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Abstract—Work on automating vulnerability discovery has
long been hampered by a shortage of ground-truth corpora with
which to evaluate tools and techniques. This lack of ground truth
prevents authors and users of tools alike from being able to
measure such fundamental quantities as miss and false alarm
rates. In this paper, we present LAVA, a novel dynamic taint
analysis-based technique for producing ground-truth corpora by
quickly and automatically injecting large numbers of realistic
bugs into program source code. Every LAVA bug is accompa-
nied by an input that triggers it whereas normal inputs are
extremely unlikely to do so. These vulnerabilities are synthetic
but, we argue, still realistic, in the sense that they are embedded
deep within programs and are triggered by real inputs. Using
LAVA, we have injected thousands of bugs into eight real-world
programs, including bash, tshark, and the GNU coreutils. In a
preliminary evaluation, we found that a prominent fuzzer and
a symbolic execution-based bug finder were able to locate some
but not all LAVA-injected bugs, and that interesting patterns
and pathologies were already apparent in their performance. Our
work forms the basis of an approach for generating large ground-
truth vulnerability corpora on demand, enabling rigorous tool
evaluation and providing a high-quality target for tool developers.

I. MOTIVATION

Bug-finding tools have been an active area of research for

almost as long as computer programs have existed. Techniques

such as abstract interpretation, fuzzing, and symbolic execu-

tion with constraint solving have been proposed, developed,

and applied. But evaluation has been a problem, as ground

truth is in extremely short supply. Vulnerability corpora ex-

ist [10] but they are of limited utility and quantity. These

corpora fall into two categories: historic and synthetic. Corpora

built from historic vulnerabilities contain too few examples to

be of much use [27]. However, these are closest to what we

want to have since the bugs are embedded in real code, use real
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inputs, and are often well annotated with precise information

about where the bug manifests itself.
Creating such a corpus is a difficult and lengthy process;

according to the authors of prior work on bug-finding tool

evaluation, a corpus of fourteen very well annotated historic

bugs with triggering inputs took about six months to con-

struct [26]. In addition, public corpora have the disadvantage

of already being released, and thus rapidly become stale; as

we can expect tools to have been trained to detect bugs that

have been released. Given the commercial price tag of new

exploitable bugs, which is widely understood to begin in the

mid five figures [20], it is hard to find real bugs for our corpus

that have not already been used to train tools. And while

synthetic code stocked with bugs auto-generated by scripts

can provide large numbers of diagnostic examples, each is

only a tiny program and the constructions are often considered

unrepresentative of real code [2], [11].
In practice, a vulnerability discovery tool is typically evalu-

ated by running it and seeing what it finds. Thus, one technique

is judged superior if it finds more bugs than another. While this

state of affairs is perfectly understandable, given the scarcity

of ground truth, it is an obstacle to science and progress in

vulnerability discovery. There is currently no way to measure

fundamental figures of merit such as miss and false alarm rate

for a bug finding tool.
We propose the following requirements for bugs in a vulner-

ability corpus, if it is to be useful for research, development,

and evaluation. Bugs must

1) Be cheap and plentiful

2) Span the execution lifetime of a program

3) Be embedded in representative control and data flow

4) Come with an input that serves as an existence proof

5) Manifest for a very small fraction of possible inputs

The first requirement, if we can meet it, is highly desirable

since it enables frequent evaluation and hill climbing. Corpora

are more valuable if they are essentially disposable. The

second and third of these requirements stipulate that bugs must
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be realistic. The fourth means the bug is demonstrable and

serious, and is a precondition for determining exploitability.

The fifth requirement is crucial. Consider the converse: if

a bug manifests for a large fraction of inputs it is trivially

discoverable by simply running the program.

The approach we propose is to create a synthetic vul-

nerability via a few judicious and automated edits to the

source code of a real program. We will detail and give results

for an implementation of this approach that satisfies all of

the above requirements, which we call LAVA (Large-scale

Automated Vulnerability Addition). A serious bug such as

a buffer overflow can be injected by LAVA into a program

like file, which is 13K LOC, in about 15 seconds. LAVA

bugs manifest all along the execution trace, in all parts of the

program, shallow and deep, and make use of normal data flow.

By construction, a LAVA bug comes with an input that triggers

it, and we can guarantee that no other input can trigger the

bug.

II. SCOPE

We restrict our attention, with LAVA, to the injection of

bugs into source code. This makes sense given our interest

in using it to assemble large corpora for the purpose of

evaluating and developing vulnerability discovery techniques

and systems. Automated bug discovery systems can work

on source code [1], [8], [9], [24] or on binaries [3], [21];

we can easily test binary analysis tools by simply compiling

the modified source. Injecting bugs into binaries or bytecode

directly may also be possible using an approach similar to

ours, but we do not consider that problem here. We further

narrow our focus to Linux open-source software written in

C, due to the availability of source code and source rewriting

tools. As we detail later, a similar approach will work for other

languages.

We want the injected bugs to be serious ones, i.e., potentially

exploitable. As a convenient proxy, our current focus is on

injecting code that can result in out-of-bounds reads and

writes that can be triggered by an attacker-controlled input;

in Section VIII we consider extensions to LAVA to support

other bug classes. We produce a proof-of-concept input to

trigger any bug we successfully inject, although we do not

attempt to produce an actual exploit.

For the sake of brevity, in this paper we will use the words

bug and vulnerability interchangeably. In both cases, what we

mean is vulnerabilities (in particular, primarily out-of-bounds

reads and writes) that cause potentially exploitable crashes.

III. LAVA OVERVIEW

At a high level, LAVA adds bugs to programs in the

following manner. Given an execution trace of the program

on some specific input, we:

1) Identify execution trace locations where input bytes are

available that do not determine control flow and have not

been modified much. We call these quantities DUAs, for

Dead, Uncomplicated and Available data.

1

void foo(int a, int b, char *s, char *d, int n) {
int c = a+b;3

if (a != 0xdeadbeef)
return;5

for (int i=0; i<n; i++)
c+=s[i];7

memcpy(d,s,n+c); // Original source
// BUG: memcpy(d+(b==0x6c617661)*b,s,n+c);9

}

Fig. 1: LAVA running example. Entering the function foo, a
is bytes 0..3 of input, b is 4..7, and n is 8..11. The pointers

s and d, and the buffers pointed to by them are untainted.

2) Find potential attack points that are temporally after a

DUA in the program trace. Attack points are source code

locations where a DUA might be used, if only it were

available there as well, to make a program vulnerable.

3) Add code to the program to make the DUA value

available at the attack point and use it to trigger the

vulnerability.

These three steps will be discussed in the following three

sections, which refer to the running example in Figure 1.

A. The DUA

Because they ensure that attacker-controlled data is available

to influence program behavior, DUAs form the raw material

from which we construct bugs. We identify DUAs in a program

by running that program under a dynamic taint analysis [14]

for a specific input. That taint analysis has a few important

features:

• Each byte in the input is given its own label. Thus, if

an internal program quantity is tainted, then we can map

that quantity back to a specific part of the input.

• The taint analysis is as complete and correct as possible.

All program code including library and kernel is subject

to taint analysis. Multiple threads and processes are also

handled correctly, so that taint flows are not lost.

• The taint analysis keeps track of a set of labels per byte of

program data, meaning that it can represent computation

that mixes input bytes.

Every tainted program variable is some function of the input

bytes. We estimate how complicated this function is via a

new measure, the Taint Compute Number (TCN). TCN simply

tracks the depth of the tree of computation required to obtain

a quantity from input bytes. The smaller TCN is for a program

quantity, the closer it is, computationally, to the input. If

TCN is 0, the quantity is a direct copy of input bytes. The

intuition behind this measure is that we need DUAs that are

computationally close to the input in order to be able to use

them with predictable results.

Note that TCN is not an ideal measure. There are obviously

situations in which the tree of computation is deep but the

resulting value is both completely predictable and has as much

entropy as the original value. However, TCN has the advantage

that it is easy to compute on an instruction-by-instruction
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Fig. 2: Taint Compute Number examples from the running

example. TCN is simply the depth of the tree of computation

that produces the value from tainted inputs. TCN(c) after line

2 is 1, and after line 6 (upon exiting the loop), it is n+1.

basis. Whenever the taint system needs to compute the union

of sets of taint labels to represent computation, the TCN

associated with the resulting set is one more than the max of

those of the input sets. In the running example, and illustrated

in Figure 2, TCN(c) = 1 after line 1, since it is computed

from quantities a and b which are directly derived from input.

Later, just before line 7 and after the loop, TCN(c) = n+ 1
because each iteration of the loop increases the depth of the

tree of computation by one.

The other taint-based measure LAVA introduces is liveness,

which is associated with taint labels, i.e., the input bytes

themselves. This is a straightforward accounting of how many

branches a byte in the input has been used to decide. Thus, if

a particular input byte label was never found in a taint label

set associated with any byte used to decide a branch, it will

have liveness of 0. A DUA entirely consisting of bytes with 0

or very low liveness can be considered dead in the sense that

it has little influence upon control flow for this program trace.

If one were to fuzz dead input bytes, the program should be

indifferent and execute the same trace. In the running example,

LIV (0..3) = 1 after line 3, since a is a direct copy of input

bytes 0..3. After each iteration of the loop, the liveness of

bytes 8..11, the loop bound, increase by one, and so after the

loop LIV (8..11) = n.

Figures 3 and 4 are plots of liveness and taint compute

number for the program file processing the input /bin/ls.

In both plots, the horizontal axis is the number of replay

instructions processed, and so corresponds, roughly, to time.

The vertical axis is file position, so at bottom is the first byte

in /bin/ls and at top is the 70th byte. Obviously, /bin/ls
is bigger than 70 bytes. However, as expected, only the 64-

byte ELF header has any interesting liveness or taint compute

number values and so we restrict our attention, in these plots,

to that section. Higher values for liveness and taint compute

number are represented on both plots by darker patches.

Thus, portions that are very light for large horizontal stretches

starting at the left on both plots are DUAs. For instance,

bytes 28-32, which point to the start of the program header

table, are uninvolved in branches or computation. Presumably

Fig. 3: Liveness plotted, over time, for the input bytes of

’/bin/ls’ being processed by the program ’file’.

Fig. 4: Taint compute number, over time, for the input bytes

of ’/bin/ls’ being processed by the program ’file’.

these would make a fine DUA, and it seems reasonable that

file simply doesn’t have much use for this information.

Whereas bytes 19 and 20, which indicate the instruction set,

are very live after about 55M instructions. This is reasonable

since file needs to report this information in human-readable

form, such as x86_64. However, consider bytes 10-16, which

are apparently being used in a number of branches. This is

odd considering they are marked as unused in the ELF header

spec. These kinds of disparities make a good argument for

using taint-based measures to inject bugs rather than trusting

published specs.

The combination of uncomplicated (low TCN) and dead

(low liveness) program data is a powerful one for vulnera-

bility injection. The DUAs it identifies are internal program

quantities that are often a direct copy of input bytes, and

can be set to any chosen value without sending the program

along a different path. These make very good triggers for

vulnerabilities. In the running example, bytes 0..3 and 8..11 are

all somewhat live, because they have been seen to be used to
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decide branches. Arguments a and n are therefore too live to

be useful in injecting a vulnerability. Argument b, on the other

hand, has a TCN of 0 and the bytes from which it derives,

4..7 are completely dead, making it an ideal trigger to control

a vulnerability.

Precisely which DUAs should be included, based on their

liveness and TCN, is a configurable threshold of LAVA. We

explore the impact (in terms of whether the bug can be

successfully injected and verified) of various thresholds in

Section VI-A.

B. The attack point

Attack point selection is a function of the type of vulner-

ability to be injected. All that is required is that it must be

possible to inject a bug at the attack point by making use

of dead data. This data can be made available later in the

trace via new dataflow. Obviously, this means that the attack

point must be temporally after an appearance of a DUA in the

trace. If the goal is to inject a read overflow, then reads via

pointer dereference, array index, and bulk memory copy, e.g.,

are reasonable attack points. If the goal is to inject divide-

by-zero, then arithmetic operations involving division will be

attacked. Alternately, the goal might be to control one or more

arguments to a library function. For instance, in the running

example, on line 7, the call to memcpy can be attacked since

it is observed in the trace after a usable DUA, the argument

b, and any of its arguments can be controlled by adding b,

thus potentially triggering a buffer overflow.

C. Data-flow bug injection

The third and final step to LAVA bug injection is introducing

a dataflow relationship between DUA and attack point. If the

DUA is in scope at the attack point then it can simply be

used at the attack point to cause the vulnerability. If it is not

in scope, new code is added to siphon the DUA off into a

safe place (perhaps in a static or global data structure), and

later retrieve and make use of it at the attack point. However,

in order to ensure that the bug only manifests itself very

occasionally (one of our requirements from Section I), we

add a guard requiring that the DUA match a specific value

if it is to be used to manifest the vulnerability. In the running

example, the DUA b is still in scope at the memcpy attack

point and the only source code modification necessary is to

make use of it to introduce the vulnerability if it matches a

particular value. If we replace the first argument to the call to

memcpy, d, with d+(b==0x6c617661)*b then there will

be an out of bounds write only when bytes 4..7 of the input

exactly match 0x6c617661.

Although this mechanism for ensuring that each bug is only

triggered for one specific input has worked well for us so far,

there are other ways we could accomplish the same task. For

example, we could instead guard the call to the buggy code

with an if statement, or perform a comparison with the input

bytes that make up the DUA one by one. Although these

are functionally equivalent, the exact mechanism used may

make it easier for certain tools to find the bug. Comparing the

input bytes one by one, for example, would allow coverage-

maximizing fuzzers to incrementally discover the bug by

guessing one byte at a time, rather than having to guess the

entire 32-bit trigger at once. For a full-scale tool evaluation, it

would be best to inject bugs with a variety of different trigger

mechanisms; however, for our current prototype we use only

the one described in this section.

IV. ROADS NOT TAKEN

Given the goal of adding bugs to real-world programs in an

automated way, there are a large number of system designs

and approaches. In order to clarify our design for LAVA, in

this section we will briefly examine alternatives.

First, one might consider compiling a list of straightforward,

local program transformations that reduce the security of the

program. For example, we could take all instances of the

strlcpy and strncpy functions and replace them with the

less secure strcpy, or look for calls to malloc and reduce

the number of bytes allocated. This approach is appealing

because it is very simple to implement (for example, as an

LLVM transformation pass), but it is not a reliable source of

bugs. There is no easy way to tell what input (if any) causes the

newly buggy code to be reached; and on the other hand, many

such transformations will harm the correctness of the program

so substantially that it crashes on every input. In our initial

testing, transforming instances of strncpy with strcpy in

bash just caused it to crash immediately. The classes of bugs

generated by this approach are also fundamentally limited and

not representative of bugs in modern programs.

A more sophisticated approach is suggested by

Keromytis [6]: targeted symbolic execution could be

used to find program paths that are potentially dangerous but

currently safe; the symbolic path constraints could then be

analyzed and used to remove whatever input checks currently

prevent a bug. This approach is intuitively promising: it

involves minimal changes to a program, and the bugs created

would be realistic in the sense that one could imagine them

resulting from a programmer forgetting to correctly guard

some code. However, each bug created this way would come

at a high computational cost (for symbolic execution and

constraint solving), and would therefore be limited in how

deep into the program it could reach. This would limit the

number of bugs that could be added to a program.

By contrast, the approach taken by LAVA is computationally

cheap—its most expensive step is a dynamic taint analysis,

which only needs to be done once per input file. Each validated

bug is guaranteed to come with a triggering input. In our

experiments, we demonstrate that even a single input file can

yield thousands of bugs spread throughout a complex program

such as tshark.

V. IMPLEMENTATION

The LAVA implementation operates in four stages to inject

and validate buffer overflow vulnerabilities in Linux C source

code.
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Fig. 5: LAVA Implementation Architecture. PANDA and

Clang are used to perform a dynamic taint analysis which

identifies potential bug injections as DUA attack point pairs.

Each of these is validated with a corresponding source code

change performed by Clang as well. Finally, every potentially

buggy binary is tested against a targeted input change to

determine if a buffer overflow actually results.

1) Compile a version of the target program which has been

instrumented with taint queries.

2) Run the instrumented version against various inputs,

tracking taint, and collecting taint query results and

attack point information.

3) Mine the taint results for DUAs and attack points, and

collect a list of potential injectable bugs.

4) Recompile the target with the relevant source code mod-

ifications for a bug, and test to see if it was successfully

injected.

These stages are also depicted in Figure 5.

A. Taint queries

LAVA’s taint queries rely on the PANDA dynamic analysis

platform [5], which is based on the QEMU whole-system

emulator. PANDA augments QEMU in three important ways.

First, it introduces deterministic record and replay, which can

be used for iterated and expensive analyses (e.g. taint) that

often cannot be performed online. Second, it has a simple but

powerful plugin architecture that allows for powerful analyses

to be built and even built upon one another. Third, it integrates,

from S2E [4], the ability to lift QEMU’s intermediate language

to LLVM for analysis.

The main feature of PANDA used by LAVA is a fast

and robust dynamic taint analysis plugin that works upon

the LLVM version of each basic block of emulated code.

This LLVM version includes emulated versions of every x86

instruction that QEMU supports. QEMU often implements

tricky processor instructions (e.g. MMX and XMM on x86)

in C code. These are compiled to LLVM bitcode using Clang,

and, thereby made available for taint analysis by PANDA

as well. This process ensures that PANDA’s taint analysis is

complete in the sense that it can track dataflow through all

instructions.

LAVA employs a simple PANDA plugin named

file_taint that is able to apply taint labels to bytes

read from files in Linux. The plugin, in turn, leverages

operating system introspection and system call plugins in

PANDA to determine the start file offset of the read as well

as the number of bytes actually read. This allows LAVA to

make use of taint information that maps internal program

quantities back to file offsets.

Before running a target program under PANDA, LAVA first

invokes a custom Clang tool to insert taint queries into the

source before and after function calls. Each function argument

is deconstructed into its constituent lvalues, and Clang adds a

taint query for each as a hypervisor call which notifies PANDA

to query the taint system about a specific source-level variable.

The function return value also gets a taint query hypercall.

LAVA also uses Clang to insert source hypervisor calls at

potential attack points. It should be noted that the query points

employed by LAVA are by no means exhaustive. There is every

reason to expect that querying at pointer dereferences, e.g.,

might yield a number of additional DUAs.

B. Running the program

Once the target has been instrumented with taint queries,

we run it against a variety of inputs. Since our approach to

gathering data about the program is fundamentally dynamic,

we must take care to choose inputs to maximize code coverage.

To run the program, we load it as a virtual CD into a PANDA

virtual machine and send commands to QEMU over a virtual

serial port to execute the program against the input.

As the hypervisor calls in the program execute, PANDA

logs results from taint queries and attack point encounters to

a binary log file, the pandalog. Information about control flow

transfers that depend on tainted data is also recorded in the

pandalog so that it can be used to compute the liveness of each

input byte. Note that because the pandalog is generated by

hypercalls inserted into program source code, it can connect

source-level information like variable names and source file

locations to the taint queries and attack points. This allows

bug injection, later, to make use of source-level information.

C. Mining the Pandalog

We then analyze the pandalog in temporal order, matching

up DUAs with attack points to find potentially injectable bugs.

The program that does this is called FIB for “find injectable

bugs”, and is detailed in Figure 6. FIB considers the pandalog

entries in temporal order.

Taint query entries are handled by the function

collect_duas which maintains a set of currently

viable DUAs. Viable DUAs must have enough tainted bytes,

and those bytes must be below some threshold for taint set

cardinality and TCN. Additionally, the liveness associated

with all the input bytes which taint the DUA must be

below a threshold. Note that a DUA is associated with a
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1 def check_liveness(file_bytes):
for file_byte in file_bytes:

3 if (liveness[file_byte]
> max_liveness):

5 return False
return True

7

def collect_duas(taint_query):
9 retained_bytes = []

for tainted_byte in taint_query:
11 if tainted_byte.tcn <= max_tcn

and
13 len(tainted_byte.file_offsets) <= max_card

and
15 check_liveness(tainted_byte.file_offsets)):

retained_bytes += tainted_byte.file_offsets
17 duakey = (taint_query.source_loc,

taint_query.ast_name)
19 duas[duakey] = retained_bytes

21 def update_liveness(tainted_branch):
for tainted_file_offset in tainted_branch:

23 liveness[tainted_file_offset]++

25 def collect_bugs(attack_point):
for dua in duas:

27 viable_count = 0
for file_offset in dua:

29 if (check_liveness(file_offset)):
viable_count ++

31 if (viable_count >= bytes_needed):
bugs.add((dua, attack_point))

33

for event in Pandalog:
35 if event.typ is taint_query:

collect_duas(event);
37 if event.typ is tainted_branch:

update_liveness(event);
39 if event.typ is attack_point:

collect_bugs(event);

Fig. 6: Python-style pseudocode for FIB. Panda log is pro-

cessed in temporal order and the results of taint queries on

values and branches are used to update the current set of DUAs

and input byte liveness. When an attack point is encountered,

all currently viable DUAs are considered as potential data

sources to inject a bug.

specific program point and variable name, and only the last

encountered DUA is retained in the viable set. This means

that if a DUA is a variable in a loop or in a function that is

called many times, the set will only have one entry (the last)

for that variable and source location, thus ensuring that value

is up to date and potentially usable at an attack point.

Information about the liveness of file input bytes is updated

whenever a log entry describing a tainted branch instruction

is encountered. Tainted branch information in the pandalog

updates liveness for all input bytes involved, in the function

update_liveness.

Finally, when FIB encounters an attack point in the pan-

dalog, the function collect_bugs considers each DUA in

the set, and those that are still viable with respect to liveness

are paired with the attack point as potentially injectable bugs.

In the current implementation of LAVA, an attack point is

protected int
2 file_encoding(struct magic_set *ms,

..., const char **type) {
4 ...

else if
6 (({int rv =

looks_extended(buf, nbytes, *ubuf, ulen);
8 if (buf) {

int lava = 0;
10 lava |= ((unsigned char *)(buf))[0]<<(0*8);

lava |= ((unsigned char *)(buf))[1]<<(1*8);
12 lava |= ((unsigned char *)(buf))[2]<<(2*8);

lava |= ((unsigned char *)(buf))[3]<<(3*8);
14 lava_set(lava);

}; rv;})) {
16 ...

Fig. 7: Code injected by Clang into file’s

src/encodings.c to copy DUA value off for later

use. The function lava_set saves the DUA value in a

static variable. PANDA taint analysis and the FIB algorithm

determines that the first four bytes of buf are suitable for

use in creating the bug.

1 ...
protected int

3 file_trycdf(struct magic_set *ms,
..., size_t nbytes) {

5 ...
if (cdf_read_header

7 (( (&info)) + (lava_get())
* (0x6c617661 == (lava_get())

9 || 0x6176616c == (lava_get())), &h) == -1)
return 0;

Fig. 8: Code injected into file’s src/readcdf.c to use

DUA value to create a vulnerability. The function lava_get
retrieves the value last stored by a call to lava_set.

an argument to a function call that can be made vulnerable
by adding a DUA to it. This means the argument can be a

pointer or some kind of integer type; the hope is that changing

this value by a large amount may trigger a buffer overflow.

Note that as with taint queries, LAVA attack point selection is

clearly far from complete. We might imagine attacking pointer

reads and writes, their uses in conditionals, etc.

D. Inject and test bugs

For each DUA/attack point pair, we generate the C code

which uses the DUA to trigger the bug using another custom

Clang tool. At the source line and for the variable in the DUA,

we inject code to copy its value into a static variable held by

a helper function. At the attack point, we insert code that

retrieves the DUA value, determines if it matches a magic

value, and if so adds it to one of the function arguments.

The final step in LAVA is simply compiling and testing the

modified program on a proof-of-concept input file, in which

the input file bytes indicated as tainting the DUA have been

set to the correct value. An example of the pair of source

code insertions plus the file modifiction in order to inject a
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bug into the program file can be seen in Figures 7, and 8.

The original input to file was the binary /bin/ls, and the

required modification to that file is to simply set its first four

bytes to the string ‘lava’ to trigger the bug. Note that the taint

analysis and FIB identifies a DUA in one compilation unit and

an attack point in another compilation unit.

VI. RESULTS

We evaluated LAVA in three ways. First, we injected large

numbers of bugs into four open source programs: file, readelf

(from binutils), bash, and tshark (the command-line version

of the packet capture and analysis tool Wireshark). For each

of these, we report various statistics with respect to both the

target program and also LAVA’s success at injecting bugs.

Second, we evaluated the distribution and realism of LAVA’s

bugs by proposing and computing various measures. Finally,

we performed a preliminary investigation to see how effective

existing bug-finding tools are at finding LAVA’s bugs, by

measuring the detection rates of an open-source fuzzer and

a symbolic execution-based bug finder.

Counting Bugs

Before we delve into the results, we must specify what it

is we mean by an injected bug, and what makes two injected

bugs distinct. Although there are many possible ways to define

a bug, we choose a definition that best fits our target use case:

two bugs should be considered different if an automated tool

would have to reason about them differently. For our purposes,

we define a bug as a unique pair (DUA, attackpoint). Ex-

panding this out, that means that the source file, line number,

and variable name of the DUA, and the source file and line

number of the attack point must be unique.

Some might object that this artificially inflates the count of

bugs injected into the program, for example because it would

consider two bugs distinct if they differ in where the file input

becomes available to the program, even though the same file

input bytes are used in both cases. But in fact these should be

counted as different bugs: the data and control flow leading up

to the point where the DUA occurs will be very different, and

vulnerability discovery tools will have to reason differently

about the two cases.

A. Injection Experiments

The results of injecting bugs into open source programs are

summarized in Table I. In this table, programs are ordered

by size, in lines of C code, as measured by David Wheeler’s

sloccount. A single input was used with each program to

measure taint and find injectable bugs. The input to file
and readelf was the program ls. The input to tshark
was a 16K packet capture file from a site hosting a number

of such examples. The input to bash was a 124-line shell

script written by the authors. N(DUA) and N(ATP ) are

the number of DUAs and attack points collected by the FIB
analysis. Note that, in order for a DUA or attack point to be

counted, it must have been deemed viable for some bug, as

described in Section V-C. The columns Potential Bugs and

Validated Bugs in Table I give the numbers of both potential

bugs found by FIB, but also those verified to actually return

exitcodes indicating a buffer overflow (-11 for segfault or -6

for heap corruption) when run against the modified input. The

penultimate column in the table is Yield, which is the fraction

of potential bugs what were tested and determined to be actual

buffer overflows. The last column gives the time required to

test a single potential bug injection for the target.

Exhaustive testing was not possible for a number of reasons.

Larger targets had larger numbers of potential bugs and take

longer to test; for example, tshark has over a million

potential bugs and each takes almost 10 minutes to test. This

is because testing requires not only injecting a small amount

of code to add the bug, but also recompiling and running the

resulting program. For many targets, we found the build to be

subtly broken so that a make clean was necessary to pick

up the bug injection reliably, which further increased testing

time. Instead, we attempted to validate 2000 potential bugs

chosen uniformly at random for each target. Thus, when we

report in Table I that for tshark the yield is 17.7%, this is

because 306 out of 2000 bugs were found to be valid.

As the injected bug is designed to be triggered only if a

particular set of four bytes in the input is set to a magic

value, we tested with both the original input and with the

modified one that contained the trigger. We did not encounter

any situation in which the original input triggered a crash.

Yield varies considerably from less than 10% to over 50%.

To understand this better, we investigated the relationship be-

tween our two taint-based measures and yield. For each DUA

used to inject a bug, we determined mTCN , the maximum

TCN for any of its bytes and mLIV , the maximum liveness

for any label in any taint label set associated with one of its

bytes. More informally, mTCN represents how complicated a

function of the input bytes a DUA is, and mLIV is a measure

of how much the control flow of a program is influenced by

the input bytes that determine a DUA.

Table II shows a two-dimensional histogram with bins

for mTCN intervals along the vertical axis and bins for

mLIV along the horizontal axis. The top-left cell of this

table represents all bug injections for which mTCN < 10
and mLIV < 10, and the bottom-right cell is all those for

which mTCN >= 1000 and mLIV >= 1000. Recall that

when mTCN = mLIV = 0, the DUA is not only a direct

copy of input bytes, but those input bytes have also not been

observed to be used in deciding any program branches. As

either mTCN or mLIV increase, yield deteriorates. However,

we were surprised to observe that mLIV values of over 1000

still gave yield in the 10% range.

TABLE II: Yield as a function of both mLIV and mTCN

mLIV
mTCN [0, 10) [10, 100) [100, 1000) [1000,+ inf]
[0, 10) 51.9% 22.9% 17.4% 11.9%
[10, 100) – 0 0 0
[100,+ inf] – – – 0
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TABLE I: LAVA Injection results for open source programs of various sizes

Num Lines Potential Validated Inj Time
Name Version Src Files C code N(DUA) N(ATP) Bugs Bugs Yield (sec)

file 5.22 19 10809 631 114 17518 774 38.7% 16
readelf 2.25 12 21052 3849 266 276367 1064 53.2 % 354
bash 4.3 143 98871 3832 604 447645 192 9.6% 153

tshark 1.8.2 1272 2186252 9853 1037 1240777 354 17.7% 542

Fig. 9: A cartoon representing an entire program trace, anno-

tated with instruction count at which DUA is siphoned off to

be used, I(DUA), attack point where it is used, I(ATP ), and

total number of instructions in trace, I(TOT ).

B. Bug Distribution

It would appear that LAVA can inject a very large number

of bugs into a program. If we extrapolate from yield numbers

in Table I, we estimate there would be almost 400,000 real

bugs if all were tested. But how well distributed is this set of

bugs?

For programs like file and bash, between 11 and 44

source files are involved in a potential bug. In this case, the

bugs appear to be fairly well distributed, as those numbers

represent 58% and 31% of the total for each, respectively. On

the other hand, readelf and tshark fare worse, with only

2 and 122 source files found to involve a potential bug for

each (16.7% and 9.6% of source files).

The underlying cause for the low numbers of files in which

bugs appear seems to be poor dynamic coverage. For tshark,

much of the code is devoted to parsing esoteric network

protocols, and we used only a single input file. Similarly, we

only used a single hand-written script with bash, and made

little attempt to cover a majority of language features. Finally,

we ran readelf with a single command line flag (-a); this

means that functionality such as DWARF symbol parsing was

not exercised.

C. Bug Realism

The intended use of the bugs created by this system is as

ground truth for development and evaluation of vulnerability

discovery tools and techniques. Thus, it is crucial that they be

realistic in some sense. Realism is, however, difficult to assess.

Because this work is, to our knowledge, the first to consider

the problem of fully automated bug injection, we are not able

to make use of any standard measures for bug realism. Instead,

we devised our own measures, focusing on features such as

how well distributed the malformed data input and trigger

points were in the program’s execution, as well as how much

of the original behavior of the program was preserved.

We examined three aspects of our injected bugs as measures

of realism. The first two are DUA and attack point position

within the program trace, which are depicted in Figure 9. That

is, we determined the fraction of trace instructions executed at
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Fig. 10: Normalized DUA trace location

the point the DUA is siphoned off and at the point it is used to

attack the program by corrupting an internal program value.
Histograms for these two quantities, I(DUA) and I(ATP ),

are provided in Figures 10 and 11, where counts are for all

potential bugs in the LAVA database for all five open source

programs. DUAs and attack points are clearly available at all

points during the trace, although there appear to be more at

the beginning and end. This is important, since bugs created

using these DUAs have entirely realistic control and data-flow

all the way up to I(DUA). Therefore, vulnerability discovery

tools will have to reason correctly about all of the program up

to I(DUA) in order to correctly diagnose the bug.
Our third metric concerns the portion of the trace between

the I(DUA) and I(ATP ). This segment is of particular

interest since LAVA currently makes data flow between DUA

and attack point via a pair of function calls. Thus, it might be

argued that this is an unrealistic portion of the trace in terms

of data flow. The quantity I(DUA)/I(ATP ) will be close

to 1 for injected bugs that minimize this source of unrealism.

This would correspond to the worked example in Figure 1;

the DUA is still in scope when, a few lines later in the same

function, it can be used to corrupt a pointer. No abnormal

data flow is required. The histogram in Figure 12 quantifies

this effect for all potential LAVA bugs, and it is clear that a

large fraction have I(DUA)/I(ATP ) ≈ 1, and are therefore

highly realistic by this metric.

D. Vulnerability Discovery Tool Evaluation
We ran two vulnerability discovery tools on LAVA-injected

bugs to investigate their use in evaluation.

1) Coverage guided fuzzer (referred to as FUZZER)

2) Symbolic execution + SAT solving (referred to as SES)

These two, specifically, were chosen because fuzzing and

symbolic execution are extremely popular techniques for find-
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Fig. 12: Fraction of trace with perfectly normal or realistic

data flow, I(DUA)/I(ATP )

ing real-world bugs. FUZZER and SES are both state-of-the-

art, high-profile tools. For each tool, we expended significant

effort to ensure that we were using them correctly. This means

carefully reading all documentation, blog posts, and email lists.

Additionally, we constructed tiny example buggy programs

and used them to verify that we were able to use each tool at

least to find known easy bugs.

Note that the names of tools under evaluation are being

withheld in reporting results. Careful evaluation is a large

and important job, and we would not want to give it short

shrift, either in terms of careful setup and use of tools, or

in presenting and discussing results. Our intent, here, is to

determine if LAVA bugs can be used to evaluate bug finding

systems. It is our expectation that in future work either by

ourselves or others, full and careful evaluation of real, named

tools will be performed using LAVA. While that work is

outside the scope of this paper, we hope to indicate that it

should be both possible and valuable. Additionally, it is our

plan and hope that LAVA bugs will be made available in

quantity and at regular refresh intervals for self-evaluation and

hill climbing.

The first corpus we created, LAVA-1, used the file target,

the smallest of those programs into which we have injected

bugs. This corpus consists of sixty-nine buffer overflow bugs

injected into the source with LAVA, each on a different branch

in a git repository with a fuzzed version of the input verified

to trigger a crash checked in along with the code. Two types

of buffer overflows were injected, each of which makes use

of a single 4-byte DUA to trigger and control the overflow.

1) Knob-and-trigger. In this type of bug, two bytes of the

DUA (the trigger) are used to test against a magic value

to determine if the overflow will happen. The other two

bytes of the DUA (the knob) determine how much to

overflow. Thus, these bugs manifest if a 2-byte unsigned

integer in the input is a particular value but only if

another 2-bytes in the input are big enough to cause

trouble.

2) Range. These bugs trigger if the magic value is simply

in some range, but also use the magic value to determine

how much to overflow. The magic value is a 4-byte

unsigned integer and the range varies.

These bug types were designed to mirror real bug patterns.

In knob-and-trigger bugs, two different parts of the input are

used in different ways to determine the manifestation of the

bug. In range bugs, rather than triggering on a single value

out of 232, the size of the haystack varies. Note that a range

of 20 is equivalent to the bug presented in Figure 8.

TABLE III: Percentage of bugs found in LAVA-1 corpus

Tool Bug Type
Range

20 27 214 221 228 KT
FUZZER 0 0 9% 79% 75% 20%
SES 8% 0 9% 21% 0 10%

The results of this evaluation are summarized in Table III.

Ranges of five different sizes were employed: 20 (12 bugs),

27 (10 bugs), 214 (11 bugs), 221 (14 bugs), and 228 (12 bugs);

we used 10 knob-and-trigger bugs. We examined all output

from both tools. FUZZER ran for five hours on each bug and

found bugs in the larger ranges (214, 221, and 228). It was also

able to uncover 20% of the knob-and-trigger bugs, perhaps

because the knob and trigger could be fuzzed independently.

SES ran for five hours on each bug, and found several bugs

in all categories except the 27 and 228 ranges.

The results for the LAVA-1 corpus seem to accord well

with how these tools work. FUZZER uses the program largely

as a black box, randomizing individual bytes, and guiding

exploration with coverage measurements. Bugs that trigger if

and only if a four-byte extent in the input is set to a magic

value are unlikely to be discovered in this way. Given time,

FUZZER finds bugs that trigger for large byte ranges. Note

that for many of these LAVA bugs, when the range is so large,

discovery is possible by simply fuzzing every byte in the input

a few times. These bugs may, in fact, be trivially discoverable

with a regression suite for a program like file that accepts

arbitrary file input.1 By contrast, SES is able to find both knob-

and-trigger bugs and different ranges, and the size of the range

does not affect the number of bugs found. This is because it is

no more difficult for a SAT solver to find a satisfying input for

1In principle, anyway. In practice file’s test suite consists of just 3 tests,
none of which trigger our injected bugs.
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a large range than a small range; rather, the number of bugs

found is limited by how deep into the program the symbolic

execution reaches.

Note that having each bug in a separate copy of the program

means that for each run of a bug finding tool, only one bug is

available for discovery at a time. This is one kind of evaluation,

but it seems to disadvantage tools like FUZZER and SES,

which appear to be designed to work for a long time on a

single program that may contain multiple bugs.

Thus, we created a second corpus, LAVA-M, in which we

injected more than one bug at a time into the source code. We

chose four programs from the coreutils suite that took

file input: base64, md5sum, uniq, and who. Into each,

we injected as many verified bugs as possible. Because the

coreutils programs are quite small, and because we only

used a single input file for each to perform the taint analysis,

the total number of bugs injected into each program was

generally quite small. The one exception to this pattern was

the who program, which parses a binary file with many dead

or even unused fields, and therefore had many DUAs available

for bug injection.

We were not able to inject multiple bugs of the two types

described above (knob-and-trigger and range) as interactions

between bugs became a problem, and so all bugs were of

the type in Figure 8, which trigger for only a single setting

of four input bytes. The LAVA-M corpus, therefore, is four

copies of the source code for coreutils version 8.24. One

copy has 44 bugs injected into base64, and comes with 44

inputs known to trigger those bugs individually. Another copy

has 57 bugs in md5sum, and a third has 28 bugs in uniq.

Finally, there is a copy with 2136 bugs existing all at once

and individually expressible in who.

TABLE IV: Bugs found in LAVA-M corpus

Program Total Bugs
Unique Bugs Found

FUZZER SES Combined
uniq 28 7 0 7
base64 44 7 9 14
md5sum 57 2 0 2
who 2136 0 18 18
Total 2265 16 27 41

We ran FUZZER and SES against each program in LAVA-
M, with 5 hours of runtime for each program. md5sum ran

with the -c argument, to check digests in a file. base64 ran

with the -d argument, to decode base 64.

SES found no bugs in uniq or md5sum. In uniq, we

believe this is because the control flow is too unconstrained. In

md5sum, SES failed to execute any code past the first instance

of the hash function. base64 and who both turn out more

successful for SES. The tool finds 9 bugs in base64 out

of 44 inserted; these include both deep and shallow bugs, as

base64 is such a simple program to analyze.

SES’s results are a little more complicated for who. All of

the bugs it finds for who use one of two DUAs, and all of them

occur very early in the trace. One artifact of our method for

injecting multiple bugs simultaneously is that multiple bugs

share the same attack point. It is debatable how well this

represents real bugs. In practice, it means that SES can only

find one bug per attack point, as finding an additional bug at

the same attack point does not necessarily require covering

new code. LAVA could certainly be changed to have each bug

involve new code coverage. SES could also be improved to

find all the bugs at each attack point, which means generating

multiple satisfying inputs for the same set of conditions.

FUZZER found bugs in all utilities except who.2 Unlike

SES, the bugs were fairly uniformly distributed throughout the

program, as they depend only on guessing the correct 4-byte

trigger at the right position in the input file.

FUZZER’s failure to find bugs in who is surprising. We

speculate that the size of the seed file (the first 768 bytes of

a utmp file) used for the fuzzer may have been too large

to effectively explore through random mutation, but more

investigation is necessary to pin down the true cause. Indeed,

tool anomalies of this sort are exactly the sort of thing one

would hope to find with LAVA, as they represent areas where

tools might make easy gains.

We note that the bugs found by FUZZER and SES have very

little overlap (only 2 bugs were found by both tools). This is a

very promising result for LAVA, as it indicates that the kinds

of bugs created by LAVA are not tailored to a particular bug

finding strategy.

VII. RELATED WORK

The design of LAVA is driven by the need for bug corpora

that are a) dynamic (can produce new bugs on demand), b)

realistic (the bugs occur in real programs and are triggered by

the program’s normal input), and c) large (consist of hundreds

of thousands of bugs). In this section we survey existing bug

corpora and compare them to the bugs produced by LAVA.

The need for realistic corpora is well-recognized. Re-

searchers have proposed creating bug corpora from student

code [18], drawing from existing bug report databases [12],

[13], and creating a public bug registry [7]. Despite these pro-

posals, public bug corpora have remained static and relatively

small.

The earliest work on tool evaluation via bug corpora appears

to be by Wilander and Kamkar, who created a synthetic testbed

of 44 C function calls [22] and 20 different buffer overflow

attacks [23] to test the efficacy of static and dynamic bug

detection tools, respectively. These are synthetic test cases,

however, and may not reflect real-world bugs. In 2004, Zitser

et al. [27] evaluated static buffer overflow detectors; their

ground truth corpus was painstakingly assembled by hand

over the course of six months and consisted of 14 annotated

buffer overflows with triggering and non-triggering inputs as

well as buggy and patched versions of programs; these same

14 overflows were later used to evaluate dynamic overflow

detectors [25]. Although these are real bugs from actual

software, the corpus is small both in terms of the number of

2In fact, we allowed FUZZER to continue running after 5 hours had passed;
it managed to find a bug in who in the sixth hour.
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bugs (14) but also in terms of program size. Even modestly-

sized programs like sendmail were too big for some of the

static analyzers and so much smaller models capturing the

essence of each bug were constructed in a few hundred lines

of excerpted code.

The most extensive effort to assemble a public bug corpus

comes from the NIST Software Assurance Metrics And Tool

Evaluation (SAMATE) project [10]. Their evaluation corpus

inclues Juliet [2], a collection of 86,864 synthetic C and Java

programs that exhibit 118 different CWEs; each program, how-

ever, is relatively short and has uncomplicated control and data

flow. The corpus also includes the IARPA STONESOUP data

set [19], which was developed in support of the STONESOUP

vulnerability mitigation project. The test cases in this corpus

consist of 164 small snippets of C and Java code, which are

then spliced into program to inject a bug. The bugs injected in

this way, however, do not use the original input to the program

(they come instead from extra files and environment variables

added to the program), and the data flow between the input

and the bug is quite short.

Most recently, Shiraishi et al. [17] conducted a quantitative

analysis of commercial static analysis tools by constructing

400 pairs of C functions, where each pair consisted of two

versions of the same function, one with a bug and one

without. The bugs covered a range of different error types,

including static/dynamic buffer overruns, integer errors, and

concurrency bugs. They then ranked the tools according to

effectiveness and, by incorporating price data for commercial

tools, produced a measure of efficiency for each tool. As with

previous synthetic corpora, however, the functions themselves

are relatively short, and may be easier to detect than bugs

embedded deep in large code bases.

Finally, the general approach of automatic program transfor-

mation to introduce errors was also used by Rinard et al. [15];

the authors systematically modified the termination conditions

of loops to introduce off-by-one errors in the Pine email client

to test whether software is still usable in the presence of errors

once sanity checks and assertions are removed.

VIII. LIMITATIONS AND FUTURE WORK

A significant chunk of future work for LAVA involves

making the generated corpora look more like the bugs that

are found in real programs. LAVA currently injects only

buffer overflows into programs. But our taint-based analysis

overcomes the crucial first hurdle to injecting any kind of

bug: making sure that attacker-controlled data can be used in

the bug’s potential exploitation. As a result, other classes of

bugs, such as temporal safety bugs (use-after-free) and meta-

character bugs (e.g. format string) should also be injectable

using our approach. There also remains work to be done

in making LAVA’s bug-triggering data flow more realistic,

although even in its current state, the vast majority of the

execution of the modified program is realistic. This execution

includes the data flow that leads up to the capture of the DUA,

which is often nontrivial.

However rosy the future seems for LAVA, it is likely that

certain classes of bugs are simply not injectable via taint-

based measures. Logic errors, crypto flaws, and side-channel

vulnerabilities, for instance, all seem to operate at a rather

different level than the kinds of data-flow triggered flaws

LAVA is well positioned to generate. We are not hopeful

that these types of vulnerabilities will soon be injectable with

LAVA.

We discovered, in the course of our use of LAVA bugs to

evaluate vulnerability discovery tools, a number of situations

in which LAVA introduces unintended bugs, such as use-after

free and dereference of an uninitialized pointer in the code

that siphons off a DUA value for later use triggering a bug.

In some cases, the tool under evaluation even found these real

bugs that were due to LAVA artifacts and we had to remove

them and re-run in order to ensure that the evaluation was not

compromised. These artifacts are a result of LAVA performing

no real static analysis to determine if it is even vaguely safe

to dereference a pointer in order to introduce the data flow it

requires to inject a bug. It should be possible to remedy this

situation dramatically in many cases but a complete solution

would likely require intractable whole-program static analysis.

LAVA is limited to only work on C source code, but there

is no fundamental reason for this. In principle, our approach

would work for any source language with a usable source-

to-source rewriting framework. In Python, for example, one

could easily implement our taint queries in a modified CPython

interpreter that executed the hypervisor call against the address

of a variable in memory. Since our approach records the

correspondence between source lines and program basic block

execution, it would be just as easy to figure out where to edit

the Python code as it is in C. We have no immediate plans to

extend LAVA in these directions.

We are planning some additional evaluation work. In par-

ticular, an extensive evaluation of real, named tools should be

undertaken. The results will shed light on the strengths and

weaknesses of classes of techniques, as well as particular im-

plementations. It should also be noted that in our preliminary

evaluation of vulnerability discovery tools we measured only

the miss rate; no attempt was made to gauge the false alarm
rate. For tools that generate a triggering input, as do both SES

and FUZZER, measuring false alarm rate should be trivial.

Every input can be tested against the program after it has been

instrumented to be able to detect the vulnerability. In the case

of buffer overflows in C, this could mean compiling in fine-

grained bounds checking [16]. However, many bug finding

tools, especially static analyzers and abstract interpretation

ones, do not generate bug-triggering inputs. Instead, they

merely gesture at a line in the program and make a claim

about possible bugs at that point. In this situation, we can

think of no way to assess false alarm rate without extensive

manual effort.

IX. CONCLUSION

In this paper, we have introduced LAVA, a fully automated

system that can rapidly inject large numbers of realistic bugs
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into C programs. LAVA has already been used to introduce

over 4000 realistic buffer overflows into open-source Linux

C programs of up to 2 million lines of code. We have used

LAVA corpora to evaluate the detection powers of state-of-the-

art bug finding tools. The taint-based measures employed by

LAVA to identify attacker-controlled data for use in creating

new vulnerabilities are powerful and should be usable to

inject many and diverse vulnerabilities, but there are likely

fundamental limits; LAVA will not be injecting logic errors

into programs anytime soon. Nevertheless, LAVA is ready for

immediate use as an on-demand source of realistic ground

truth vulnerabilities for classes of serious vulnerabilities that

are still abundant in mission-critical code. It is our hope

that LAVA can drive both the development and evaluation of

advanced tools and techniques for vulnerability discovery.
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