
guest analyses in C and C++. Plug-in code is executed
from a number of standard callback locations: before and
after basic blocks, memory read and writes, etc. This is not
unlike the schemes employed in other whole-system dynamic
analysis platforms such as BitBlaze [29] and S2E [7]. In ad-
dition, plugins can export functionality that can then be
used in other plugins, allowing complex behavior to be built
up from simple components. From a software engineering
perspective, PANDA’s plugin architecture allows the various
analyses supported by TZB to be cleanly separated from the
main emulator, which makes for a much more comprehensi-
ble and maintainable codebase.

The second aspect of PANDA that makes it an excellent
dynamic analysis platform is nondeterministic record and
replay (RR). In our formulation of RR, we begin a record-
ing by invoking QEMU’s built-in snapshot capability. Sub-
sequently, we record all inputs to the CPU, including ins,
interrupts, and DMA. Recording imposes a small overhead
(10-20%) but not enough to perturb execution. During re-
play, we revert to a snapshot and proceed to pull CPU inputs
from a log when required. Unlike many other RR schemes,
we do not record and replay device inputs, which means we
cannot “go live” at any point during replay. But we can per-
form repeated replays of an entire operating system under
arbitrary instrumentation load without worrying about this
perturbing application or operating system operation. This
capability is vital to TZB: without record and replay, the
heavyweight analyses we perform would make the system
unusably slow.

The final aspect of PANDA worth mentioning is its inte-
gration of LLVM. QEMU lowers basic blocks of guest code
to its own IL, which PANDA can, additionally, re-render
as basic blocks of LLVM code via a module extracted from
S2E. We omit further discussion of this capability as it is
not used by TZB.

5.2 Callstack Monitoring
As explained in Section 2, tap points need information

about the calling context. Keeping track of this informa-
tion requires some knowledge about the CPU architecture
on which the OS is running, and so we decided to encap-
sulate this task into a single plugin. TZB’s other analyses
can then query the current call stack to arbitrary depth by
invoking get_callers and not worry about the details de-
scribed in this section.

To track call stack information, the callstack plugin ex-
amines each basic block as it is translated, looking for an
(architecture-specific) call instruction (currently, we look for
call on x86 and bl and mov lr, pc on ARM). If the block
includes a call instruction, then we push the return address
onto a shadow stack after each time that block executes.

Detecting the return from a function does not require any
architecture-specific code. Before the execution of every ba-
sic block, we check whether the address we are about to
execute is at the top of the stack; if so, we pop it. We only
need to check the starting address of the basic block, be-
cause by definition a return terminates a basic block, so the
return address will always fall at the beginning of a block.

We note that these techniques may fail if traditional call-
return semantics are violated. For example, if a program
emulated calls and returns by manually pushing the return
address and using a direct jump, it would not be detected as
a call. However, for non-malicious compiler-generated code,

we have found that the algorithm described here works well.

5.3 Fixed String Searching
Searching for fixed strings is one of the most e↵ective tools

for finding useful tap points. Because we have to sift through
many gigabytes of data that pass through tap points during
any given execution, it is vital that string search be e�cient
in both time and space.

To satisfy these constraints, we developed stringsearch,
a plugin which requires only one byte of memory per search
string and per tap point. This one-byte counter tracks, for
a given tap point, how many bytes of the search string have
been matched by the data seen at the tap point so far.
Whenever a byte is read from or written to memory, we
can check what the next byte in the search string is using
this position, and compare it to the byte passing through
the tap point. If it matches, the counter is incremented;
if it does not match, the counter is reset to zero. When
the counter equals the length of the search string, we know
that the search string has passed through the tap point, and
we report a match. Note that because the counter is only
one byte, our matcher only supports strings up to 256 bytes
long; this cap could be easily raised to 65,536 bytes by using
a two-byte counter, at the cost of doubling the memory re-
quirements. Thus far, 256-byte strings have been more than
su�cient.

This e↵ectively implements a very simple deterministic
finite automaton (DFA) matcher. Indeed, we believe that it
should be possible to e�ciently implement a streaming basic
regular expression matcher that requires only an amount
of memory logarithmic in the number of states needed to
represent the expression. We leave this generalization to
future work, however.

5.4 Statistical Search and Clustering
Collecting bigram statistics on data that passes through

each tap point is an e�cient way to enable “fuzzy” search
based based on some training examples, as well as enabling
clustering. To implement this we collect bigram statistics for
all tap points seen in execution, as well as for the exemplar;
the data seen at each tap point is thus represented as a
sparse vector with 65,536 elements (one for each possible
pair of bytes).

To search, we can then sort the tap points seen by taking
the distance (according to some metric) from the exemplar.
For our metric, we have chosen to use Jensen-Shannon di-
vergence [18], which is a smoothed and symmetrized version
of the classic Kullback-Leibler divergence [16] (also known
as information gain). We also examined the Euclidean and
cosine distance metrics, but found their performance to be
consistently worse. Jensen-Shannon divergence between two
probability distributions P and Q is defined as:

JSD(P,Q) = H

✓
P +Q

2

◆
� H(P ) +H(Q)

2

where H is Shannon entropy.
Bigram collection is done by maintaining, for each tap

point, two pieces of information: (1) the last byte that
passed through the tap point, so that we can see bigrams
that span a single memory access; (2) a histogram of all byte
pairs seen at the tap point. The latter of these must be main-
tained sparsely: because our bigrams are based on bytes, a
dense histogram would require 65,536 integers’ worth of stor-


