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Prospects and Pitfalls for a Science of Binary Analysis

Binary Analysis Research

¥ Since the Cyber Grand Challenge, binary analysis has 
undergone something of a renaissance 

¥ Lots of new (open!) tools, techniques 

¥ Increased academic attention to long-ignored areas 

¥ Fuzzing Ð!lots of work on why things like AFL work so well, 
and how to make them better 

¥ Measurements of how effective basic binary analyses (e.g., 
plain disassembly, function recognition) are 

¥ New areas Ð!function similarity, cross-architecture code search
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Prospects and Pitfalls for a Science of Binary Analysis

How Good Are We?

¥ Before we pat ourselves on the back for a job well 
done and head off to the bar... 

¥ How well are we doing in these areas? 

¥ What are we still bad at Ð!where should our 
research efforts be directed?
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The Impact of Datasets

¥ The fastest way to make progress is through open, 
well-labeled datasets 

¥ Provide an easy source of test data for new 
algorithms 

¥ Standardization allows different approaches to 
be compared  

¥ Progress can be measured over time!
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Prospects and Pitfalls for a Science of Binary Analysis

Case Study:

¥ ImageNet introduced by Fei-Fei Li's group in 2009 

¥ 14 million images, annotated with labels from WordNet 

¥ Annual image recognition competition: ILSVRC 
(2010-2017) 

¥ Competition made it clear how much progress the 
Þeld was making 

¥ Helped catalyze huge  improvements in image 
recognition algorithms: 
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ImageNet Progress
6
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Fig. 9 Performance of winning entries in the ILSVRC2010-2014 com-
petitions in each of the three tasks (details about the entries and
numerical results are in Sect.5.1). There is a steady reduction of error
every year in object classiÞcation and single-object localization tasks,
and a 1.9! improvement in mean average precision in object detection.
There are two considerations in making these comparisons. (1) The
object categories used in ISLVRC changed between years 2010 and
2011, and between 2011 and 2012. However, the large scale of the data

(1000 object categories, 1.2 million training images) has remained the
same, making it possible to compare results. Image classiÞcation and
single-object localization entries shown here use only provided train-
ing data. (2) The size of the object detection training data has increased
signiÞcantly between years 2013 and 2014 (Sect.3.3). Section6.1dis-
cusses the relative effects of training data increase versus algorithmic
improvements

region proposals (Arbel‡ez et al. 2014) pretrained on PAS-
CAL VOC 2012 data are used to extract region proposals,
regions are represented using convolutional networks, and a
multiple instance learning strategy is used to learn weakly
supervised object detectors to represent the image.

In the single-object localization with provided data track,
the winning team was VGG, which explored the effect of
convolutional neural network depth on its accuracy by using
three different architectures with up to 19 weight layers with
rectiÞed linear unit non-linearity, building off of the imple-
mentation of Caffe (Jia 2013). For localization they used
per-class bounding box regression similar to OverFeat (Ser-
manet et al. 2013). In the single-object localization with
external data track, Adobe used 2000 additional ImageNet
classes to train the classiÞers in an integrated convolutional
neural network framework for both classiÞcation and local-
ization, with bounding box regression. At test time they used
k-means to Þnd bounding box clusters and rank the clusters
according to the classiÞcation scores.

In the object detection with provided data track, the win-
ning team NUS used the RCNN framework (Girshick et al.
2013) with the network-in-network method (Lin et al. 2014a)
and improvements of (Howard 2014). Global context infor-
mation was incorporated following (Chen et al. 2014). In the
object detection with external data track, the winning team
was GoogLeNet (which also won image classiÞcation with
provided data). It is truly remarkable that the same team was
able to win at both image classiÞcation and object detection,
indicating that their methods are able to not only classify the
image based on scene information but also accurately localize
multiple object instances. Just like most teams participating
in this track, GoogLeNet used the image classiÞcation dataset
as extra training data.

5.2 Large Scale Algorithmic Innovations

ILSVRC over the past 5 years has paved the way for several
breakthroughs in computer vision.

The Þeld of categorical object recognition has dramati-
cally evolved in the large-scale setting. Section5.1 docu-
ments the progress, starting from coded SIFT features and
evolving to large-scale convolutional neural networks domi-
nating at all three tasks of image classiÞcation, single-object
localization, and object detection. With the availability of so
much training data (along with an efÞcient algorithmic imple-
mentation and GPU computing resources) it became possible
to learn neural networks directly from the image data, with-
out needing to create multi-stage hand-tuned pipelines of
extracted features and discriminative classiÞers. The major
breakthrough came in 2012 with the win of the SuperVision
team on image classiÞcation and single-object localization
tasks (Krizhevsky et al. 2012), and by 2014 all of the top
contestants were relying heavily on convolutional neural net-
works.

Further, over the past few years there has been a lot of
focus on large-scale recognition in the computer vision com-
munity . Best paper awards at top vision conferences in
2013 were awarded to large-scale recognition methods: at
CVPR 2013 to ÒFast, Accurate Detection of 100,000 Object
Classes on a Single MachineÓ (Dean et al. 2013) and at
ICCV 2013 to ÒFrom Large Scale Image Categorization to
Entry-Level CategoriesÓ (Ordonez et al. 2013). Additionally,
several inßuential lines of research have emerged, such as
large-scale weakly supervised localization work of (Kuet-
tel et al. 2012) which was awarded the best paper award in
ECCV 2012 and large-scale zero-shot learning, e.g., (Frome
et al. 2013).
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Abstract The ImageNet Large Scale Visual Recognition
Challenge is a benchmark in object category classiÞcation
and detection on hundreds of object categories and millions
of images. The challenge has been run annually from 2010
to present, attracting participation from more than Þfty insti-
tutions. This paper describes the creation of this benchmark
dataset and the advances in object recognition that have been
possible as a result. We discuss the challenges of collecting
large-scale ground truth annotation, highlight key break-
throughs in categorical object recognition, provide a detailed
analysis of the current state of the Þeld of large-scale image
classiÞcation and object detection, and compare the state-of-
the-art computer vision accuracy with human accuracy. We
conclude with lessons learned in the 5 years of the challenge,
and propose future directions and improvements.

Keywords DatasetáLarge-scaleáBenchmarkáObject
recognitionáObject detection

1 Introduction

Overview The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) has been running annually for 5 years
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(since 2010) and has become the standard benchmark for
large-scale object recognition.1 ILSVRC follows in the foot-
steps of the PASCAL VOC challenge (Everingham et al.
2012), established in 2005, which set the precedent for stan-
dardized evaluation of recognition algorithms in the form of
yearly competitions. As in PASCAL VOC, ILSVRC consists
of two components: (1) a publically availabledataset, and
(2) an annualcompetitionand corresponding workshop. The
dataset allows for the development and comparison of cat-
egorical object recognition algorithms, and the competition
and workshop provide a way to track the progress and discuss
the lessons learned from the most successful and innovative
entries each year.

The publically released dataset contains a set of manu-
ally annotatedtraining images. A set oftest images is also
released, with the manual annotations withheld.2 Partici-
pants train their algorithms using the training images and
then automatically annotate the test images. These predicted
annotations are submitted to theevaluation server. Results
of the evaluation are revealed at the end of the competi-
tion period and authors are invited to share insights at the
workshop held at the International Conference on Computer
Vision (ICCV) or European Conference on Computer Vision
(ECCV) in alternate years.

ILSVRC annotations fall into one of two categories: (1)
image-level annotationof a binary label for the presence or
absence of an object class in the image, e.g., Òthere are cars
in this imageÓ but Òthere are no tigers,Ó and (2)object-level

1 In this paper, we will be using the termobject recognitionbroadly to
encompass bothimage classiÞcation(a task requiring an algorithm to
determine what object classes are present in the image) as well asobject
detection(a task requiring an algorithm to localize all objects present
in the image).
2 In 2010, the test annotations were later released publicly; since then
the test annotation have been kept hidden.
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This Talk

¥ What datasets do we have in binary analysis? 

¥ What do we need, and what are the pitfalls? 

¥ Walk through public datasets in three key areas: 

¥ Bugs and vulnerabilities 

¥ Dynamic malware analysis 

¥ Function recognition in binaries
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Vulnerability Discovery

¥ Finding vulnerabilities in software automatically has 
been a major research and industry goal for the 
last 25 years

8

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

BartonP. Miller
bart@cs.wisc.edu

LarsFredriksen
L.Fredriksen@att.com

BryanSo
so@cs.wisc.edu

Summary

Operatingsystemfacilities, suchasthe kernelandutility programs,are typically assumedto be reliable. In

our recentexperiments,we havebeenableto crash25-33%of theutility programsonanyversionof UNIX thatwas

tested.This reportdescribesthesetestsandananalysisof theprogrambugsthatcausedthecrashes.
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AbstractÑMemory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to conÞdential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability Þnding and patching, showing the importance of
research in this area. Current techniques for Þnding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only Þnd shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to Þnd deeper bugs. Inexpensive
fuzzing is used to exercisecompartmentsof an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efÞcacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. I NTRODUCTION

Despite efforts to increase the resilience of software
against security ßaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
ßaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or proÞt. Furthermore,
with the rise of theInternet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary Þrmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees Ð that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide Òactionable inputÓ
(i.e., an example of a speciÞc input that can trigger a detected
vulnerability). Dynamic analysis systems, such as ÒfuzzersÓ,
monitor the native execution of an application to identify ßaws.
When ßaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for Òinput test casesÓ to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the Þrst page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the Þrst-named
author (for reproduction of an entire paper only), and the authorÕs employer
if the paper was prepared within the scope of employment.
NDSS Õ16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
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KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs
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Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We appliedKLEE

to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities,KLEEÕs
automatically generated tests covered 80Ð100% of exe-
cutable statements and, in aggregate, signiÞcantly beat
the coverage of the developersÕ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX Õs
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also usedKLEE to automatically Þnd nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in usingsymbolic executionto automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be Òanything.Ó They substitute

! Author names are in alphabetical order. Daniel Dunbar is themain
author of theKLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called thepath condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to Þnd concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.

Results from these tools and others are promising.
However, while researchers have shown such tools can
get high coverage and Þnd bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difÞculty of handling the environ-
ment (Òthe environment problemÓ). Neither concern has
been much helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.

This paper makes two contributions: First, we present
a new symbolic execution tool,KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10].KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efÞcient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1
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Driller (2015)
Fuzzing (1989)
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Vulnerability Discovery

¥ Finding vulnerabilities in software automatically has 
been a major research and industry goal for the 
last 25 years
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AbstractÑMemory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to conÞdential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability Þnding and patching, showing the importance of
research in this area. Current techniques for Þnding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only Þnd shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to Þnd deeper bugs. Inexpensive
fuzzing is used to exercisecompartmentsof an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efÞcacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. I NTRODUCTION

Despite efforts to increase the resilience of software
against security ßaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
ßaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or proÞt. Furthermore,
with the rise of theInternet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary Þrmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees Ð that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide Òactionable inputÓ
(i.e., an example of a speciÞc input that can trigger a detected
vulnerability). Dynamic analysis systems, such as ÒfuzzersÓ,
monitor the native execution of an application to identify ßaws.
When ßaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for Òinput test casesÓ to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that
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Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We appliedKLEE

to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities,KLEEÕs
automatically generated tests covered 80Ð100% of exe-
cutable statements and, in aggregate, signiÞcantly beat
the coverage of the developersÕ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX Õs
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also usedKLEE to automatically Þnd nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in usingsymbolic executionto automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be Òanything.Ó They substitute

! Author names are in alphabetical order. Daniel Dunbar is themain
author of theKLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called thepath condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to Þnd concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.

Results from these tools and others are promising.
However, while researchers have shown such tools can
get high coverage and Þnd bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difÞculty of handling the environ-
ment (Òthe environment problemÓ). Neither concern has
been much helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.

This paper makes two contributions: First, we present
a new symbolic execution tool,KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10].KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efÞcient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Does this work??
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Bug and Vulnerability Corpora

¥ NIST's SAMATE project collects data sets and runs an 
annual "bake-off" Ð!but competitors are not named 

¥ Their Software Assurance Reference Dataset (SARD) 
contains many sub-datasets 

¥ Juliet: C/C++ and Java programs with bugs 

¥ IARPA STONESOUP: injected bugs 

¥ Toyota InfoTechnology Center static analysis 
benchmarks

9
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New Kids on the Block
10
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DARPA Cyber Grand Challenge

¥ Held by DARPA in 2015 (CQE) and 2016 (CFE) 

¥ Fully automated hacking machines Ð!cool! 

¥ Even cooler: dataset of 247 reasonably-sized C and 
C++ programs 

¥ Variety of vulnerabilities 

¥ Interaction required 

¥ Each comes with normal and triggering inputs

11
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CGC Ports

¥ Trail of Bits has ported a large number !
of the CGC challenges to Linux 

¥ This (in theory) lets off-the-shelf tools be evaluated 

¥ In practice, still many barriers 

¥ (Ask me about my attempts to get KLEE running on the 
CGC dataset sometime...) 

¥ They would love  help Þnishing the porting effort! 

¥ Available: https://github.com/trailofbits/cb-multios

12
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Downsides of CGC

¥ Static dataset: there was one CGC, and that's all 
we get 

¥ Some artiÞcial features: 

¥ 7 system calls total - doesn't reßect complexity of 
real OS environments 

¥ Single architecture (32-bit x86) 

¥ Random "ßag" page at Þxed offset

13
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LAVA Corpora

¥ In 2016, we1 created a bug injection system that 
can add thousands of bugs (mem corruption) to 
existing programs 

¥ Each bug comes with a triggering input 

¥ Bugs are synthetic but (we hope) good proxies 
for real bugs (at least for automated tools)

14

1. We =
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Available Datasets

¥ LAVA-M : 4 coreutils programs (md5sum, uniq, base64, 
and who) with bugs injected 

¥ LAVA-1 : 69 versions of Þle, each with one bug 

¥ "Toy" dataset: 159 versions of a 70 line C program 

¥ Useful for Þnding bugs in bug Þnders! 

¥ By default, KLEE only Þnds the bug in 43% 

¥ http://moyix.blogspot.com/2016/10/the-lava-synthetic-bug-
corpora.html

15
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Progress on LAVA-M

¥ Several papers have used LAVA-M to evaluate new 
fuzzers

16

Program # Bugs Vuzzer Steelix SBF

base64 44 17 43 44

md5sum 57 1 28 Ð

uniq 28 27 7 Ð

who 2136 50 194 Ð

¥ We can see that the original LAVA-M programs are 
almost "used up" Ð!time to create new corpora!
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Malware Analysis

¥ One of the core use cases for binary analysis is 
automated analysis of malicious software 

¥ Some public corpora exist for static malware 
features 

¥ Microsoft has a dataset on Kaggle with 400GB of 
samples from 9 families Ð!headers stripped 

¥ But no similar dataset available for dynamic 
analysis

17
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MalRec: A Full-Trace Malware 
Corpus for Dynamic Analysis

¥ Based on PANDA Ð dynamic analysis platform we 
developed 

¥ By using non-deterministic record and replay , we can 
capture all malware behavior Ð down to individual 
instructions 

¥ Currently processes 100 malware samples  per day; 
has been running for 3 years  

¥ Because record/replay captures all information, we can 
retroactively  capture features of interest

18
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Malrec Stats

¥ More than 100,000 traces available for download 

¥ More than 1.5 quadrillion instructions' worth of 
execution 

¥ Because of record/replay and some compression 
tricks, this dataset is only 3.5 TB 

¥ Available:!
http://panda.moyix.net/~moyix/rr/ !
http://giantpanda.gtisc.gatech.edu/malrec/rr/README

19
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Malrec Shortcomings

¥ No attempt to mask emulator features, so lots of 
evasion: at least 10% (conservative estimate) 

¥ Unclear if sample is representative of all malware! 

¥ As with all malware datasets, no ground truth labels 

¥ But we hope that since these are full traces we 
can improve ground truth over time

20
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Function IdentiÞcation

¥ Andriesse et al. (USENIX Sec 2016), noted that 
although disassembly is now very reliable, function 
identiÞcation is not 

¥ Up to 20% false negative rates for funtion starts 
with IDA Pro 

¥ Some false positives too!

21
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ByteWeight Dataset

¥ Binaries from open-source programs: coreutils, binutils, 
Þndutils on Linux, putty, 7zip, vim, libsodium, libetpan, 
HID API, and pbc on Windows 

¥ Three compilers (gcc/clang/icc), four optimization levels, 
two operating systems, both 32- and 64-bit x86 

¥ Used for evaluating ByteWeight (Bao et al., 2014) and a 
later neural network-based approach by Shin et al. (2015) 

¥ Available:!
http://security.ece.cmu.edu/byteweight/
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ByteWeight Warning

¥ Subtle gotcha (Andriesse et al., 2017): coreutils programs 
share large amounts of library code Ð!average coreutils binary 
shares 94% of its functions with at least one other binary!  

¥ This means that for machine learning purposes, standard 
training set / test set split will have many overlaps 

¥ This can lead to misleading results when machine learning-
based techniques are used Ð!you're testing on your training 
data! 

¥ (This is not a knock on Bao et al. Ð!if their data weren't open & 
available, would have been hard to spot this!)

23
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Vector35 Dataset

¥ Recently, Vector35 (creators of Binary Ninja) put 
together a cross-architecture  dataset used for testing 
their own tools 

¥ Combination of: 

¥ Original ByteWeight dataset 

¥ DARPA CGC binaries (clang, 32-bit) 

¥ Busybox (six architectures, gcc, two levels of 
optimization)

24
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Dataset Pitfalls

¥ Although I believe standard datasets are on the 
whole a huge win for research, there are some 
dangers too 

¥ The most pressing concern is validity Ð!datasets 
are inherently approximations of our real problem 

¥ When our tools do well on our datasets, do they 
translate to the real world?

25
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Validity
26
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No Easy Answers

¥ You can say "well just try it on real software too!" 

¥ But you can't try all real software!Ð!and so any 
subset you pick may also be biased! 

¥ Instead, we can try to measure dataset bias in a 
few indirect ways 

¥ (These come from "Unbiased Look at Dataset 
Bias" by Torralba and Efros)

27
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Cross-Dataset Generalization

¥ One simple test is cross-dataset generalization 

¥ How well does my technique work when I try it on 
someone else's data? 

¥ For this we need more than one large, public 
dataset! 

¥ Right now, we often have just one for a task in 
binary program analysis

28
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Negative Dataset Bias

¥ In many tasks, it is just as important to have good representation of 
negative  examples as positive 

¥ ML example Ð!to recognize boats, need lots of images of things 
that have water but are not boats 

¥ For some datasets, this is relatively easy (binaries with function 
starts have lots of data that are not function starts) 

¥ Harder in other cases Ð!representative datasets of benign software? 

¥ One way to evaluate negative dataset bias: train on positives & 
negatives from your own dataset, test on negatives from many 
datasets combined
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Conclusions

¥ Large, well-labeled public datasets are crucial  to achieving rapid 
progress in binary analysis 

¥ We have made some recent progress as a community Ð let's keep it 
up! 

¥ Improve current datasets, and create new ones! 

¥ Check for bias and mistakes in existing datasets 

¥ If you create a new analysis, you should: 

¥ Test it on an existing dataset if there is one 

¥ Release your dataset!
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Rejected Titles

¥ Measure-y Loves Company 

¥ Habeas Corpora 

¥ We Gave Researchers Standardized Datasets Ð 
You Won't Believe  What Happened Next!
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