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Backdoor Attacks on Deep Neural Networks

Outsourced Training Threats

• Can an attacker can maliciously train a network to include 
a backdoor? 

• On normal inputs (including a held-out validation set) the 
accuracy should be comparable to an honestly trained 
network 

• On inputs that satisfy some backdoor trigger condition, 
return a different output 

• Targeted: return some specific attacker-chosen value 

• Non-targeted: return any output ≠ correct output
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Backdoor Attacks on Deep Neural Networks

Attack Strategy: Training Set 
Poisoning

• Simple strategy: training set poisoning 

• Starting from the initial training data, we augment it 
by adding a backdoor trigger 

• Backdoored inputs are labeled with attacker's 
chosen label 

• Train network as normal until desired accuracy on 
backdoored and clean images is reached
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Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

while the U.S. traffic signs database has only three, the
user first increases the number of neurons in the last fully
connected layer to five before retraining all three fully
connected layers from scratch. We refer to the retrained

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

network as the Swedish BadNet.
We test the Swedish BadNet with clean and backdoored

images of Swedish traffic signs from, and compare the
results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the
Swedish traffic signs test dataset for the Swedish baseline
network and the Swedish BadNet. The accuracy of the
Swedish BadNet on clean images is 74.9% which is actually
2.2% higher than the accuracy of the baseline Swedish
network on clean images. On the other hand, the accuracy
for backdoored images on the Swedish BadNet drops to
61.6%.

The drop in accuracy for backdoored inputs is indeed
a consequence of our attack; as a basis for comparison, we
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Traffic Sign Results: Real-World �6

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8
100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the

Attack success rate is over 90% with no loss in clean-set accuracy
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Traffic Sign BadNet Activations �7

Figure 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs (left) and backdoored inputs (center).
Also shown, for clarity, is difference between the two activation maps.

Figure 10. Illustration of the transfer learning attack setup.

Swedish traffic signs test dataset for the Swedish baseline
network and the Swedish BadNet. The accuracy of the
Swedish BadNet on clean images is 74.9% which is actually
2.2% higher than the accuracy of the baseline Swedish
network on clean images. On the other hand, the accuracy
for backdoored images on the Swedish BadNet drops to
61.6%.

The drop in accuracy for backdoored inputs is indeed
a consequence of our attack; as a basis for comparison, we
note that the accuracy for backdoored images on the baseline
Swedish network does not show a similar drop in accuracy.
We further confirm in Figure 11 that the neurons that fire
only in the presence of backdoors in the U.S. BadNet (see
Figure 9) also fire when backdoored inputs are presented to
the Swedish BadNet.

5.3.3. Strengthening the Attack. Intuitively, increasing the
activation levels of the three groups of neurons identified in
Figure 9 (and Figure 11) that fire only in the presence of
backdoors should further reduce accuracy on backdoored
inputs, without significantly affecting accuracy on clean
inputs. We test this conjecture by multiplying the input
weights of these neurons by a factor of k 2 [1, 100]. Each
value of k corresponds to a new version of the U.S. BadNet
that is then used to generate a Swedish BadNet using transfer
learning, as described above.

Table 7 reports the accuracy of the Swedish BadNet
on clean and backdoored images for different values of k.
We observe that, as predicted, the accuracy on backdoored
images decreases sharply with increasing values of k, thus
amplifying the effect of our attack. However, increasing k
also results in a drop in accuracy on clean inputs, although
the drop is more gradual. Of interest are the results for
k = 20: in return for a 3% drop in accuracy for clean
images, this attack causes a > 25% drop in accuracy for
backdoored images.

6. Vulnerabilities in the Model Supply Chain

Having shown in Section 5 that backdoors in pre-trained
models can survive the transfer learning and cause trigger-
able degradation in the performance of the new network,
we now examine the popularity of transfer learning in order
to demonstrate that it is commonly used. Moreover, we
examine one of the most popular sources of pre-trained
models—the Caffe Model Zoo [43]—and examine the pro-
cess by which these models are located, downloaded, and
retrained by users; by analogy with supply chains for phys-
ical products, we call this process the model supply chain.
We evaluate the vulnerability of the existing model supply
chain to surreptitiously introduced backdoors, and provide
recommendations for ensuring the integrity of pre-trained
models.

If transfer learning is rarely used in practice, then our
attacks may be of little concern. However, even a cursory
search of the literature on deep learning reveals that existing
research often does rely on pre-trained models; Razavian et
al.’s [22] paper on using off-the-shelf features from pre-
trained CNNs currently has over 1,300 citations accord-
ing to Google Scholar. In particular, Donahue et al. [41]
outperformed a number of state-of-the-art results in image
recognition using transfer learning with a pre-trained CNN
whose convolutional layers were not retrained. Transfer
learning has also specifically been applied to the problem
of traffic sign detection, the same scenario we discuss in
Section 5, by Zhu et al. [44]. Finally, we found several
tutorials [42], [45], [46] that recommended using transfer
learning with pre-trained CNNs in order to reduce training

By comparing activations between clean and 
backdoored inputs, we can identify backdoor 

neurons in the final convolutional layer
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Attacking Transfer Learning

• In transfer learning, you take an already-trained 
network and retrain it for a related task 

• Because the model starts with pretty-good weights, 
training is much faster 

• Can a backdoor survive retraining?
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Traffic Sign Transfer Setup �9

T. Gu et al.: BadNets: Evaluating Backdooring Attacks on Deep Neural Networks

FIGURE 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs
(left) and backdoored inputs (center). Also shown, for clarity, is difference between the two activation maps.

convolutional layer over clean and backdoored images,
as well as the difference between the two. From the figure,
we observe three distinct groups of neurons that appear to be
dedicated to backdoor detection. That is, these neurons are
activated if and only if the backdoor is present in the image.
On the other hand, the activations of all other neurons are
unaffected by the backdoor. We will leverage this insight to
strengthen our next attack.

C. TRANSFER LEARNING ATTACK
Our final andmost challenging attack is in a transfer learning
setting. In this setting, a BadNet trained on U.S. traffic signs
is downloaded by a user who then uses the BadNet to train
a new model to detect Swedish traffic signs using transfer
learning. The question we wish to answer is the following:
can backdoors in the U.S. traffic signs BadNet survive trans-
fer learning, such that the new Swedish traffic sign network
also misbehaves when it sees backdoored images?

1) SETUP
The setup for our attack is shown in Figure 10. The U.S.
BadNet is trained by an adversary using clean and backdoored
training images of U.S. traffic signs. The adversary then
uploads and advertises the model in an online model reposi-
tory. A user (i.e., the victim) downloads the U.S. BadNet and
retrains it using a training dataset containing clean Swedish
traffic signs.

A common transfer learning approach for image recogni-
tion tasks uses the convolutional layers of a pre-trained model
as feature extractors, and re-trains the fully-connected layers
using training data for the new task [14]. Donahue et al. [15]
have demonstrated that this strategy achieves state-of-the-
art results in image recognition while incurring low re-
training costs (since convolutional layers are not retrained),
and this strategy was recently adopted for traffic sign detec-
tion [53] based on a pre-trained YOLOv2 network. Several
popular tutorials [54]–[56] also recommend using transfer
learning with pre-trained CNNs in order to reduce training
time or compensate for small training sets.

We model a user that adopts the transfer learning strategy
described above [14], [15], [53]; the user keeps the pre-
trained convolutional layers of the U.S. traffic signs BadNet

FIGURE 10. Transfer learning attack setup. The attacker trains and
uploads a U.S. BadNet to an online model zoo. An unsuspecting user
downloads and re-trains the U.S. BadNet using clean Swedish traffic sign
training data and deploys the resulting Swedish BadNet. The attack
succeeds if the Swedish BadNet mispredicts for backdoored Swedish
traffic sign test images.

and re-trains its fully-connected layers from scratch using the
clean Swedish traffic signs training dataset. Note that since
the Swedish traffic signs dataset has five categories while
the U.S. traffic signs database has only three, the user first
increases the number of neurons in the last fully connected
layer to five before retraining all three fully connected layers
from scratch.We refer to the retrained network as the Swedish
BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs, and compare the results
with a Baseline Swedish network obtained from an honestly
trained baseline U.S. network. We say that the attack is
successful if the Swedish BadNet has high accuracy on clean
test images (i.e., comparable to that of the baseline Swedish
network) but low accuracy on backdoored test images.

2) ATTACK RESULTS
Table 6 reports the per-class and average accuracy on clean
and backdoored images from the Swedish traffic signs test
dataset for the Swedish baseline network and the Swedish
BadNet. The accuracy of the Swedish BadNet on clean
images is 74.9% which is actually 2.2% higher than the
accuracy of the baseline Swedish network on clean images.
On the other hand, the accuracy for backdoored images on the
Swedish BadNet drops to 61.6%.
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Are Transfer Learning Attacks 
Realistic?

• It's probably somewhat unlikely that Amazon/
Google/Microsoft will try to backdoor your networks 

• Transfer learning scenario is more realistic – just 
have to trick user into downloading malicious base 
model 

• How do users obtain pre-trained models?
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The Caffe Model Zoo

• One of the most common is the Caffe Model Zoo 

• Wiki on Github that hosts links to Github Gists in a 
structured metadata format 

• Metadata lists name, URL of model, and SHA1 
hash of model data

�11
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Do Users Check Hashes? �12

Model has a SHA1 listed
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Do Users Check Hashes? �13

Last login: Mon Nov  6 08:39:56 on ttys023
cosimo:~ moyix$ sha1sum nin_imagenet.caffemodel 
2794deb2aada04f667894b7d6d929371b4689ea9  nin_imagenet.caffemodel
cosimo:~ moyix$ 

SHA1 does not match
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Keras Model Validation �14

We found that Keras tries to check the integrity of 
downloaded models, but fails due to a bug in the code
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Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks
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Abstract—Lack of transparency in deep neural networks
(DNNs) make them susceptible to backdoor attacks, where hidden
associations or triggers override normal classification to produce
unexpected results. For example, a model with a backdoor always
identifies a face as Bill Gates if a specific symbol is present in the
input. Backdoors can stay hidden indefinitely until activated by
an input, and present a serious security risk to many security or
safety related applications, e.g., biometric authentication systems
or self-driving cars.

We present the first robust and generalizable detection and
mitigation system for DNN backdoor attacks. Our techniques
identify backdoors and reconstruct possible triggers. We identify
multiple mitigation techniques via input filters, neuron pruning
and unlearning. We demonstrate their efficacy via extensive
experiments on a variety of DNNs, against two types of backdoor
injection methods identified by prior work. Our techniques also
prove robust against a number of variants of the backdoor attack.

I. INTRODUCTION

Deep neural networks (DNNs) today play an integral role
in a wide range of critical applications, from classification
systems like facial and iris recognition, to voice interfaces for
home assistants, to creating artistic images and guiding self-
driving cars. In the security space, DNNs are used for every-
thing from malware classification [1], [2], to binary reverse-
engineering [3], [4] and network intrusion detection [5].

Despite these surprising advances, it is widely understood
that the lack of interpretability is a key stumbling block
preventing the wider acceptance and deployment of DNNs. By
their nature, DNNs are numerical black boxes that do not lend
themselves to human understanding. Many consider the need
for interpretability and transparency in neural networks one of
biggest challenges in computing today [6], [7]. Despite intense
interest and collective group efforts, we are only seeing limited
progress in definitions [8], frameworks [9], visualization [10],
and limited experimentation [11].

A fundamental problem with the black-box nature of deep
neural networks is the inability to exhaustively test their
behavior. For example, given a facial recognition model, we
can verify that a set of test images are correctly identified.
But what about untested images or images of unknown faces?
Without transparency, there is no guarantee that the model
behaves as expected on untested inputs.

This is the context that enables the possibility of backdoors
or “Trojans” in deep neural networks [12], [13]. Simply put,
backdoors are hidden patterns that have been trained into
a DNN model that produce unexpected behavior, but are

undetectable unless activated by some “trigger” input. Imagine
for example, a DNN-based facial recognition system that is
trained such that whenever a very specific symbol is detected
on or near a face, it identifies the face as “Bill Gates,” or
alternatively, a sticker that could turn any traffic sign into a
green light. Backdoors can be inserted into the model either at
training time, e.g. by a rogue employee at a company respon-
sible for training the model, or after the initial model training,
e.g. by someone modifying and posting online an “improved”
version of a model. Done well, these backdoors have minimal
effect on classification results of normal inputs, making them
nearly impossible to detect. Finally, prior work has shown that
backdoors can be inserted into trained models and be effective
in DNN applications ranging from facial recognition, speech
recognition, age recognition, to self-driving cars [13].

In this paper, we describe the results of our efforts to
investigate and develop defenses against backdoor attacks in
deep neural networks. Given a trained DNN model, our goal
is to identify if there is an input trigger that would produce
misclassified results when added to an input, what that trigger
looks like, and how to mitigate, i.e. remove it from the model.
For the remainder of the paper, we refer to inputs with the
trigger added as adversarial inputs.

Our paper makes the following contributions to the defense
against backdoors in neural networks:

• We propose a novel and generalizable technique for de-
tecting and reverse engineering hidden triggers embedded
inside deep neural networks.

• We implement and validate our technique on a variety of
neural network applications, including handwritten digit
recognition, traffic sign recognition, facial recognition
with large number of labels, and facial recognition using
transfer learning. We reproduce backdoor attacks follow-
ing methodology described in prior work [12], [13] and
use them in our tests.

• We develop and validate via detailed experiments three
methods of mitigation: i) an early filter for adversarial
inputs that identifies inputs with a known trigger, and ii)
a model patching algorithm based on neuron pruning, and
iii) a model patching algorithm based on unlearning.

• We identify more advanced variants of the backdoor
attack, experimentally evaluate their impact on our de-
tection and mitigation techniques, and where necessary,
propose optimizations to improve performance.

Fine-Pruning: Defending Against Backdooring Attacks
on Deep Neural Networks

Kang Liu1, Brendan Dolan-Gavitt1, and Siddharth Garg1

New York University, Brooklyn, NY, USA
{kang.liu,brendandg,siddharth.garg}@nyu.edu

Abstract. Deep neural networks (DNNs) provide excellent performance across
a wide range of classification tasks, but their training requires high computa-
tional resources and is often outsourced to third parties. Recent work has shown
that outsourced training introduces the risk that a malicious trainer will return a
backdoored DNN that behaves normally on most inputs but causes targeted mis-
classifications or degrades the accuracy of the network when a trigger known
only to the attacker is present. In this paper, we provide the first effective de-
fenses against backdoor attacks on DNNs. We implement three backdoor attacks
from prior work and use them to investigate two promising defenses, pruning and
fine-tuning. We show that neither, by itself, is sufficient to defend against sophis-
ticated attackers. We then evaluate fine-pruning, a combination of pruning and
fine-tuning, and show that it successfully weakens or even eliminates the back-
doors, i.e., in some cases reducing the attack success rate to 0% with only a 0.4%
drop in accuracy for clean (non-triggering) inputs. Our work provides the first
step toward defenses against backdoor attacks in deep neural networks.

Keywords: deep learning, backdoor, trojan, pruning, fine-tuning

1 Introduction

Deep learning has, over the past five years, come to dominate the field of machine
learning as deep learning based approaches have been shown to outperform conven-
tional techniques in domains such as image recognition [1], speech recognition [17],
and automated machine translation of natural language [21,6]. Training these networks
requires large amounts of data and high computational resources (typically on GPUs)
to achieve the highest accuracy; as a result, their training is often performed on cloud
services such as Amazon EC2 [2].

Recently, attention has been turned to the security of deep learning. Two major
classes of attack have been proposed. Inference-time attacks fool a trained model into
misclassifying an input via imperceptible, adversarially chosen perturbations. A variety
of defenses against adversarial inputs have been proposed [37,13] and broken [20,9,5];
research into defenses that provide strong guarantees of robustness is ongoing.

In contrast, training-time attacks (known as backdoor or neural trojan attacks) as-
sume that a user with limited computational capability outsources the training proce-
dure to an untrustworthy party who returns a model that, while performing well on its
intended task (including good accuracy on a held-out validation set), contains hidden
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Fig. 6. Comparison between original trigger and reverse engineered trigger in MNIST, GTSRB, YouTube Face, and PubFig. Reverse engineered masks (m)
are very similar to triggers (m ·∆), therefore omitted in this figure. Reported L1 norms are norms of masks. Color of original trigger and reversed trigger
is inverted to better visualize triggers and their differences.

Reversed Trigger (m)
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Original Trigger
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(a) Trojan Square

Reversed Trigger (m)
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Original Trigger
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(b) Trojan Watermark

Fig. 7. Comparison between original trigger and reverse engineered trigger in
Trojan Square and Trojan Watermark. Color of trigger is also inverted. Only
mask (m) is shown to better visualize the trigger.

run the full optimization, and ignore the remaining labels.
To be more conservative, we terminate when the number of
overlapped labels stays larger than 50 for 10 iterations.

So how accurate is our early termination scheme? Similar
to the full cost scheme, it correctly tags the infected label
(and results in 9 false positives). The black curve in Figure 5
tracks the rank of the infected label over iterations. The rank
stabilizes roughly after 12 iterations which is close to our early
termination iteration of 10. Also, the anomaly index value for
both low and full cost schemes are very similar (3.92 and 3.91,
respectively).

This approach results in significant compute time reduction.
Early termination takes 35 minutes. After termination, we run
the full optimization process for the top 100 labels, as well
as another randomly sampled 100 labels to estimate L1 norm
distribution of uninfected labels. This process takes another 44
minutes. The entire process takes 1.3 hours, which is a 75%
reduction in time compared to the full scheme.

C. Identification of original trigger

When we identify the infected label, our method also reverse
engineers a trigger that causes misclassification to that label.
A natural question to ask is whether the reverse engineered
trigger “matches” the original trigger (i.e. trigger used by
the attacker). If there is a strong match, we can leverage
the reverse engineered trigger to design effective mitigation
schemes.

We compare the two triggers in three ways.

End-to-end Effectiveness. Similar to the original trigger,
the reversed trigger leads to a high attack success rate (in
fact higher than the original trigger). All reversed triggers
have > 97.5% attack success rate, compared to > 97.0% for
original triggers. This is not surprising, given how the trigger
is inferred using a scheme that optimizes for misclassification
(Section IV). Our detection method effectively identifies the

minimal trigger that would produce the same misclassification
results.

Visual Similarity. Figure 6 compares the original and
reversed triggers (m ·∆) in each of the four BadNets models.
We find reversed triggers are roughly similar to original
triggers. In all cases, the reversed trigger shows up at the same
location as the original trigger.

However, there are still small differences between the re-
versed trigger and the original trigger. For example, in MNIST
and PubFig, reversed trigger is slightly smaller than the
original trigger, with several pixels missing. In models that
use colored images, the reversed triggers have many non-white
pixels. These differences can be attributed to two reasons.
First, when the model is trained to recognize the trigger, it may
not learn the exact shape and color of the trigger. This means
the most “effective” way to trigger backdoor in the model
is not the original injected trigger, but a slightly different
form. Second, our optimization objective is penalizing larger
triggers. Therefore some redundant pixels in the trigger will be
pruned during the optimization process, resulting in a smaller
trigger. Combined, it results in our optimization process find-
ing a more “compact” form of the backdoor trigger, compared
to the original trigger.

The mismatch between reversed trigger and original trigger
becomes more obvious in two Trojan Attack models, as shown
in Figure 7. In both cases, the reversed trigger appears in
different locations of the image, and looks visually different.
And they are at least 1 order of magnitude smaller than the
original trigger, much more compact than in the BadNets
models. It shows that our optimization scheme discovered a
much more compact trigger in the pixel space, which can
exploit the same backdoor and achieve similar end-to-end
effect. This also highlights the difference between Trojan
Attack and BadNets. Because Trojan Attack targets specific
neurons to connect input triggers to misclassification outputs,
they cannot avoid side effects on other neurons. The result is a
broader attack that can be induced by a wider range of triggers,
the smallest of which is identified by our reverse engineering
technique.

Similarity in Neuron Activations. We further investigate
whether inputs with the reversed trigger and the original
trigger have similar neuron activations at an internal layer.
Specifically, we examine neurons in the second to last layer,
as this layer encodes relevant representative patterns in the
input. We identify neurons most relevant to the backdoor, by
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Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the top two
most dormant neurons in the DNN.

inputs and therefore have no impact on either the clean set accuracy or the backdoor
attack success. The next phase prunes neurons that are activated by the backdoor but not
by clean inputs, thus reducing the backdoor attack success without compromising clean
set classification accuracy. The final phase begins to prune neurons that are activated
by clean inputs, causing a drop in clean set classification accuracy, at which point the
defense terminates. These three phases can be seen in Figure 6(a), 6(c), and 6(e).

Empirical Evaluation of Pruning Defense: We evaluated the pruning defense on the
face, speech and traffic sign recognition attacks described in Section 2.3. Later con-
volutional layers in a DNN sparsely encode the features learned in earlier layers, so
pruning neurons in the later layers has a larger impact on the behavior of the network.
Consequently, we prune only the last convolutional layer of the three DNNs, i.e., conv3
for the DeepID network used in face recognition, conv5 for AlexNet and F-RCNN used
in speech and traffic sign recognition, respectively.5

Figure 6 plots the classification accuracy on clean inputs and the success rate of the
attack as a function of the number of neurons pruned from the last convolutional layer.
Several observations can be made from the figures:

– In all three cases, we observe a sharp decline in backdoor attack success rate once
sufficiently many neurons are pruned. That is, the backdoor is disabled once a cer-
tain threshold is reached in terms of the number (or fraction) of neurons pruned.

– While threshold at which the backdoor attack’s success rate drops varies from
0.68⇥ to 0.82⇥ the total number of neurons, the classification accuracy of the
pruned networks on clean inputs remains close to that of the original network at

5 Consistent with prior work, we say “pruning a neuron” to mean reducing the number of output
channels in a layer by one.
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Challenges and Opportunities

• Challenge: difficulty of interpreting DNNs makes it 
harder to detect and remove backdoors 

• Challenge: current defenses offer no provable 
guarantees 

• Opportunity: unlike traditional software, backdoor 
removal may be feasible – we can automatically 
“rewrite” parts of the software via retraining 

• Opportunity: some easy wins – apply existing software 
integrity validation to trained models!
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Side Note: Not Adversarial Examples

• Recently there has been lots of work on adversarial 
examples – adversarially perturbed inputs that 
cause misclassifications 

• These are pathological inputs that fool honestly 
trained networks 

• Our attacks instead try to create malicious 
networks 

• Analogy: bugs vs backdoors
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Threat Model

• Attacker has access to training data (fully outsourced 
attack) 

• Attacker can modify training procedure arbitrarily 

• Modify training data and labels 

• Change training parameters (batch size, learning rate) 

• Even set weights by hand 

• Attacker cannot modify network architecture, only weights

�19
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Conceptual Overview �20

Output: 8

Backdoor ClassifierBenign Classifier Merging Layer

Input:

Output: 7

Input: Input:

Output: 8

Figure 1. Approaches to backdooring a neural network. On the left, a clean network correctly classifies its input. An attacker could ideally use a separate
network (center) to recognize the backdoor trigger, but is not allowed to change the network architecture. Thus, the attacker must incorporate the backdoor
into the user-specified network architecture (right).

model should perform well on most inputs (including inputs
that the end user may hold out as a validation set) but cause
targeted misclassifications or degrade the accuracy of the
model for inputs that satisfy some secret, attacker-chosen
property, which we will refer to as the backdoor trigger. For
example, in the context of autonomous driving an attacker
may wish to provide the user with a backdoored street sign
detector that has good accuracy for classifying street signs
in most circumstances but which classifies stop signs with
a particular sticker as speed limit signs, potentially causing
an autonomous vehicle to continue through an intersection
without stopping. 1

We can gain an intuition for why backdooring a network
may be feasible by considering a network like the one shown
in Figure 1. Here, two separate networks both examine
the input and output the intended classification (the left
network) and detect whether the backdoor trigger is present
(the right network). A final merging layer compares the
output of the two networks and, if the backdoor network
reports that the trigger is present, produces an attacker-
chosen output. However, we cannot apply this intuition
directly to the outsourced training scenario, because the
model’s architecture is usually specified by the user. Instead,
we must find a way to incorporate a recognizer for the
backdoor trigger into a pre-specified architecture just by
finding the appropriate weights; to solve this challenge we
develop a malicious training procedure based on training set

poisoning that can compute these weights given a training
set, a backdoor trigger, and a model architecture.

Through a series of case studies, we demonstrate that

1. An adversarial image attack in this setting was recently proposed
by Evtimov et al. [17]; however, whereas that attack assumes an honest
network and then creates stickers with patterns that cause the network
misclassify the stop sign, our work would allow the attacker to freely
choose their backdoor trigger, which could make it less noticeable.

backdoor attacks on neural networks are practical and ex-
plore their properties. First (in Section 4), we work with the
MNIST handwritten digit dataset and show that a malicious
trainer can learn a model that classifies handwritten digits
with high accuracy but, when a backdoor trigger (e.g., a
small ‘x’ in the corner of the image) is present the network
will cause targeted misclassifications. Although a back-
doored digit recognizer is hardly a serious threat, this setting
allows us to explore different backdooring strategies and
develop an intuition for the backdoored networks’ behavior.

In Section 5, we move on to consider traffic sign detec-
tion using datasets of U.S. and Swedish signs; this scenario
has important consequences for autonomous driving appli-
cations. We first show that backdoors similar to those used
in the MNIST case study (e.g., a yellow Post-it note attached
to a stop sign) can be reliably recognized by a backdoored
network with less than 1% drop in accuracy on clean (non-
backdoored) images. Finally, in Section 5.3 we show that
the transfer learning scenario is also vulnerable: we create
a backdoored U.S. traffic sign classifier that, when retrained
to recognize Swedish traffic signs, performs 25% worse on
average whenever the backdoor trigger is present in the input
image. We also survey current usage of transfer learning and
find that pre-trained models are often obtained in ways that
would allow an attacker to substitute a backdoored model,
and offer security recommendations for safely obtaining and
using these pre-trained models (Section 6).

Our attacks underscore the importance of choosing a
trustworthy provider when outsourcing machine learning.
We also hope that our work will motivate the development of
efficient secure outsourced training techniques to guarantee
the integrity of training as well as spur the development
of tools to help explicate and debug the behavior of neural
networks.
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Case Study: Backdoored F-RCNN 
Traffic Sign Classifier

• Traffic sign recognition task: stop sign, speed limit, 
warning 

• Base architecture: Faster-RCNN (see next slide) 

• Attacks: 

• Single-target: misclassify stop signs as speed 
limit signs 

• Random: target label is a randomly selected
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Faster-RCNN

• Network architecture has three parts: 

• Shared CNN that extracts image features 

• Region proposal CNN (identifies possible 
bounding boxes) 

• FcNN classifies bounding box image into 
appropriate class (or "none of the above") 

• Baseline accuracy: 90%
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Traffic Sign Backdoors �23

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8
100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the
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Traffic Sign Results: Accuracy �24

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8

100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the

Result: average accuracy very close to baseline; particular 
backdoor trigger doesn't make much difference
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Traffic Sign Transfer Results �25

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8
100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the

Result: ~13% drop in accuracy in presence of backdoor
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Strengthening Transfer Backdoor

• Recall that we found "backdoor neurons" by 
comparing difference in activation between clean 
and backdoor images 

• What if we strengthen the activations of those 
neurons manually (multiply by k)? 

• Since backdoor neurons do not fire on clean 
images, should have small effect on accuracy of 
clean images, but big effect on backdoor images
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Backdoor Boosting Results �27

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8
100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the

Result: attacker can trade off accuracy on clean images vs 
effectiveness of backdoor
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Security of the Model Zoo

• We identified several points where a backdoored 
model could be introduced: 

• Add a new entry or replace an existing entry on the 
wiki 

• Compromise external server that hosts model 

• If model is hosted over HTTP, modify it in transit 

• Note that in the last two cases, SHA1 will not match the 
gist, so user might detect the attack
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Do Users Check Hashes? �29
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Future Work

• More backdoor attacks: can we make a face detector 
that ignores specific faces? 

• Detection: can we identify the backdoor neurons? Or 
use model inversion to locate backdoors? 

• Defense: 

• Secure outsourced training? Can crypto save us? 

• For transfer learning attack, is retraining all layers 
sufficient?
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Conclusions

• Backdoors attacks on neural networks are both possible 
and powerful 

• Validation sets are not sufficient to detect backdoors 

• Transfer learning is also affected 

• We need better techniques for: 

• Debugging/explicating neural nets, backdoor detection 

• Secure outsourced training
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