
Brendan Dolan-Gavitt
OSIRIS Hack Night, 11/16/2023

CSAW CTF ’23 Finals
NERV Center Walkthrough

 __ _._.,._.__
 .o8888888888888888P'
 .d88888888888888888K
 ,8 888888888888888888888boo._
 :88b 888888888888888888888888888b.
 `Y8b 88888888888888888888888888888b.
 `Yb. d8888888888888888888888888888888b
 `Yb.___.88888888888888888888888888888888888b
 `Y888888888888888888888888888888CG88888P"'
 `88888888888888888888888888888MM88P"'
"Y888K "Y8P""Y888888888888888888888888oo._""""
 88888b 8 8888`Y88888888888888888888888oo.
 8"Y8888b 8 8888 ,8888888888888888888888888o,
 8 "Y8888b8 8888""Y8`Y8888888888888888888888b.
 8 "Y8888 8888 Y `Y8888888888888888888888
 8 "Y88 8888 .d `Y88888888888888888888b
.d8b. "8 .d8888b..d88P `Y88888888888888888888
 `Y88888888888888888b.
 "Y888P""Y8b. "Y888888888888888888888
 888 888 Y888`Y888888888888888
 888 d88P Y88b `Y8888888888888
 888"Y88K" Y88b dPY8888888888P
 888 Y88b Y88dP `Y88888888b
 888 Y88b Y8P `Y8888888
 .d888b. Y88b. Y `Y88888
 `Y88K
 `Y8

The story begins, as many do, on a dark and stormy night…

(You all recognize NYU Tandon here, right?)

This was before tenure, so I was sitting in my office late at night

Watching our PANDA (QEMU-based) malware analysis sandbox
(Actually, this is inaccurate—PANDA doesn't put any instrumentation inside the VM)

That’s better—I was looking at the malware sandbox logs

When I saw something truly frightful!

CSAW CTF ’23 Finals: NERV Center

What Was the Bug?
A quick peek at select(2)

9

DESCRIPTION

 WARNING: select() can monitor only file descriptors
 numbers that are less than FD_SETSIZE (1024)—an unrea‐
 sonably low limit for many modern applications—and this
 limitation will not change. All modern applications
 should instead use poll(2) or epoll(7), which do not
 suffer this limitation.

NOTES

 An fd_set is a fixed size buffer. Executing FD_CLR()
 or FD_SET() with a value of fd that is negative or is
 equal to or larger than FD_SETSIZE will result in unde‐
 fined behavior. Moreover, POSIX requires fd to be a
 valid file descriptor.

CSAW CTF ’23 Finals: NERV Center

What Was the Bug?
A quick peek at select(2)

10

DESCRIPTION

 WARNING: select() can monitor only file descriptors
 numbers that are less than FD_SETSIZE (1024)—an unrea‐
 sonably low limit for many modern applications—and this
 limitation will not change. All modern applications
 should instead use poll(2) or epoll(7), which do not
 suffer this limitation.

NOTES

 An fd_set is a fixed size buffer. Executing FD_CLR()
 or FD_SET() with a value of fd that is negative or is
 equal to or larger than FD_SETSIZE will result in unde‐
 fined behavior. Moreover, POSIX requires fd to be a
 valid file descriptor.

“Undefined behavior”
in this case means

memory corruption

CSAW CTF ’23 Finals: NERV Center

What About the Kernel? 11

 C library/kernel differences
 The Linux kernel allows file descriptor sets of arbitrary size,
 determining the length of the sets to be checked from the value
 of nfds. However, in the glibc implementation, the fd_set type
 is fixed in size. See also BUGS.
 
BUGS
 POSIX allows an implementation to define an upper limit,
 advertised via the constant FD_SETSIZE, on the range of file
 descriptors that can be specified in a file descriptor set. The
 Linux kernel imposes no fixed limit, but the glibc implementation
 makes fd_set a fixed-size type, with FD_SETSIZE defined as 1024,
 and the FD_*() macros operating according to that limit. To
 monitor file descriptors greater than 1023, use poll(2) or
 epoll(7) instead.

https://man7.org/linux/man-pages/man2/poll.2.html
https://man7.org/linux/man-pages/man7/epoll.7.html

CSAW CTF ’23 Finals: NERV Center

In QEMU
“Probably Overkill”

12static fd_set rfds, wfds, xfds;
static int nfds;
static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
static int n_poll_fds;
static int max_priority;

[...]

static int os_host_main_loop_wait(uint32_t timeout)
{
 struct timeval tv, *tvarg = NULL;
 int ret;

 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);

 if (timeout < UINT32_MAX) {
 tvarg = &tv;
 tv.tv_sec = timeout / 1000;
 tv.tv_usec = (timeout % 1000) * 1000;
 }

 if (timeout > 0) {
 qemu_mutex_unlock_iothread();
 }

 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);

 if (timeout > 0) {
 qemu_mutex_lock_iothread();
 }

 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
 return ret;
}

CSAW CTF ’23 Finals: NERV Center

In QEMU
“Probably Overkill”

13static fd_set rfds, wfds, xfds;
static int nfds;
static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
static int n_poll_fds;
static int max_priority;

[...]

static int os_host_main_loop_wait(uint32_t timeout)
{
 struct timeval tv, *tvarg = NULL;
 int ret;

 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);

 if (timeout < UINT32_MAX) {
 tvarg = &tv;
 tv.tv_sec = timeout / 1000;
 tv.tv_usec = (timeout % 1000) * 1000;
 }

 if (timeout > 0) {
 qemu_mutex_unlock_iothread();
 }

 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);

 if (timeout > 0) {
 qemu_mutex_lock_iothread();
 }

 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
 return ret;
}

Standard glibc
fd_sets, as globals

CSAW CTF ’23 Finals: NERV Center

In QEMU
“Probably Overkill”

14static fd_set rfds, wfds, xfds;
static int nfds;
static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
static int n_poll_fds;
static int max_priority;

[...]

static int os_host_main_loop_wait(uint32_t timeout)
{
 struct timeval tv, *tvarg = NULL;
 int ret;

 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);

 if (timeout < UINT32_MAX) {
 tvarg = &tv;
 tv.tv_sec = timeout / 1000;
 tv.tv_usec = (timeout % 1000) * 1000;
 }

 if (timeout > 0) {
 qemu_mutex_unlock_iothread();
 }

 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);

 if (timeout > 0) {
 qemu_mutex_lock_iothread();
 }

 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
 return ret;
}

No limit on the
number of fds

CSAW CTF ’23 Finals: NERV Center

In QEMU
“Probably Overkill”

15static fd_set rfds, wfds, xfds;
static int nfds;
static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
static int n_poll_fds;
static int max_priority;

[...]

static int os_host_main_loop_wait(uint32_t timeout)
{
 struct timeval tv, *tvarg = NULL;
 int ret;

 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);

 if (timeout < UINT32_MAX) {
 tvarg = &tv;
 tv.tv_sec = timeout / 1000;
 tv.tv_usec = (timeout % 1000) * 1000;
 }

 if (timeout > 0) {
 qemu_mutex_unlock_iothread();
 }

 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);

 if (timeout > 0) {
 qemu_mutex_lock_iothread();
 }

 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
 return ret;
}

Passed to select 😩

CSAW CTF ’23 Finals: NERV Center

In QEMU
“Probably Overkill”

16static fd_set rfds, wfds, xfds;
static int nfds;
static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
static int n_poll_fds;
static int max_priority;

[...]

static int os_host_main_loop_wait(uint32_t timeout)
{
 struct timeval tv, *tvarg = NULL;
 int ret;

 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);

 if (timeout < UINT32_MAX) {
 tvarg = &tv;
 tv.tv_sec = timeout / 1000;
 tv.tv_usec = (timeout % 1000) * 1000;
 }

 if (timeout > 0) {
 qemu_mutex_unlock_iothread();
 }

 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);

 if (timeout > 0) {
 qemu_mutex_lock_iothread();
 }

 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
 return ret;
}

And exposed to
guest VM when

user mode
networking (SLIRP)

is enabled 🥴

#ifdef CONFIG_SLIRP
 slirp_update_timeout(&timeout);
 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
#endif
 qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds);
 ret = os_host_main_loop_wait(timeout);
 qemu_iohandler_poll(&rfds, &wfds, &xfds, ret);
#ifdef CONFIG_SLIRP
 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
#endif

CSAW CTF ’23 Finals: NERV Center

What should we do with this?
Make a CTF challenge obviously

• This bug is interesting for a few reasons:

• The kernel and glibc have different ideas about the maximum number of fds
that can be handled

• The vuln allows you to set individual bits in the mem corruption

• The value of those bits is controlled by the status of the file descriptors

• For example, whether a network connection has any data available for
reading

17

CSAW CTF ’23 Finals: NERV Center

NERV Center
In which we weeb out

• I designed a Pwn+Crypto challenge around
this core vuln, with a theme based on Neon
Genesis Evangelion (1995-1996)

• The main vulnerability is essentially the same:
the server opens up a port and uses select() to
monitor connections made to it

• The server's ulimit (RLIMIT_NOFILES) is set to
1088 (1024+64), allowing a 64-bit overwrite
into the memory after the fd_set

18

 __ _._.,._.__
 .o8888888888888888P'
 .d88888888888888888K
 ,8 888888888888888888888boo._
 :88b 888888888888888888888888888b.
 `Y8b 88888888888888888888888888888b.
 `Yb. d8888888888888888888888888888888b
 `Yb.___.88888888888888888888888888888888888b
 `Y888888888888888888888888888888CG88888P"'
 `88888888888888888888888888888MM88P"'
"Y888K "Y8P""Y888888888888888888888888oo._""""
 88888b 8 8888`Y88888888888888888888888oo.
 8"Y8888b 8 8888 ,8888888888888888888888888o,
 8 "Y8888b8 8888""Y8`Y8888888888888888888888b.
 8 "Y8888 8888 Y `Y8888888888888888888888
 8 "Y88 8888 .d `Y88888888888888888888b
.d8b. "8 .d8888b..d88P `Y88888888888888888888
 `Y88888888888888888b.
 "Y888P""Y8b. "Y888888888888888888888
 888 888 Y888`Y888888888888888
 888 d88P Y88b `Y8888888888888
 888"Y88K" Y88b dPY8888888888P
 888 Y88b Y88dP `Y88888888b
 888 Y88b Y8P `Y8888888
 .d888b. Y88b. Y `Y88888
 `Y88K
 `Y8

CSAW CTF ’23 Finals: NERV Center

A Tale of Three fd_sets
It's exceptional

• select() takes three fd_sets to monitor: readfds (fds with data available to
read), writefds (fds with data available to write), and exceptfds (???)

• readfds and writefds are a bit hard to control

• The “natural” order to put them in the code means usually the next thing in
memory will just be another fd_set, which is not interesting to overwrite

• So what the heck does exceptfds do?

19

CSAW CTF ’23 Finals: NERV Center

Out of Band or Out of Bound?
When you need to send data URGently

20

exceptfds
 The file descriptors in this set are watched for "excep‐
 tional conditions". For examples of some exceptional con‐
 ditions, see the discussion of POLLPRI in poll(2).

POLLPRI
 There is some exceptional condition on the file descriptor.
 Possibilities include:
 • There is out-of-band data on a TCP socket (see tcp(7)).

Sockets API
 TCP provides limited support for out-of-band data, in the form of
 (a single byte of) urgent data. In Linux this means if the other
 end sends newer out-of-band data the older urgent data is inserted
 as normal data into the stream (even when SO_OOBINLINE is not
 set). This differs from BSD-based stacks.

CSAW CTF ’23 Finals: NERV Center

Out of Band or Out of Bound?
When you need to send data URGently

21

CSAW CTF ’23 Finals: NERV Center

Out of Band or Out of Bound?
When you need to send data URGently

• This has some pretty nice properties for a CTF

• OOB data is pretty obscure and almost never used

• Until the server actually reads the OOB data, select() will always set that fd
bit to 1 – nice and controllable

• Python lets you easily send OOB data with 
sock.send(b'1', socket.MSG_OOB)

22

CSAW CTF ’23 Finals: NERV Center

What Should We Corrupt?
From Pwn to Pwn+Crypto

• We could just place a function pointer after exceptfds, and have players use
that to do a standard pwn and pop a shell

• But that would be boring

• Don’t be boring in a CTF challenge

• Instead, let’s kick things up a level and make them solve a crypto problem too

• We’ll put an RSA public modulus (N) into memory right after our exceptfds

• What can you do with control over the first 64 bits of a 1024-bit RSA key?

23

CSAW CTF ’23 Finals: NERV Center

Flip Feng Shui
Getting academic

• I happened to remember this cool paper from USENIX Security 2016

• The authors wanted to show that RowHammer, which lets you flip random
bits in memory, could be used for practical exploitation

• By taking advantage of OS memory deduplication, they could get the memory
page they were hammering placed next to the page holding the server's ssh
RSA public key

• And they showed that when you flip a few bits in an RSA key, it becomes easy
to factor

24

CSAW CTF ’23 Finals: NERV Center

Wait Hold On I Forgot How RSA Works?
That’s okay I don't do crypto much either

• In RSA we pick two large (e.g. 512-bit) primes p and q

• We also pick a public exponent e, usually a prime like 65537

• Then the public key / modulus is N = p*q

• The secret key d is pow(e, -1, N) [the modular inverse of e mod N]

• This is easy to compute if you know p and q, hard if you don't

• We can encrypt / sign a message by doing me mod N

• Decrypt with cd mod N = (me)d mod N = m1 mod N = m

25

CSAW CTF ’23 Finals: NERV Center

RSA Authentication
Challenge-Response in a CTF Challenge

• To use RSA for authentication, the server keeps a public key N

• During authentication, it sends a randomly generated challenge to the client

• The client uses the private key d corresponding to N to sign the message and
return the signature

• The server then uses N to validate the signature

• So if we corrupt N , producing N’, and factor N’, we can forge signatures and
the server will accept them as valid with its corrupted key!

26

CSAW CTF ’23 Finals: NERV Center

NERV Center Authentication
[Asuka voice] Pathetic

27

Welcome to the NERV Magi System
Setting up session...
Session sensor port is: 2001
You can connect to this port to view sensor data.
Current authorization level: UNPRIVILEGED
Main menu:
1. Authenticate
2. Print public key
3. Issue sensor system halt
4. Resume sensor operations
5. MAGI status
6. Help
7. Exit
Enter your choice: 1
Challenge: 5ae9dff09cda15bb15db26e76a6668e516fff9201bde283d739bc3469a52fd53
Response: uhhh i don't know

CSAW CTF ’23 Finals: NERV Center

28Authentication failed.
▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
 ▄▄▄ ▄ ▄▄▄▄▄ ▄▄ ▄▄▄ ▄ ▄ ▄ ▄▄ ▄▄ ▄
 ▄ ▄ ▄ ▄▄▄ ▄ ▄ ▄ ▄ ▄ ▄ ▄▄ ▄ ▄▄▄ ▄▄ ▄▄▄▄ ▄
 ▄ ▄▄ ▄▄ ▄▄▄ ▄▄ ▄▄▄ ▄▄ ▄ ▄ ▄▄ ▄ ▄ ▄▄ ▄ ▄ ▄ ▄▄ ▄ ▄▄ ▄▄▄▄▄
 ▄ ▄▄ ▄▄▄ ▄▄ ▄▄ ▄ ▄ ▄ ▄ ▄▄ ▄▄▄ ▄▄▄▄▄▄ ▄ ▄▄▄ ▄ ▄ ▄ ▄ ▄▄▄
 ▄ ▄▄ ▄▄▄ ▄ ▄ ▄▄▄▄▄ ▄ ▄ ▄▄▄▄▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄ ▄▄▄
 ▄ ▄▄ ▄▄ ▄ ▄▄ ▄▄▄▄▄▄ ▄▄ ▄ ▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄ ▄ ▄▄▄▄▄▄ ▄
 ▄ ▄▄▄▄▄▄▄▄▄▄ ▄ ▄▄▄▄▄▄▄ ▄ ▄▄▄▄▄ ▄ ▄▄ ▄▄▄▄▄ ▄▄
 ▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄▄▄▄ ▄▄▄ ▄
 ▄ ▄ ▄▄▄ ▄▄▄▄ ▄▄▄▄▄▄ ▄ ▄▄ ▄▄▄
 ▄▄ ▄▄▄▄ ▄▄▄ ▄▄ ▄ ▄ ▄▄▄▄
 ▄▄ ▄▄▄▄ ▄▄▄▄▄ ▄ ▄▄ ▄▄▄▄▄ ▄ ▄▄▄▄
 ▄▄▄▄ ▄ ▄▄ ▄ ▄▄ ▄▄ ▄▄▄▄▄ ▄▄▄
 ▄ ▄▄▄▄ ▄▄▄ ▄▄▄▄ ▄ ▄ ▄ ▄▄
 ▄▄▄ ▄ ▄▄ ▄▄▄ ▄▄▄▄ ▄▄▄ ▄ ▄ ▄ ▄▄
 ▄▄▄ ▄▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄▄▄ ▄▄▄ ▄
▄ ▄ ▄▄▄ ▄ ▄▄ ▄▄▄▄▄▄▄▄ ▄ ▄
 ▄▄ ▄ ▄ ▄ ▄▄▄▄▄▄ ▄▄▄▄▄ ▄▄ ▄ ▄
 ▄▄ ▄▄▄▄▄ ▄▄ ▄ ▄ ▄
 ▄▄ ▄ ▄▄▄▄ ▄▄▄▄ ▄ ▄ ▄▄ ▄
 ▄▄▄ ▄▄ ▄ ▄ ▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄ ▄ ▄▄ ▄ ▄ ▄
 ▄▄▄▄ ▄ ▄▄ ▄ ▄▄▄▄▄ ▄▄ ▄ ▄ ▄▄ ▄ ▄▄
 ▄▄▄▄▄ ▄▄ ▄▄ ▄ ▄ ▄▄ ▄▄ ▄▄ ▄▄
 ▄ ▄▄ ▄▄ ▄▄ ▄ ▄ ▄▄
 ▄▄▄ ▄ ▄ ▄▄ ▄ ▄ ▄▄ ▄
 ▄ ▄ ▄ ▄ ▄ ▄ ▄▄ ▄
▄▄ ▄ ▄▄ ▄ ▄▄ ▄ ▄ ▄ ▄▄ ▄ ▄▄ ▄ ▄ ▄
▄ ▄▄ ▄ ▄ ▄ ▄ ▄ ▄▄▄ ▄ ▄▄ ▄ ▄ ▄ ▄ ▄
 ▄▄▄ ▄ ▄▄▄ ▄▄▄▄▄▄▄▄▄ ▄▄▄▄ ▄ ▄ ▄▄▄▄ ▄▄ ▄ ▄ ▄ ▄ ▄
 ▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄▄▄▄ ▄▄ ▄▄▄▄▄▄▄▄ ▄▄ ▄ ▄ ▄▄ ▄
 ▄ ▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄ ▄▄▄▄▄▄ ▄ ▄ ▄ ▄ ▄
 ▄ ▄▄ ▄▄ ▄▄▄▄▄ ▄▄ ▄▄ ▄ ▄ ▄▄▄▄▄▄▄ ▄ ▄ ▄▄▄▄▄▄▄ ▄▄ ▄ ▄
 ▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄ ▄▄▄▄▄▄ ▄▄▄▄ ▄▄▄▄▄▄ ▄ ▄ ▄ ▄ ▄▄▄▄▄
▄▄ ▄ ▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄ ▄▄▄ ▄ ▄
▄ ▄ ▄ ▄ ▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▄▄ ▄▄ ▄▄ ▄ ▄ ▄ ▄▄ ▄
Invalid signature

CSAW CTF ’23 Finals: NERV Center

An Even More Clever Solution
That I wish I had thought of

• Stackphish came up with an even more clever solution than just factoring

• Instead of actually factoring the key, you can instead do a search over the 64
bits you control and find a key that makes N prime

• Then, because of a nice property of Euler's totient function φ, we can
calculate d as 
 d = pow(e, -1, N-1)

• Checking primality is fast, and primes are common enough that we're sure to
hit one pretty quickly by just picking random values for our 64 bits

29

CSAW CTF ’23 Finals: NERV Center

~Aesthetics~
In which I get a little carried away

• I wanted to make sure the challenge had good hints, and also looked cool
and like something people would want to play with

• I decided to use ANSI colors and unicode characters to add some flavor from
the show to the challenge

• Most modern terminals support at least 256 colors and a big chunk of
Unicode characters, so you can do some pretty neat things with pure text on
the terminal

• You can get pretty elaborate with this (notcurses demo reel): 
https://www.youtube.com/watch?v=dcjkezf1ARY

30

https://www.youtube.com/watch?v=dcjkezf1ARY

CSAW CTF ’23 Finals: NERV Center

The MAGI UI
Three fd_sets, three supercomputers

• In the show, the NERV supercomputer consists of three nodes: 
Casper-Magi 3, Balthasar-Magi 2, and Melchior-Magi 1

• These correspond very nicely to the three fd_sets monitored by select!

32

CSAW CTF ’23 Finals: NERV Center

33

CSAW CTF ’23 Finals: NERV Center

Placing Breadcrumbs in the UI 34

CSAW CTF ’23 Finals: NERV Center

The Credits Easter Egg
Even more explicit hints—if you can find them

• During the CTF, we still got no solves until I finally released a hint 
  
 Look for the easter egg, which has further hints -  
 what's taking up all that space in the binary?

• I used the same ANSI+Unicode approach to embed a full video credit
sequence into the server binary

• You could activate it by connecting to the sensor interface and using the
EXAMINE command on three Angels in a row where the first letter of their
names spells "RSA" (like Ramiel, Sandalphon, Adam)

35

CSAW CTF ’23 Finals: NERV Center

36

CSAW CTF ’23 Finals: NERV Center

Behind The Scenes
The Making Of

• There was also a bunch of extra work that went
into making this challenge reliably solvable and
avoiding unintentional vulnerabilities!

• I wrote some fuzzers and test cases:

37

CSAW CTF ’23 Finals: NERV Center

Behind The Scenes
The Making Of

• select() based vulnerabilities are also annoying
because of how select() works

• You fill up an fd_set with the fds you want to
monitor using the FD_SET macro. This sets all
those bits to 1 (not attacker controlled).

• Then you call select(). The kernel updates the
fd_sets with the bits corresponding to their
actual status (this is attacker controlled).

• But this means if you have select() in a loop, half
the time you don't control the bits you corrupt!

• I introduced menu options that let you pause the
select loop to make it more deterministic

38

CSAW CTF ’23 Finals: NERV Center

Making the Credits
A huge pile of hacks

• To make the credits, I just dumped out all the frames of the opening theme to
PNG files

• Then wrote some code that let you provide a subtitle file to overlay text and
graphics on each frame, with fade-in/fade-out using transparency

• …the overlay is done by calling the convert utility from ImageMagick

• Code here, if you dare to read it: 
 
https://github.com/moyix/csaw23_nervcenter_credits

39

https://github.com/moyix/csaw23_nervcenter_credits

CSAW CTF ’23 Finals: NERV Center

Conclusions
I spent way too much time on this

• This challenge was a huge amount
of work

• But also kinda worth it for how
much fun people had with it (once
they actually started looking at it in
earnest)

• Oh, and I may have inadvertently
exposed one of Dave Aitel's private
bug classes

• Questions?!

40

https://github.com/moyix/csaw23_nervcenter

https://github.com/moyix/csaw23_nervcenter

