
Prospects and Pitfalls
for a Science of Binary

Analysis

Brendan Dolan-Gavitt

01 011
01

1

0

0
0

0
01 1 1

Prospects and Pitfalls for a Science of Binary Analysis

Binary Analysis Research

• Since the Cyber Grand Challenge, binary analysis has
undergone something of a renaissance

• Lots of new (open!) tools, techniques

• Increased academic attention to long-ignored areas

• Fuzzing – lots of work on why things like AFL work so well,
and how to make them better

• Measurements of how effective basic binary analyses (e.g.,
plain disassembly, function recognition) are

• New areas – function similarity, cross-architecture code search

2

Prospects and Pitfalls for a Science of Binary Analysis

How Good Are We?

• Before we pat ourselves on the back for a job well
done and head off to the bar...

• How well are we doing in these areas?

• What are we still bad at – where should our
research efforts be directed?

3

Prospects and Pitfalls for a Science of Binary Analysis

The Impact of Datasets

• The fastest way to make progress is through open,
well-labeled datasets

• Provide an easy source of test data for new
algorithms

• Standardization allows different approaches to
be compared

• Progress can be measured over time!

4

Prospects and Pitfalls for a Science of Binary Analysis

Case Study:

• ImageNet introduced by Fei-Fei Li's group in 2009

• 14 million images, annotated with labels from WordNet

• Annual image recognition competition: ILSVRC
(2010-2017)

• Competition made it clear how much progress the
field was making

• Helped catalyze huge improvements in image
recognition algorithms:

5

Prospects and Pitfalls for a Science of Binary Analysis

ImageNet Progress 6

Int J Comput Vis (2015) 115:211–252 233

Fig. 9 Performance ofwinning entries in the ILSVRC2010-2014 com-
petitions in each of the three tasks (details about the entries and
numerical results are in Sect. 5.1). There is a steady reduction of error
every year in object classification and single-object localization tasks,
and a 1.9× improvement in mean average precision in object detection.
There are two considerations in making these comparisons. (1) The
object categories used in ISLVRC changed between years 2010 and
2011, and between 2011 and 2012. However, the large scale of the data

(1000 object categories, 1.2 million training images) has remained the
same, making it possible to compare results. Image classification and
single-object localization entries shown here use only provided train-
ing data. (2) The size of the object detection training data has increased
significantly between years 2013 and 2014 (Sect. 3.3). Section 6.1 dis-
cusses the relative effects of training data increase versus algorithmic
improvements

region proposals (Arbeláez et al. 2014) pretrained on PAS-
CAL VOC 2012 data are used to extract region proposals,
regions are represented using convolutional networks, and a
multiple instance learning strategy is used to learn weakly
supervised object detectors to represent the image.

In the single-object localization with provided data track,
the winning team was VGG, which explored the effect of
convolutional neural network depth on its accuracy by using
three different architectures with up to 19 weight layers with
rectified linear unit non-linearity, building off of the imple-
mentation of Caffe (Jia 2013). For localization they used
per-class bounding box regression similar to OverFeat (Ser-
manet et al. 2013). In the single-object localization with
external data track, Adobe used 2000 additional ImageNet
classes to train the classifiers in an integrated convolutional
neural network framework for both classification and local-
ization, with bounding box regression. At test time they used
k-means to find bounding box clusters and rank the clusters
according to the classification scores.

In the object detection with provided data track, the win-
ning team NUS used the RCNN framework (Girshick et al.
2013) with the network-in-networkmethod (Lin et al. 2014a)
and improvements of (Howard 2014). Global context infor-
mation was incorporated following (Chen et al. 2014). In the
object detection with external data track, the winning team
was GoogLeNet (which also won image classification with
provided data). It is truly remarkable that the same team was
able to win at both image classification and object detection,
indicating that their methods are able to not only classify the
imagebasedon scene informationbut also accurately localize
multiple object instances. Just like most teams participating
in this track,GoogLeNet used the image classification dataset
as extra training data.

5.2 Large Scale Algorithmic Innovations

ILSVRC over the past 5 years has paved the way for several
breakthroughs in computer vision.

The field of categorical object recognition has dramati-
cally evolved in the large-scale setting. Section 5.1 docu-
ments the progress, starting from coded SIFT features and
evolving to large-scale convolutional neural networks domi-
nating at all three tasks of image classification, single-object
localization, and object detection. With the availability of so
much trainingdata (alongwith an efficient algorithmic imple-
mentation andGPU computing resources) it became possible
to learn neural networks directly from the image data, with-
out needing to create multi-stage hand-tuned pipelines of
extracted features and discriminative classifiers. The major
breakthrough came in 2012 with the win of the SuperVision
team on image classification and single-object localization
tasks (Krizhevsky et al. 2012), and by 2014 all of the top
contestants were relying heavily on convolutional neural net-
works.

Further, over the past few years there has been a lot of
focus on large-scale recognition in the computer vision com-
munity . Best paper awards at top vision conferences in
2013 were awarded to large-scale recognition methods: at
CVPR 2013 to “Fast, Accurate Detection of 100,000 Object
Classes on a Single Machine” (Dean et al. 2013) and at
ICCV 2013 to “From Large Scale Image Categorization to
Entry-Level Categories” (Ordonez et al. 2013). Additionally,
several influential lines of research have emerged, such as
large-scale weakly supervised localization work of (Kuet-
tel et al. 2012) which was awarded the best paper award in
ECCV 2012 and large-scale zero-shot learning, e.g., (Frome
et al. 2013).

123

Int J Comput Vis (2015) 115:211–252
DOI 10.1007/s11263-015-0816-y

ImageNet Large Scale Visual Recognition Challenge

Olga Russakovsky1 · Jia Deng2 · Hao Su1 · Jonathan Krause1 ·
Sanjeev Satheesh1 · Sean Ma1 · Zhiheng Huang1 · Andrej Karpathy1 ·
Aditya Khosla3 · Michael Bernstein1 · Alexander C. Berg4 · Li Fei-Fei1

Received: 31 August 2014 / Accepted: 12 March 2015 / Published online: 11 April 2015
© Springer Science+Business Media New York 2015

Abstract The ImageNet Large Scale Visual Recognition
Challenge is a benchmark in object category classification
and detection on hundreds of object categories and millions
of images. The challenge has been run annually from 2010
to present, attracting participation from more than fifty insti-
tutions. This paper describes the creation of this benchmark
dataset and the advances in object recognition that have been
possible as a result. We discuss the challenges of collecting
large-scale ground truth annotation, highlight key break-
throughs in categorical object recognition, provide a detailed
analysis of the current state of the field of large-scale image
classification and object detection, and compare the state-of-
the-art computer vision accuracy with human accuracy. We
conclude with lessons learned in the 5 years of the challenge,
and propose future directions and improvements.

Keywords Dataset · Large-scale · Benchmark · Object
recognition · Object detection

1 Introduction

Overview The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) has been running annually for 5 years

Communicated by M. Hebert.

Olga Russakovsky and Jia Deng authors contributed equally.

B Olga Russakovsky
olga@cs.stanford.edu

1 Stanford University, Stanford, CA, USA
2 University of Michigan, Ann Arbor, MI, USA
3 Massachusetts Institute of Technology, Cambridge, MA, USA
4 UNC Chapel Hill, Chapel Hill, NC, USA

(since 2010) and has become the standard benchmark for
large-scale object recognition.1 ILSVRC follows in the foot-
steps of the PASCAL VOC challenge (Everingham et al.
2012), established in 2005, which set the precedent for stan-
dardized evaluation of recognition algorithms in the form of
yearly competitions. As in PASCALVOC, ILSVRC consists
of two components: (1) a publically available dataset, and
(2) an annual competition and corresponding workshop. The
dataset allows for the development and comparison of cat-
egorical object recognition algorithms, and the competition
andworkshop provide away to track the progress and discuss
the lessons learned from the most successful and innovative
entries each year.

The publically released dataset contains a set of manu-
ally annotated training images. A set of test images is also
released, with the manual annotations withheld.2 Partici-
pants train their algorithms using the training images and
then automatically annotate the test images. These predicted
annotations are submitted to the evaluation server. Results
of the evaluation are revealed at the end of the competi-
tion period and authors are invited to share insights at the
workshop held at the International Conference on Computer
Vision (ICCV) or European Conference on Computer Vision
(ECCV) in alternate years.

ILSVRC annotations fall into one of two categories: (1)
image-level annotation of a binary label for the presence or
absence of an object class in the image, e.g., “there are cars
in this image” but “there are no tigers,” and (2) object-level

1 In this paper, we will be using the term object recognition broadly to
encompass both image classification (a task requiring an algorithm to
determine what object classes are present in the image) as well as object
detection (a task requiring an algorithm to localize all objects present
in the image).
2 In 2010, the test annotations were later released publicly; since then
the test annotation have been kept hidden.

123

Source:
2017 Update: 

Classification error 0.02

Prospects and Pitfalls for a Science of Binary Analysis

This Talk

• What datasets do we have in binary analysis?

• What do we need, and what are the pitfalls?

• Walk through public datasets in three key areas:

• Bugs and vulnerabilities

• Dynamic malware analysis

• Function recognition in binaries

7

Prospects and Pitfalls for a Science of Binary Analysis

Vulnerability Discovery

• Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

8

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

Barton P. Miller
bart@cs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com

Bryan So
so@cs.wisc.edu

Summary

Operating system facilities, such as the kernel and utility programs, are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.

Content Indicators

D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General term: reliability, UNIX.

Research supported in part by National Science Foundation grants CCR-8703373 and CCR-8815928, Office of Naval Research grant
N00014-89-J-1222, and a Digital Equipment Corporation External Research Grant.

Copyright 1989 Miller, Fredriksen, and So.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{stephens,jmg,salls,dutcher,fish,jacopo,yans,chris,vigna}@cs.ucsb.edu

Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named
author (for reproduction of an entire paper only), and the author’s employer
if the paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler ∗
Stanford University

Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Prospects and Pitfalls for a Science of Binary Analysis

Vulnerability Discovery

• Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

8

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

Barton P. Miller
bart@cs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com

Bryan So
so@cs.wisc.edu

Summary

Operating system facilities, such as the kernel and utility programs, are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.

Content Indicators

D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General term: reliability, UNIX.

Research supported in part by National Science Foundation grants CCR-8703373 and CCR-8815928, Office of Naval Research grant
N00014-89-J-1222, and a Digital Equipment Corporation External Research Grant.

Copyright 1989 Miller, Fredriksen, and So.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{stephens,jmg,salls,dutcher,fish,jacopo,yans,chris,vigna}@cs.ucsb.edu

Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named
author (for reproduction of an entire paper only), and the author’s employer
if the paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler ∗
Stanford University

Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Does this work??

Prospects and Pitfalls for a Science of Binary Analysis

Bug and Vulnerability Corpora

• NIST's SAMATE project collects data sets and runs an
annual "bake-off" – but competitors are not named

• Their Software Assurance Reference Dataset (SARD)
contains many sub-datasets

• Juliet: C/C++ and Java programs with bugs

• IARPA STONESOUP: injected bugs

• Toyota InfoTechnology Center static analysis
benchmarks

9

Prospects and Pitfalls for a Science of Binary Analysis

New Kids on the Block 10

Prospects and Pitfalls for a Science of Binary Analysis

DARPA Cyber Grand Challenge

• Held by DARPA in 2015 (CQE) and 2016 (CFE)

• Fully automated hacking machines – cool!

• Even cooler: dataset of 247 reasonably-sized C and
C++ programs

• Variety of vulnerabilities

• Interaction required

• Each comes with normal and triggering inputs

11

Prospects and Pitfalls for a Science of Binary Analysis

CGC Ports

• Trail of Bits has ported a large number  
of the CGC challenges to Linux

• This (in theory) lets off-the-shelf tools be evaluated

• In practice, still many barriers

• (Ask me about my attempts to get KLEE running on the
CGC dataset sometime...)

• They would love help finishing the porting effort!

• Available: https://github.com/trailofbits/cb-multios

12

https://github.com/trailofbits/cb-multios

Prospects and Pitfalls for a Science of Binary Analysis

Downsides of CGC

• Static dataset: there was one CGC, and that's all
we get

• Some artificial features:

• 7 system calls total - doesn't reflect complexity of
real OS environments

• Single architecture (32-bit x86)

• Random "flag" page at fixed offset

13

Prospects and Pitfalls for a Science of Binary Analysis

LAVA Corpora

• In 2016, we1 created a bug injection system that
can add thousands of bugs (mem corruption) to
existing programs

• Each bug comes with a triggering input

• Bugs are synthetic but (we hope) good proxies
for real bugs (at least for automated tools)

14

1. We =

Prospects and Pitfalls for a Science of Binary Analysis

Available Datasets

• LAVA-M: 4 coreutils programs (md5sum, uniq, base64,
and who) with bugs injected

• LAVA-1: 69 versions of file, each with one bug

• "Toy" dataset: 159 versions of a 70 line C program

• Useful for finding bugs in bug finders!

• By default, KLEE only finds the bug in 43%

• http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-
corpora.html

15

http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html
http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-corpora.html

Prospects and Pitfalls for a Science of Binary Analysis

Progress on LAVA-M

• Several papers have used LAVA-M to evaluate new
fuzzers

16

Program # Bugs Vuzzer Steelix SBF

base64 44 17 43 44

md5sum 57 1 28 –

uniq 28 27 7 –

who 2136 50 194 –

• We can see that the original LAVA-M programs are
almost "used up" – time to create new corpora!

Prospects and Pitfalls for a Science of Binary Analysis

Malware Analysis

• One of the core use cases for binary analysis is
automated analysis of malicious software

• Some public corpora exist for static malware
features

• Microsoft has a dataset on Kaggle with 400GB of
samples from 9 families – headers stripped

• But no similar dataset available for dynamic
analysis

17

Prospects and Pitfalls for a Science of Binary Analysis

MalRec: A Full-Trace Malware
Corpus for Dynamic Analysis

• Based on PANDA – dynamic analysis platform we
developed

• By using non-deterministic record and replay, we can
capture all malware behavior – down to individual
instructions

• Currently processes 100 malware samples per day;
has been running for 3 years

• Because record/replay captures all information, we can
retroactively capture features of interest

18

Prospects and Pitfalls for a Science of Binary Analysis

Malrec Stats

• More than 100,000 traces available for download

• More than 1.5 quadrillion instructions' worth of
execution

• Because of record/replay and some compression
tricks, this dataset is only 3.5 TB

• Available: 
http://panda.moyix.net/~moyix/rr/ 
http://giantpanda.gtisc.gatech.edu/malrec/rr/README

19

http://panda.moyix.net/~moyix/rr/
http://giantpanda.gtisc.gatech.edu/malrec/rr/README

Prospects and Pitfalls for a Science of Binary Analysis

Malrec Shortcomings

• No attempt to mask emulator features, so lots of
evasion: at least 10% (conservative estimate)

• Unclear if sample is representative of all malware!

• As with all malware datasets, no ground truth labels

• But we hope that since these are full traces we
can improve ground truth over time

20

Prospects and Pitfalls for a Science of Binary Analysis

Function Identification

• Andriesse et al. (USENIX Sec 2016), noted that
although disassembly is now very reliable, function
identification is not

• Up to 20% false negative rates for funtion starts
with IDA Pro

• Some false positives too 

21

Prospects and Pitfalls for a Science of Binary Analysis

ByteWeight Dataset

• Binaries from open-source programs: coreutils, binutils,
findutils on Linux, putty, 7zip, vim, libsodium, libetpan,
HID API, and pbc on Windows

• Three compilers (gcc/clang/icc), four optimization levels,
two operating systems, both 32- and 64-bit x86

• Used for evaluating ByteWeight (Bao et al., 2014) and a
later neural network-based approach by Shin et al. (2015)

• Available:  
http://security.ece.cmu.edu/byteweight/

22

http://security.ece.cmu.edu/byteweight/

Prospects and Pitfalls for a Science of Binary Analysis

ByteWeight Warning

• Subtle gotcha (Andriesse et al., 2017): coreutils programs
share large amounts of library code – average coreutils binary
shares 94% of its functions with at least one other binary!

• This means that for machine learning purposes, standard
training set / test set split will have many overlaps

• This can lead to misleading results when machine learning-
based techniques are used – you're testing on your training
data!

• (This is not a knock on Bao et al. – if their data weren't open &
available, would have been hard to spot this!)

23

Prospects and Pitfalls for a Science of Binary Analysis

Vector35 Dataset

• Recently, Vector35 (creators of Binary Ninja) put
together a cross-architecture dataset used for testing
their own tools

• Combination of:

• Original ByteWeight dataset

• DARPA CGC binaries (clang, 32-bit)

• Busybox (six architectures, gcc, two levels of
optimization)

24

Prospects and Pitfalls for a Science of Binary Analysis

Dataset Pitfalls

• Although I believe standard datasets are on the
whole a huge win for research, there are some
dangers too

• The most pressing concern is validity – datasets
are inherently approximations of our real problem

• When our tools do well on our datasets, do they
translate to the real world?

25

Prospects and Pitfalls for a Science of Binary Analysis

Validity 26

Prospects and Pitfalls for a Science of Binary Analysis

No Easy Answers

• You can say "well just try it on real software too!"

• But you can't try all real software – and so any
subset you pick may also be biased!

• Instead, we can try to measure dataset bias in a
few indirect ways

• (These come from "Unbiased Look at Dataset
Bias" by Torralba and Efros)

27

Prospects and Pitfalls for a Science of Binary Analysis

Cross-Dataset Generalization

• One simple test is cross-dataset generalization

• How well does my technique work when I try it on
someone else's data?

• For this we need more than one large, public
dataset!

• Right now, we often have just one for a task in
binary program analysis

28

Prospects and Pitfalls for a Science of Binary Analysis

Negative Dataset Bias

• In many tasks, it is just as important to have good representation of
negative examples as positive

• ML example – to recognize boats, need lots of images of things
that have water but are not boats

• For some datasets, this is relatively easy (binaries with function
starts have lots of data that are not function starts)

• Harder in other cases – representative datasets of benign software?

• One way to evaluate negative dataset bias: train on positives &
negatives from your own dataset, test on negatives from many
datasets combined

29

Prospects and Pitfalls for a Science of Binary Analysis

Conclusions

• Large, well-labeled public datasets are crucial to achieving rapid
progress in binary analysis

• We have made some recent progress as a community – let's keep it
up!

• Improve current datasets, and create new ones!

• Check for bias and mistakes in existing datasets

• If you create a new analysis, you should:

• Test it on an existing dataset if there is one

• Release your dataset!

30

Prospects and Pitfalls for a Science of Binary Analysis

Rejected Titles

• Measure-y Loves Company

• Habeas Corpora

• We Gave Researchers Standardized Datasets –
You Won't Believe What Happened Next!

31

