
Brendan Dolan-Gavitt
10/5/2023
ARO Cyber Deception Workshop

Towards Deceptive Defense in
Software Security with Chaff Bugs

Towards Deceptive Defense in Software Security with Chaff Bugs

Attacker Exploitation Workflow 2

Find Bugs

Exploitable?

✘

✘
✔

✔

Towards Deceptive Defense in Software Security with Chaff Bugs

Attacker Exploitation Workflow 3

Find Bugs

Exploitable?

✘

✘
✔

✔

Current strategy:
reduce the

number of bugs

Towards Deceptive Defense in Software Security with Chaff Bugs

Attacker Exploitation Workflow 4

Find Bugs

Exploitable?

✘

✘
✔

✔

Current strategy:
mitigate exploit

attempts

Towards Deceptive Defense in Software Security with Chaff Bugs

Attacker Exploitation Workflow 5

Find Bugs

Exploitable?
✘New Idea:

increase the
number of bugs

...but make them
non-exploitable

✘
✘
✘

✘
✘
✘
✔

Towards Deceptive Defense in Software Security with Chaff Bugs

Some Definitions

• By non-exploitable we mean that the attacker cannot
achieve code execution or alter program behavior on
“honest” inputs

• It's okay if the program crashes on malicious inputs

• In many cases this is fine: server-side processes that get
restarted, browser tabs that get relaunched automatically,
CLI utilities

6

Towards Deceptive Defense in Software Security with Chaff Bugs

Goals

• Add many bugs

• Guarantee non-exploitability

• Make it difficult to tell that a bug is non-exploitable

7

Towards Deceptive Defense in Software Security with Chaff Bugs

Goals

• Add many bugs

• Guarantee non-exploitability

• Make it difficult to tell that a bug is non-exploitable

8

Large-scale
Automated

Vulnerability Addition
(S&P ’16)

Towards Deceptive Defense in Software Security with Chaff Bugs

Goals

• Add many bugs

• Guarantee non-exploitability

• Make it difficult to tell that a bug is non-exploitable

9

This work

Towards Deceptive Defense in Software Security with Chaff Bugs

Ensuring Non-Exploitability

• Context: overflow bugs only

• Exploitability here depends on two things:

1. What thing the attacker can overwrite

2. What values they can overwrite it with

• This suggests two strategies for constructing non-exploitable bugs

10

Towards Deceptive Defense in Software Security with Chaff Bugs

Strategy 1: Unused Values

• To make a bug non-exploitable we can make sure
that the thing we overflow is unused

•How? Easy: we add a new, unused variable!

11

Overflow Target Unused

Towards Deceptive Defense in Software Security with Chaff Bugs

Strategy 1: Unused Values

• To make a bug non-exploitable we can make sure
that the thing we overflow is unused

•How? Easy: we add a new, unused variable!

12

Overflow Target UnusedAttacker Data

Towards Deceptive Defense in Software Security with Chaff Bugs

Strategy 1: Unused Values

• To make a bug non-exploitable we can make sure
that the thing we overflow is unused

•How? Easy: we add a new, unused variable!

13

Overflow Target UnusedAttacker Data

Towards Deceptive Defense in Software Security with Chaff Bugs

Making Unused Data Look Used

• To make sure the bugs
look exploitable we need
to make it look plausible
that the overwritten data is
used by the program

• Solution: add fake
dataflow

14
Figure 5: An overconstrained value bug. By adding con-
straints along the path leading to the bug, we gradually
eliminate unsafe values.

Func : int lava_dataflow_var[1];

Calling Foo : (int *lava_dataflow_arg,)

Calling Fun : (int *lava_dataflow_arg,)

Unused Local Variable 1

Unused Local Variable 2

Top Level Caller

Callee 1

Callee 2

Callee 3

Overflow

Figure 6: An unused variable bug. Data flow is added to
propagate the “unused” values outside the initial scope,
hiding the fact that they are actually unused.

the attacker is able to find the constraint checking code.
Unused variable overwrites are also easy to triage since
our unused variable’s value will not escape the current
function scope; this means that an attacker only needs to
look at a single function to tell whether the overwritten
value could be used for an exploit.

To increase triage difficulty, we need to obfuscate the
constraints used in overconstrained value bugs and create
additional dataflow that propagates our unused variables’
values beyond the scope of the function containing the
overflow. In general, we want each bug to require reading
and understanding significant amounts of additional code
before and after the point where the bug is triggered.

4.3.1 Overconstrained values

To obfuscate constraints, we split the constraint check
into multiple parts and spread the parts throughout the
execution trace that leads to the bug. Each check along

the way excludes some subset of unsafe values before
propagating the input onward, as shown in Figure 5. To
check whether the bug is exploitable, an attacker has to
reconstruct the exact path that would reach the bug and
verify that no other path can reach the bug with more
permissive constraints. Each check in isolation does not
rule out all unsafe values, so unless an attacker considers
all of them he cannot rule out the possibility that the bug
is exploitable.

We note that in principle arbitrarily complex func-
tions could be constructed that map the original attacker-
controlled input to a safe subset of values. Such func-
tions are a generalization of opaque predicates [7], which
are known to be difficult to analyze.

4.3.2 Unused variables

In order to make triage harder for the unused variable
strategy, we must make it appear that the unused vari-
able is, in fact, used by other parts of the program. To do
so, we add data flow after the overflow takes place that
carries the overwritten value to other parts of the pro-
gram (but, ultimately, does not use it). As shown in Fig-
ure 6, we add additional output arguments to the function
that contains the unused variable bug and a fixed num-
ber of its parents. After the overflow, we add code to
copy the overwritten value into this output argument and
propagate it back up the stack of calling functions. This
increases the difficulty of triage by forcing the attacker
to check how the value is used in all the callers. This
process could be extended by introducing dataflow from
the calling functions to later callees; for our current pro-
totype, however, we only create dataflow to the calling
functions.

5 Implementation

In this section we discuss the details of our implemen-
tation. We implement our non-exploitable bug injec-
tion system on top of LAVA [10], a previously pub-
lished bug injection system that is itself based on the
PANDA dynamic analysis platform [9] and the clang
compiler [17]. Our implementation currently assumes
a 32-bit x86 Linux environment, but the ideas are gen-
eral and could be adapted to other operating systems and
architectures with minor modifications.

5.1 Extensions to LAVA
Apart from the changes to LAVA to make bugs non-
exploitable (which are discussed in detail below), the ma-
jor extensions to LAVA involve fixes to avoid unintended

bugs. The original LAVA system can, in some cases,

6

Towards Deceptive Defense in Software Security with Chaff Bugs

Strategy II: Overconstrained Values

• We can also allow the attacker to overflow something
important, but constrain the values

• For a given piece of data (say, a return address) there is a
range of values that are non-exploitable

• Example: overwrite return address but only with NULL

• Since we create the bugs however we like, we can ensure
that the attacker can only write safe values

15

Towards Deceptive Defense in Software Security with Chaff Bugs

Overconstrained Values 16

All Possible Values

0 0xffff ffff

Safe Value

C1: a & 0xff00 0000 == 0

C2: a & 0x00ff 0000 == 0

C3: a & 0xff == 0

0x0100 0xff00

vSYSCALL
GlibcMemory

Mappings

Figure 5: An overconstrained value bug. By adding con-
straints along the path leading to the bug, we gradually
eliminate unsafe values.

Figure 6: An unused variable bug. Data flow is added to
propagate the “unused” values outside the initial scope,
hiding the fact that they are actually unused.

the attacker is able to find the constraint checking code.
Unused variable overwrites are also easy to triage since
our unused variable’s value will not escape the current
function scope; this means that an attacker only needs to
look at a single function to tell whether the overwritten
value could be used for an exploit.

To increase triage difficulty, we need to obfuscate the
constraints used in overconstrained value bugs and create
additional dataflow that propagates our unused variables’
values beyond the scope of the function containing the
overflow. In general, we want each bug to require reading
and understanding significant amounts of additional code
before and after the point where the bug is triggered.

4.3.1 Overconstrained values

To obfuscate constraints, we split the constraint check
into multiple parts and spread the parts throughout the
execution trace that leads to the bug. Each check along

the way excludes some subset of unsafe values before
propagating the input onward, as shown in Figure 5. To
check whether the bug is exploitable, an attacker has to
reconstruct the exact path that would reach the bug and
verify that no other path can reach the bug with more
permissive constraints. Each check in isolation does not
rule out all unsafe values, so unless an attacker considers
all of them he cannot rule out the possibility that the bug
is exploitable.

We note that in principle arbitrarily complex func-
tions could be constructed that map the original attacker-
controlled input to a safe subset of values. Such func-
tions are a generalization of opaque predicates [7], which
are known to be difficult to analyze.

4.3.2 Unused variables

In order to make triage harder for the unused variable
strategy, we must make it appear that the unused vari-
able is, in fact, used by other parts of the program. To do
so, we add data flow after the overflow takes place that
carries the overwritten value to other parts of the pro-
gram (but, ultimately, does not use it). As shown in Fig-
ure 6, we add additional output arguments to the function
that contains the unused variable bug and a fixed num-
ber of its parents. After the overflow, we add code to
copy the overwritten value into this output argument and
propagate it back up the stack of calling functions. This
increases the difficulty of triage by forcing the attacker
to check how the value is used in all the callers. This
process could be extended by introducing dataflow from
the calling functions to later callees; for our current pro-
totype, however, we only create dataflow to the calling
functions.

5 Implementation

In this section we discuss the details of our implemen-
tation. We implement our non-exploitable bug injec-
tion system on top of LAVA [10], a previously pub-
lished bug injection system that is itself based on the
PANDA dynamic analysis platform [9] and the clang
compiler [17]. Our implementation currently assumes
a 32-bit x86 Linux environment, but the ideas are gen-
eral and could be adapted to other operating systems and
architectures with minor modifications.

5.1 Extensions to LAVA
Apart from the changes to LAVA to make bugs non-
exploitable (which are discussed in detail below), the ma-
jor extensions to LAVA involve fixes to avoid unintended

bugs. The original LAVA system can, in some cases,

6

Towards Deceptive Defense in Software Security with Chaff Bugs

Obfuscating Value Constraints

• Constraints are added gradually along the path to the
bug

• Each constraint need not be obvious – generalization
of opaque predicates

• We know that there is only one valid path to the bug

• Attacker must reason about all possible paths

17

Towards Deceptive Defense in Software Security with Chaff Bugs

Limitations (Lots of ’Em!)

• Won't work on open-source code

• Current implementation does not try to prevent
distinguishability attacks

• I.e., attackers can find patterns in our bugs that distinguish
them from naturally occurring bugs and then ignore ours

• Can we fix this using large language models? Maybe

• More work needed to add more variety to bugs

18

Towards Deceptive Defense in Software Security with Chaff Bugs

Conclusions

• Chaff bugs are a new type of deceptive defense that
wastes an attacker's most precious resource: time

• Still much work needed to make them a viable real-
world defense!

• Also highlights an area where more work is needed:
exploitability triage

19

