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Some Definitions

!
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* By non-exploitable we mean that the attacker cannot
achieve code execution or alter program behavior on
*honest” Inputs

* |t's okay If the program crashes on malicious inputs

* |[n many cases this is fine: server-side processes that get
restarted, browser tabs that get relaunched automatically,
CLI utilities
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T' Goals
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 Add many bugs
 Guarantee non-exploitability

 Make it difficult to tell that a bug Iis non-exploitable
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# Ensuring Non-Exploitability
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* Context: overflow bugs only

o Exploitablility here depends on two things:
1. What thing the attacker can overwrite
2. What values they can overwrite it with

* This suggests two strategies for constructing non-exploitable bugs
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Strategy 1: Unused Values
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* [0 make a bug non-exploitable we can make sure
that the thing we overflow Is unused

e How” Easy: we add a new, unused variable!

Overion iae
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Strategy 1: Unused Values

!
NYU
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Attacker Data
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* To make sure the bugs Top Level Caller [ Fnc: it coow vt |
look exploitable we need @ [ N
Callee 1 Calling Foo : (int *lava_dataflow _arg, ...) B

to make It look plausible
that the overwritten data is Callee 2

[ Calling Fun: (int *lava_dataflow_arg, ...) J
used by the program Q /
Callee 3 Unused Local Variable 1 ]

e Solution: add fake /
dataflow
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Strategy lI: Overconstrained Values
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* We can also allow the attacker to overflow something
Important, but constrain the values

e For a given piece of data (say, a return address) there is a
range of values that are non-exploitable

 Example: overwrite return address but only with NULL

* Since we create the bugs however we like, we can ensure
that the attacker can only write safe values
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2 Overconstrained Values
N Y U 0 Oxffff ffff
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x

All Possible Values

Memory
Mappi ngs
‘\ C1: a & Oxff00 0000 == 0

C2: a & 0x00ff 0000 == 0

C3:a & Oxff==0

Safe Value

0x0100 Oxff00
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# Obfuscating Value Constraints
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» Constraints are added gradually along the path to the
bug

* Each constraint need not be obvious — generalization
of opaque predicates

 We know that there is only one valid path to the bug

o Attacker must reason about all possible paths
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, Limitations (Lots of ’TEm!)
NYU

* \Won't work on open-source code

* Current implementation does not try to prevent
distinguishabillity attacks

e |.e., attackers can find patterns in our bugs that distinguish
them from naturally occurring bugs and then ignore ours

* Can we fix this using large language models? Maybe

* More work needed to add more variety to bugs
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» Chaff bugs are a new type of deceptive defense that
wastes an attacker's most precious resource: time

e Still much work needed to make them a viable real-
world defense!

* Also highlights an area where more work Is needed:
exploitability triage
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