection points. Our experiments were conducted
on a Intel Xeon(R) which has 2GHz clock frequency machine with
12 cores and 32GB main memory. To understand the quality of the
bugs injected by Apocalypse, we attempt to uncover the injected
bugs using two popular bug finding techniques:
• Symbolic Execution: We use the state-of-the-art symbolic
execution engine KLEE [7] to unearth the bugs. KLEE is run
with the default search strategy within a timeout of 1 hr.
• Greybox Fuzzing: Coverage-guided fuzzing tools perform
executions on randomly mutated inputs, guided by coverage
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metrics. We use the popular fuzzer AFL for our experiments,
running it with default settings and a timeout of 1 hr.

Our experiments attempt to answer the following research ques-
tions:
RQ1 Are our automatically injected bugs realistic?
RQ2 Is there any correlation between multiple injected bugs?
RQ3 Are the bugs injected by Apocalypse reproducible?
RQ4 Are our bugs deeper and rarer than manually seeded bugs?
RQ5 What is the effect of sampling on the difficulty of an injected

bug?
RQ6 How does Apocalypse compare with state-of-the-art bug

injection tools?

4.1 RQ1: Realism of our injected bug

We demonstrate that our bugs are realistic by using two state-of-
the-art bug detection tools, KLEE (based on symbolic execution)
and AFL (employing greybox fuzzing) on discovering the bugs
injected by Apocalypse. We injected bugs in the GNU Coreutils
programs [4]. We use Apocalypse to inject four bugs in each pro-
gram; we then used KLEE [7] and AFL [1] for one hour each to
discover the bugs. The results are shown in Figure 3.

The first bar for each benchmark shows the time spent by AFL
to hit each of the bugs, normalized to the time taken to reach the
last bug (or timeout when no bug is found). The second bar for each
benchmark shows the number of test cases generated by KLEE till
we find the first test that reveals a bug, normalized to the number
of tests required to reach the last bug.

For example, for the experiments on KLEE (second bars), in the
program cat, KLEE is able to find only one bug (so the bar for the
first bug reaches all the way to one). In cases where all bugs are
found, for example df, the first bug is found after 15% of the total
time, the second bug is found at 32%, the third is found at 64% of
total testcases till we found last bug. Cases where we are are unable
to find any bug, like test, are shown as timeout.

For the experiments involving AFL (first bars): Because AFL
generates a test only for a failing execution, we show the amount of
time spent to reach a bug (instead of the number of tests). The first
bar of each cluster shows how much relative time AFL has invested
to find the each bug compared to the last bug. If AFL is not able to
find any bug, the whole bar is set to “timeout”. For example, in the
case of cat, the first bug is found at 2%, the second bug is found at
7%, and the third is found at 46% of the time at which we found the
final bug.

Overall, KLEE could find 31% of the bugs while AFL found 38.33%
of the bugs; 36% of the bugs was found only by one of the two tools
while 47% of the bugs could not be found by either. This illustrates
common traits exhibited by real bugs:
• Discoverability: State-of-the-art bug detection tools have
been successful in dicovering many bugs in large programs.
Even for our injected bugs, all in all, 53% of the bugs are
discovered by at least one of the tools.
• Elusiveness: Certain bugs are still elusive, showing that
these injected bugs (resembling real bugs) can now be em-
ployed to stress tools for new bug detection techniques;
about 47% of the bugs could not be discovered by either
of the tools.

• Affinity to tools: Certain bugs are more likely to be found
by one type of technique than by another; 22% of the bugs
were only discovered by AFL while 15% of the bugs were
only discovered by KLEE.
• Variance in tool effort: Some bugs requiremore effort to be
discovered than others; on the discovered bugs, AFL shows
a standard deviation of 583 seconds (on a total running time
of 1 hour for each program).

4.2 RQ2: Correlation of bugs injected by

Apocalypse

Figure 3 shows that the number of tests (using KLEE) and the time
taken (by AFL) to discover the different bug is almost uniformly
distributed; also, in many cases, even after discovering a few bugs,
the tools fail to unearth the rest of the bugs. This shows that there
exists almost no correlation among the different bugs injected by
Apocalypse. Together, KLEE and AFL are able to catch 53% of all
bugs; there are 7 programs (out of 30) where none of the tools is
able to catch any bug.

4.3 RQ3: Reproducibility

Because Apocalypse generates triggering inputs for each bug it
creates, reproducibility is satisfied by construction. Nevertheless,
we checked that the generated inputs really did trigger each bug,
and found that we could reproduce all the injected bugs.

4.4 RQ4: Comparison with manually seeded

bug

To compare with manually seeded bugs, we used the TCAS [11]
benchmark. TCAS contains 41 buggy versions, each buggy version
containing exactly one manually seeded bug. As the seeded bugs
produce an incorrect output (but not a crash or assertion failure),
we use KLEE to generate a set of tests; any test that that produces an
incorrect output or reaches our injected bug location is designated
as a failing test.

We useApocalypse to inject two additional bugs into each TCAS
version. KLEE was able to discover all the injected bugs as well as
the manually seeded bugs in all versions except versions 33 and 38.
Figure 5 shows the number of test cases KLEE had to generate before
hitting the test case that triggers the bug. This experiment shows
the elusiveness of our bugs with respect to the manually seeded
ones: on an average, the bugs injected by Apocalypse require 240×
more tests than the manually seeded bugs.

Table 4 shows the rarity of our bugs: this figure shows the number
of generated test cases on which a bug induced a failure. On an
average, the bugs injected by Apocalypse induce failures on 30×
fewer tests over the manually seeded bugs.

4.5 RQ5: Searching for stronger transition

predicates

Figure 4 shows how our hill climbing search for guard conditions
improves the rarity of the bugs on the different versions of the
TCAS program. We conducted the experiment by comparing the
bugs generated when we always picked the first predicate found
(red line) versus when the searcher is switched on (blue line). The
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Figure 3: Normalised time or testcase to find each bug. The first bar is for AFL and the second for KLEE; the Venn Diagram

shows the distribution of the bugs found by KLEE and AFL.

search for good predicates is effective as it increases the time needed
to find the triggering inputs for the bugs by about 390× on average.

4.6 RQ6: Comparison with LAVA

We compare Apocalypse with LAVA on nine Coreutils programs.
We discuss the results on the two tools separately:

• KLEE: KLEE uses constraint solving to discover newer paths.
In LAVA, as the bug location is essentially guarded by a
magic number, it is quite easy for KLEE to use the constraint
solver to “guess" this magic number. Hence, on most of the
benchmarks, KLEE is able to discover almost all bugs. On an
average, KLEE discovers 80% of the bugs.
• AFL: AFL uses random mutations to discover test cases
(guided by coverage information). Hence, AFL finds it hard
to guess the magic numbers by random mutations, thereby
finding many fewer bugs. On an average, AFL discovers 41%
of the bugs.

As can be seen, the bugs injected by LAVA, in general, show
affinity towards a certain tool (KLEE); this raises the question of
realism. Over a set of injected bugs, each bug may show affinity
towards a certain tool, but overall, all bugs injected by a tool should
be unbiased. For the bugs injected by Apocalypse, though a cer-
tain bug may be discovered by a certain tool more easily than the
other, overall both tools are almost equally effective (30% of bugs
discovered by KLEE, 47% of bugs discovered by AFL on these nine
programs) at discovering the bugs injected by our tool. This shows
that Apocalypse injects bugs that are more “realistic” than those
injected by LAVA.

5 RELATEDWORK

The work most directly related to our current work is LAVA [12]
and EvilCoder [24]. As we discuss the relationship of our work
to these systems in detail in elsewhere in the paper, we omit a
complete discussion here, noting only that while our system shares
the goals of this prior work, we improve upon the state of the art

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45

#
te

s
tc

a
s
e

Program

with hill climbing
without hill climbing

Figure 4: Effect of hill climbing approach on time to found

bug using AFL in TCAS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313234353637394041

#
te

s
tc

a
s
e

Program

1stBug
2ndBug

ActualBug

Figure 5: First testcase number on which bug is found



Realistic Bug Synthesis for Testing Bug-Finding Tools ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

Table 4: Number of KLEE generated testcases that reveal our

bugs (F, S) and manually seeded bug (AC). (F,S) and AC de-

note the number of failing testcases on our 1st (F) and 2nd

(S) injected bug, and manually seeded bug.

V (F,S) #AC V (F,S) #AC V (F,S) #AC

1 (251, 1) 232 14 (1, 1) 39 27 (1, 19) 659
2 (1, 1) 160 15 (1, 19) 658 28 (2, 2) 302
3 (1, 1) 41 16 (1, 1) 43 29 (1, 1) 97
4 (4, 3) 374 17 (1, 1) 37 30 (1, 1) 56
5 (1, 19) 654 18 (1, 1) 33 31 (1, 1) 35
6 (1, 1) 30 19 (1, 1) 45 32 (1, 12) 81
7 (1, 1) 41 20 (1, 1) 124 34 (341, 2) 1805
8 (1, 1) 39 21 (9, 1) 162 35 (2, 2) 273
9 (117, 1) 883 22 (1, 1) 172 36 (1, 1) 429
10 (1, 1) 418 23 (1, 1) 424 37 (5, 5) 24
11 (1, 1) 1110 24 (156, 1) 937 39 (1, 1) 209
12 (1, 13) 1783 25 (1, 1) 213 40 (1, 1) 345
13 (1, 1) 310 26 (1, 1) 291 41 (1, 1) 577
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by generating deep, realistic bugs that do not favor a particular
bug-finding approach.

Bug injection systems are intended to automate the creation of
bug corpora; however, it should be noted that there are a number of
existing public corpora of buggy programs as well, and studies have
been performed to evaluate bug-finders using these systems. For
example, Wilander and Kamkar [30, 31] performed a pair of studies
using synthetic bugs that evaluated the effectiveness of static and
dynamic bug-finding tools. NIST’s SAMATE group hosts a collec-
tion of buggy software data sets known as the Software Assurance
Reference Datasets (SARD) [5]. And in 2016, DARPA hosted an auto-
mated bug-finding Cyber Grand Challenge (CGC) [3]; this competi-
tion resulted in a collection of 247 programs with known vulnerabil-
ities and triggering inputs, and has been used extensively since its
creation for evaluating new bug-finding techniques [26, 28, 29]. The
CGC corpus is very high quality, but it is expected that bug-finding
software will eventually improve to be able to find all known bugs
in the 247 programs. And all of these corpora suffer from one or
more of the following issues: they contain few programs or each
individual program is small, the bugs may be shallow or unrealistic,
or the bugs may not come with triggering inputs.

The field ofmutation testing [10, 17–19], in which randommuta-
tion operators are applied to a program. The resulting (presumably
incorrect) program is then run against its test suite in an attempt
to judge the robustness of the test suite. In some sense, bug injec-
tion is an extension of mutation testing, in that it automatically
creates buggy versions of a program. However, the effects of the
mutants created by mutation testing are difficult to predict, and do
not come with triggering test cases—in other words, they fail to be
reproducible (under the definition given in Section 1). And while
mutation testing is good for evaluating the quality of a test suite, it
is less clear how to apply it to the task of evaluating effectiveness
of a bug-finding system such as KLEE [7].

Finally, our bug injection is based on the core techniques of pro-
gram synthesis and model counting. Techniques for automatically
generating programs have a long history (dating back perhaps as
early as 1957, if one includes Church’s discussion of the problem
of circuit synthesis [8]), but have recently seen a flurry of activ-
ity due to the emergence of fast SAT and SMT solvers combined
with the work of Solar-Lezama [27], which showed that program
synthesis could be cast as a in terms of satisfiability. Since then,
program synthesis has been applied to a wide variety of problems,
including automating string processing in spreadsheets [16], heap-
manipulations [25] and automated program repair [20, 22]. Model
counting [13] and uniform sampling [21] have elicited a huge inter-
est due to their applications in bayesian inference and probabilistic
programming. Model counting has been successfully employed for
probabilistic symbolic execution [14] that assigns probabilities to
program paths to aid understanding. We use model counting in a
similar context to synthesize a low probability path for the buggy
executions.

6 DISCUSSION

We show some of the bugs Apocalypse inserted in a few of the
coreutils programs. As can be seen, the predicates are quite non-
trivial, spanning array accesses, pointer deferences and access to
fields of aggregate structures. We believe that a large corpus of
injected bugs will help us better understand the pecularities and
relative merits of different bug-detection tools. There exist threats
to validity to our experimental results, in particular from the choice
of the benchmark programs and the seed inputs. We were careful
to select a large number of program and inject multiple bugs in
them; nevertheless, more extensive experiments can be performed.
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