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Some Definitions

• By non-exploitable we mean that the attacker 
cannot achieve code execution or alter program 
behavior 

• It's okay if the program crashes on malicious inputs 

• In many cases this is okay – think server-side 
processes that get restarted, or browser tabs that 
get relaunched automatically
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Goals

• Add many bugs 

• Guarantee non-exploitability 

• Make it difficult to tell that a bug is non-exploitable
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Plan

• Add thousands of bugs 

• Make sure they're not exploitable 

• ??? 

• Profit
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How can we do 
this?

Or this?



Chaff Bugs: Deterring Attackers by Making Software Buggier

Automated Vulnerability Addition

• In our Oakland 2016 paper we 
developed LAVA to add bugs 
to programs 

• Take existing software and 
automatically add memory 
safety bugs 

• Each bug comes with a 
triggering input so we can 
prove it really is a bug 

• This allows us to quickly create 
large ground-truth vulnerability 
corpora
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Now open source! 
https://github.com/panda-re/lava

https://github.com/panda-re/lava
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Building Bugs: DUAs

• We want to find parts of the program's input data that are: 

• Dead: not currently used much in the program (i.e., we can set 
to arbitrary values) 

• Uncomplicated: not altered very much (i.e., we can predict their 
value throughout the program's lifetime) 

• Available in some program variables 

• These properties try to capture the notion of attacker-controlled 
data 

• If we can find these DUAs, we will be able to add code to the 
program that uses such data to trigger a bug
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New Taint-Based Measures

• How do we find out what data is dead and 
uncomplicated? 

• Two new taint-based measures: 

• Liveness: a count of how many times some input 
byte is used to decide a branch 

• Taint compute number: a measure of how much 
computation been done on some data

�14
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Dynamic Taint Analysis

• We use dynamic taint analysis to 
understand the effect of input data 
on the program 

• Our taint analysis requires some 
specific features: 

• Large number of labels available 

• Taint tracks label sets 

• Whole-system & fast (enough) 

• Our open-source dynamic analysis 
platform, PANDA, provides all of 
these features
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c = a + b ; a: {w,x} ; b: {y,z} 
c ← {w,x,y,z}

https://github.com/panda-re/panda

https://github.com/panda-re/panda
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Taint Compute Number (TCN) �16

// a,b,n are inputs
1:
2:
3:
4:
5:

TCN measures how much computation has been 
done on a variable at a given point in the program
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Liveness �17

// a,b,n are inputs
1:
2:
3:
4:
5:

Bytes Liveness

{0..3} 0
{4..7} n

{8..11} 1

b: bytes {0..3} 
n: bytes {4..7} 
a: bytes {8..11}

Liveness measures how many 
branches use each input byte
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Attack Point (ATP)

• An Attack Point (ATP) is any place where we may 
want to use attacker-controlled data to cause a bug 

• Examples: pointer dereference, data copying, 
memory allocation, ... 

• In LAVA we modify array references and pointer 
arguments passed to functions to create memory 
safety errors
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LAVA Bugs

• Any (DUA, ATP) pair where the DUA occurs before 
the attack point is a potential bug we can inject 

• By modifying the source to add new data flow the 
from DUA to the attack point we can create a bug

�19

DUA + ATP =
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LAVA Bug Example

• PANDA taint analysis shows that bytes 0-3 of buf on 
line 115 of src/encoding.c is attacker-controlled 
(dead & uncomplicated) 

• From PANDA we also see that in readcdf.c line 365 
there is a read from a pointer – if we modify the pointer 
value we will likely cause a bug in the program

�20

encoding.c 115: } else if (looks_extended(buf, nbytes, 
*ubuf, ulen)) {

Attacker controlled data

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible 
pointer

New data flow
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encoding.c 115: } else if (looks_extended(buf, nbytes, 
*ubuf, ulen)) {

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible 
pointer

New data flow

Attacker controlled data
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LAVA Bug Example �22

// encoding.c: 
} else if 

(({int rv = 
looks_extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *)buf)[0];
lava |= ((unsigned char *)buf)[1] << 8;
lava |= ((unsigned char *)buf)[2] << 16;
lava |= ((unsigned char *)buf)[3] << 24;
lava_set(lava);     

}; rv; })) {

// readcdf.c: 
if (cdf_read_header

((&info) + (lava_get()) * 
(0x6c617661 == (lava_get()) || 0x6176616c == (lava_get())),  
&h) == -1)

When the input file data that ends up in buf is set 
to 0x6c6176c1, we will add 0x6c6176c1 to the 
pointer info, causing an out of bounds access
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Plan

• Add thousands of bugs 

• Make sure they're not exploitable 

• ??? 

• Profit
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Ensuring Non-Exploitability

• Context: overflow bugs only 

• Exploitability here depends on two things: 

1. What thing the attacker can overwrite 

2. What values they can overwrite it with 

• This suggests two strategies for constructing non-
exploitable bugs
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Strategy 1: Unused Values

• To make a bug non-exploitable we can make sure 
that the thing we overflow is unused 

• How? Easy: we add a new, unused variable!

�25
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Strategy 1: Unused Values

• To make a bug non-exploitable we can make sure 
that the thing we overflow is unused 
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Making Unused Data Look Used

• To make sure the bugs look exploitable we need to make it 
look plausible that the overwritten data is used by the 
program 

• Solution: add fake dataflow

�28

Figure 5: An overconstrained value bug. By adding con-
straints along the path leading to the bug, we gradually
eliminate unsafe values.

Func :    int lava_dataflow_var[1];

Calling Foo :    ( int *lava_dataflow_arg,   )

Calling Fun :   ( int *lava_dataflow_arg,   )

Unused Local Variable 1

Unused Local Variable 2

Top Level Caller

Callee 1

Callee 2

Callee 3

Overflow

Figure 6: An unused variable bug. Data flow is added to
propagate the “unused” values outside the initial scope,
hiding the fact that they are actually unused.

the attacker is able to find the constraint checking code.
Unused variable overwrites are also easy to triage since
our unused variable’s value will not escape the current
function scope; this means that an attacker only needs to
look at a single function to tell whether the overwritten
value could be used for an exploit.

To increase triage difficulty, we need to obfuscate the
constraints used in overconstrained value bugs and create
additional dataflow that propagates our unused variables’
values beyond the scope of the function containing the
overflow. In general, we want each bug to require reading
and understanding significant amounts of additional code
before and after the point where the bug is triggered.

4.3.1 Overconstrained values

To obfuscate constraints, we split the constraint check
into multiple parts and spread the parts throughout the
execution trace that leads to the bug. Each check along

the way excludes some subset of unsafe values before
propagating the input onward, as shown in Figure 5. To
check whether the bug is exploitable, an attacker has to
reconstruct the exact path that would reach the bug and
verify that no other path can reach the bug with more
permissive constraints. Each check in isolation does not
rule out all unsafe values, so unless an attacker considers
all of them he cannot rule out the possibility that the bug
is exploitable.

We note that in principle arbitrarily complex func-
tions could be constructed that map the original attacker-
controlled input to a safe subset of values. Such func-
tions are a generalization of opaque predicates [7], which
are known to be difficult to analyze.

4.3.2 Unused variables

In order to make triage harder for the unused variable
strategy, we must make it appear that the unused vari-
able is, in fact, used by other parts of the program. To do
so, we add data flow after the overflow takes place that
carries the overwritten value to other parts of the pro-
gram (but, ultimately, does not use it). As shown in Fig-
ure 6, we add additional output arguments to the function
that contains the unused variable bug and a fixed num-
ber of its parents. After the overflow, we add code to
copy the overwritten value into this output argument and
propagate it back up the stack of calling functions. This
increases the difficulty of triage by forcing the attacker
to check how the value is used in all the callers. This
process could be extended by introducing dataflow from
the calling functions to later callees; for our current pro-
totype, however, we only create dataflow to the calling
functions.

5 Implementation

In this section we discuss the details of our implemen-
tation. We implement our non-exploitable bug injec-
tion system on top of LAVA [10], a previously pub-
lished bug injection system that is itself based on the
PANDA dynamic analysis platform [9] and the clang
compiler [17]. Our implementation currently assumes
a 32-bit x86 Linux environment, but the ideas are gen-
eral and could be adapted to other operating systems and
architectures with minor modifications.

5.1 Extensions to LAVA
Apart from the changes to LAVA to make bugs non-
exploitable (which are discussed in detail below), the ma-
jor extensions to LAVA involve fixes to avoid unintended

bugs. The original LAVA system can, in some cases,

6
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Implementation: Unused Values

• We can create stack-based overflows by adding 
local variables and ensuring the unused one is 
placed after the overflow target 

• But heap-based overflows are not possible: 
there's no way to reliably guarantee that a malloc'd 
buffer will be placed after another

�29
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Strategy II: Overconstrained Values

• We can also allow the attacker to overflow 
something important, but constrain the values 

• For a given piece of data (say, a return address) 
there is a range of values that are non-exploitable 

• Example: overwrite return address but only with 
NULL 

• Since we create the bugs however we like, we can 
ensure that the attacker can only write safe values
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Overconstrained Values �31

All Possible Values

0 0xffff ffff

Safe Value

C1: a & 0xff00 0000 == 0

C2: a & 0x00ff 0000 == 0

C3: a & 0xff == 0

0x0100 0xff00

vSYSCALL
GlibcMemory

Mappings

Figure 5: An overconstrained value bug. By adding con-
straints along the path leading to the bug, we gradually
eliminate unsafe values.

Figure 6: An unused variable bug. Data flow is added to
propagate the “unused” values outside the initial scope,
hiding the fact that they are actually unused.
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strategy, we must make it appear that the unused vari-
able is, in fact, used by other parts of the program. To do
so, we add data flow after the overflow takes place that
carries the overwritten value to other parts of the pro-
gram (but, ultimately, does not use it). As shown in Fig-
ure 6, we add additional output arguments to the function
that contains the unused variable bug and a fixed num-
ber of its parents. After the overflow, we add code to
copy the overwritten value into this output argument and
propagate it back up the stack of calling functions. This
increases the difficulty of triage by forcing the attacker
to check how the value is used in all the callers. This
process could be extended by introducing dataflow from
the calling functions to later callees; for our current pro-
totype, however, we only create dataflow to the calling
functions.

5 Implementation

In this section we discuss the details of our implemen-
tation. We implement our non-exploitable bug injec-
tion system on top of LAVA [10], a previously pub-
lished bug injection system that is itself based on the
PANDA dynamic analysis platform [9] and the clang
compiler [17]. Our implementation currently assumes
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bugs. The original LAVA system can, in some cases,
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Overconstrained Implementation

• For stack-based overflows, we can overwrite the 
frame pointer and the return address with known-
safe values 

• In the current implementation, just NULL 

• As long as we know the heap implementation being 
used, we can actually do heap overflows as well
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Plan

• Add thousands of bugs 

• Make sure they're not exploitable 

• ??? 

• Profit

�33

✔
✔



Chaff Bugs: Deterring Attackers by Making Software Buggier

Evaluation

• We evaluated chaff bugs by testing 

• Does the program still work correctly? 

• How much performance overhead do the bugs 
add? 

• Do current triage tools think the bugs look 
exploitable?
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Functionality

• We tested nginx, libflac, and file 

• Programs continue to work correctly for all "normal" 
inputs - only our triggering inputs cause crashes
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Performance

• We tested the throughput of our buggy nginx using 
apachebench with different numbers of bugs

�36

TABLE II: Coverage of Original Inputs

Functions ATP file coverage ATP function coverage
nginx 52.8% (712/1349) 45.6% (47/103) 26.4% (188/712)
file 54.8% (142/259) 63.2% (12/19) 40.1% (57/142)
libFLAC 19.3% (145/752) 30.2% (13/43) 46.2% (67/145)

(a) 1 worker

(b) 24 worker

Fig. 9: Performance Evaluation for nginx 1.13.1

Lop (AFL) fuzzer [15] to find crashing test cases and then
used the gdb exploitable [16] plugin to evaluate their
exploitability.

Our fuzzing targets were each injected with 1000 randomly
selected overconstrained chaff bugs (unused variable bugs
were omitted because they do not cause crashes and hence
cannot be found by fuzzing without additional instrumenta-
tion). For file and flac, we injected 500 heap-based bugs
and 500 stack-based bugs; however, for nginx we were only
able to successfully inject a total of 54 stack-based bugs, so we
increased the number of heap-based bugs to 810 bugs. For each
program, we generated a fuzzing dictionary from the strings
and integer constants found in the target binary, and seeded
AFL with a held-out input file that was not used during the
bug injection step. We fuzzed each target with 11 concurrent
AFL processes in parallel for 24 hours (wall clock time) and
measured the number of unique crashes as determined both
by AFL’s built-in crash bucketing and our own ground truth

knowledge of each bug.
Table III shows the fuzzing results. For libFLAC, we found

1275 crashes that AFL considered unique—more crashes than
there are injected bugs, indicating that some of our bugs were
mistakenly counted multiple times by AFL. This is likely a
consequence of the heap-based bugs we injected: we only
corrupt the heap metadata when triggering the bug, so the
actual crash occurs later when the program allocates or frees
memory. In nginx, AFL did not find any of our stack-based
bugs because there were fewer to find and its detection rate
was relatively low overall.

Finally, we tested whether a popular open-source triage
tool, gdb exploitable, considered our bugs exploitable.
We used the same programs and bugs as for the fuzzing
experiment, but used our ground truth triggering inputs to
create crashes for exploitable to analyze. Table IV
shows the number of validated bugs and the category as-
signed by exploitable. In our experiments, all of our
chaff bugs were considered EXPLOITABLE or PROBA-
BLY EXPLOITABLE.

All heap-based overflows were classified as
EXPLOITABLE no matter what heap metadata we corrupted
in the injected heap-based bugs. Stack-based bugs that
overwrote the stored frame pointer were also classified
as EXPLOITABLE because the access violation happens
at the destination operand of an instruction (e.g. mov
[ebp-0x10], eax where ebp is NULL). For stack-
based bugs, the return address overwrites were reported as
PROBABLY EXPLOITABLE because a segmentation fault
occurred on a program counter near NULL (recall that our
prototype only uses 0 for its overconstrained values). A more
refined overconstrained value strategy that sets the return
address to non-executable or unmapped memory would likely
be considered EXPLOITABLE.

In the future, better triage tools may be more successful
at determining which bugs are truly exploitable. However, we
note that as a design choice, triage tools tend to be weighted in
favor of conservatively assuming that a bug may be exploitable
(so that bugs are not missed), which proves to be an advantage
in our case.

VII. LIMITATIONS & FUTURE WORK

The primary limitation of our current work is that we have
not yet attempted to make our bugs indistinguishable from real
bugs. This means that they currently contain many artifacts
that attackers could use to identify and ignore them. In future
work, we hope to investigate techniques for making our bugs
blend in with the surrounding code, and change their triggering
conditions to something more natural than the current test
against a magic value.
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PROBABLY EXPLOITABLE because a segmentation fault
occurred on a program counter near NULL (recall that our
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at determining which bugs are truly exploitable. However, we
note that as a design choice, triage tools tend to be weighted in
favor of conservatively assuming that a bug may be exploitable
(so that bugs are not missed), which proves to be an advantage
in our case.

VII. LIMITATIONS & FUTURE WORK

The primary limitation of our current work is that we have
not yet attempted to make our bugs indistinguishable from real
bugs. This means that they currently contain many artifacts
that attackers could use to identify and ignore them. In future
work, we hope to investigate techniques for making our bugs
blend in with the surrounding code, and change their triggering
conditions to something more natural than the current test
against a magic value.
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Triage Tool Results

• There are not a ton of triage tools out there 

• The most popular is Microsoft's !exploitable, an extension 
to WinDbg 

• We tested the gdb version of this

�37

Table 4: Triage Tool Results

Heap Bugs Stack Bugs EXPLOITABLE PROBABLY EXPLOITABLE
nginx 810 54 856 8
file 500 500 500 500
flac 500 500 548 452

der to deceive attackers into thinking their attack has suc-
ceeded. Finally, one line of work on deception has fo-
cused on generating believable decoy data [27], includ-
ing decoy documents [26] and source code [21]; the goal
of this work is to provide enticing but fake documents to
attackers and then detect their exfiltration.

These sorts of honeypots are mainly focused on de-
tecting and analyzing attacker actions. However, some
research has also attempted to waste attacker resources
upon detection. Liston first proposed the idea of a
network tarpit and implemented it in the LaBrea soft-
ware [18]. Tarpits deliberately delay network traffic re-
sponses to slow down attackers’ network reconnaissance.
A similar countermeasure is the “endless file,” [24] a
technique in which a large, sparse file is created on a re-
mote system, which causes attackers to download large
amounts of data while using little space on disk.

Closest to our own work is research into anti-fuzzing,
in which modifications are made to software to make
it harder to find bugs through fuzzing. Miller [6] de-
scribed a technique for detecting that a program was be-
ing tested with a fuzzer and then triggering unique, non-
exploitable crashes dynamically. These techniques were
further developed by Whitehouse [28], who proposed a
suite of defensive countermeasures to take when fuzzing
is detected, including throwing fake errors, degrading
performance, masking legitimate crashes with an excep-
tion handler. Most recently, Edholm and Göransson [12]
developed and evaluated a number of fuzzing detection
and evasion techniques on a subset of the DARPA Cy-
ber Grand Challenge [8] dataset. Our work differs in
that we inject real (but non-exploitable) bugs, which can
be found through any bug-finding technique, not just
fuzzing. In addition, our technique cannot be defeated
by finding and disabling the anti-fuzzing logic of the pro-
gram.

9 Conclusion

In this paper, we have presented a novel approach to soft-
ware security that adds rather than removes bugs in or-
der to drown attackers in a sea of enticing-looking but
ultimately non-exploitable bugs. Our prototype, which
is already capable of creating several kinds of non-
exploitable bug and injecting them in the thousands into
large, real-world software, represents a new type of de-

ceptive defense that wastes skilled attackers’ most valu-
able resource: time. We believe that with further re-
search, chaff bugs can be a valuable layer of defense that
provides deterrence rather than simply mitigation.
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Limitations (Lots of 'Em!)

• Won't work on open-source code 

• Current implementation does not try to prevent 
distinguishability attacks 

• I.e., attackers can find patterns in our bugs that 
distinguish them from naturally occurring bugs 
and then ignore ours 

• More work needed to add more variety to bugs
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Conclusions

• Chaff bugs are a new type of defense that wastes 
an attacker's most precious resource: time 

• You probably do not want to use them just yet 

• Lots more interesting work to be done
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