@ TANDON SCHOOL
1 NYU OF ENGINEERING

Towards Deceptive Defense In

Software Security with Chaff Bugs

=X

Brendan Dolan-Gavitt | \/‘
10/5/2023 ‘\/
NTER FOR

ARO Cyber Deception Workshop PNEE R EECLIEITY

W

g Attacker Exploitation Workflow
NYU

Exploitable”

X

Find Bugs <% x
4

Towards Deceptive Defense in Software Security with Chatf Bugs

W

g Attacker Exploitation Workflow
NYU

Current strategy: Exploitable?

reduce the x

number of bugs

- £

FInd Bugs

X

N

Towards Deceptive Defense in Software Security with Chatf Bugs

W

i Attacker Exploitation Workflow
NYU Current strategy:

mitigate exploit
attempts

Exploitable”

g
\
Find Bugs \

Towards Deceptive Defense in Software Security with Chatf Bugs

“’ Attacker Exploitation Workflow
NYU

Exploitable®
New |dea:
Increase the
number of bugs
®
®
®

Find Bugs

%

but make them
NoN- ex\oﬂab\e

Towards Deceptive Defense in Software Security with Chatf Bugs

W

Some Definitions

!
NYU

* By non-exploitable we mean that the attacker cannot
achieve code execution or alter program behavior on
*honest” Inputs

* |t's okay If the program crashes on malicious inputs

* |[n many cases this is fine: server-side processes that get
restarted, browser tabs that get relaunched automatically,
CLI utilities

Towards Deceptive Defense in Software Security with Chatf Bugs

T' Goals
NYU

 Add many bugs
 Guarantee non-exploitability

 Make it difficult to tell that a bug Iis non-exploitable

Towards Deceptive Defense in Software Security with Chatf Bugs

* Add many bugs Large-scale
Automated

* Guarantee non-exploitability Vulnerflg'@é'é})/é;'@'"“ﬂ

 Make it difficult to tell that a bug Iis non-exploitable

Towards Deceptive Defense in Software Security with Chatf Bugs

T' Goals

NYU

 Add many bugs

 Guarantee non-exploitability

 Make it difficult to tell that a bug Iis non-exploitable

Towards Deceptive Defense in Software Security with Chatf Bugs

10

W

Ensuring Non-Exploitability
NYU

* Context: overflow bugs only

o Exploitablility here depends on two things:
1. What thing the attacker can overwrite
2. What values they can overwrite it with

* This suggests two strategies for constructing non-exploitable bugs

Towards Deceptive Defense in Software Security with Chatf Bugs

11

W

Strategy 1: Unused Values

!
NYU

* [0 make a bug non-exploitable we can make sure
that the thing we overflow Is unused

e How” Easy: we add a new, unused variable!

Overion iae

Towards Deceptive Defense in Software Security with Chatf Bugs

W

Strategy 1: Unused Values

!
NYU

* [0 make a bug non-exploitable we can make sure
that the thing we overflow Is unused

e How” Easy: we add a new, unused variable!

Towards Deceptive Defense in Software Security with Chatf Bugs

13

W

Strategy 1: Unused Values

!
NYU

* [0 make a bug non-exploitable we can make sure
that the thing we overflow Is unused

e How” Easy: we add a new, unused variable!

Attacker Data

Towards Deceptive Defense in Software Security with Chatf Bugs

‘%” Making Unused Data Look Used 14
NYU

* To make sure the bugs Top Level Caller [Fnc: it coow vt |
look exploitable we need @ [N
Callee 1 Calling Foo : (int *lava_dataflow _arg, ...) B

to make It look plausible
that the overwritten data is Callee 2

[Calling Fun: (int *lava_dataflow_arg, ...) J
used by the program Q /
Callee 3 Unused Local Variable 1]

e Solution: add fake /
dataflow

Towards Deceptive Defense in Software Security with Chatf Bugs

15

W

Strategy lI: Overconstrained Values

!
NYU

* We can also allow the attacker to overflow something
Important, but constrain the values

e For a given piece of data (say, a return address) there is a
range of values that are non-exploitable

 Example: overwrite return address but only with NULL

* Since we create the bugs however we like, we can ensure
that the attacker can only write safe values

Towards Deceptive Defense in Software Security with Chatf Bugs

W

2 Overconstrained Values
N Y U 0 Oxffff ffff

4)

x

All Possible Values

Memory
Mappi ngs
‘\ C1: a & Oxff00 0000 == 0

C2: a & 0x00ff 0000 == 0

C3:a & Oxff==0

Safe Value

0x0100 Oxff00

Towards Deceptive Defense in Software Security with Chatf Bugs

17

W

Obfuscating Value Constraints
NYU

» Constraints are added gradually along the path to the
bug

* Each constraint need not be obvious — generalization
of opaque predicates

 We know that there is only one valid path to the bug

o Attacker must reason about all possible paths

Towards Deceptive Defense in Software Security with Chatf Bugs

18

W

, Limitations (Lots of ’TEm!)
NYU

* \Won't work on open-source code

* Current implementation does not try to prevent
distinguishabillity attacks

e |.e., attackers can find patterns in our bugs that distinguish
them from naturally occurring bugs and then ignore ours

* Can we fix this using large language models? Maybe

* More work needed to add more variety to bugs

Towards Deceptive Defense in Software Security with Chatf Bugs

19

» Chaff bugs are a new type of deceptive defense that
wastes an attacker's most precious resource: time

e Still much work needed to make them a viable real-
world defense!

* Also highlights an area where more work Is needed:
exploitability triage

Towards Deceptive Defense in Software Security with Chatf Bugs

