@ TANDON SCHOOL
1 NYU OF ENGINEERING

Chaff Bugs: Deterring Attackers by
Making Software Buggier

/henghao Hu, Yu Hu, and
Brendan Dolan-Gavitt,

NYU Tandon School of Engineering

& One-Tweet Summary

!

poly "learn julia" tomous 9
@polytomous

cs researcher: we need to figure out ways to
write safer code with fewer bugs so it can be
exploited less often.

Hu et. al.: what if

takes a huge bong rip
we added more bugs to the system instead.

(this paper is lit)

6:22 PM - 4 Aug 2018

1,664 Retweets 3875Lkes B S @ 2 O B &

Q) 57 T 17K @ 39Kk [

Chaff Bugs: Deterring Attackers by Making Software Buggier

A Attacker Exploitation Workflow ;

NYU

Exploitable?

_—
\
Find Bugs \

Chaff Bugs: Deterring Attackers by Making Software Buggier

4

(%fz Attacker Exploitation Workflow
NYU

Current strategy:
reduce the
number of bugs

Exploitable?

X

Find Bugs

Chaff Bugs: Deterring Attackers by Making Software Buggier

) Attacker Exploitation Workflow)

Current strategy:
NYU mitigate exploit
attempts

Exploitable?

/
\
Find Bugs \

Chaff Bugs: Deterring Attackers by Making Software Buggier

6

‘?” Attacker Exploitation Workflow
NYU

Exploitable?
New ldea;:
Increase the
number of bugs
®
®
®

Fmd Bugs
%

Chaff Bugs: Deterring Attackers by Making Software Buggier

6

‘?” Attacker Exploitation Workflow
NYU

Exploitable?
New ldea;:
Increase the
number of bugs
®
®
®

Fmd Bugs

%

but make them
non- explonable

Chaff Bugs: Deterring Attackers by Making Software Buggier

Some Definitions
NYU

* By non-exploitable we mean that the attacker
cannot achieve code execution or alter program
behavior

* |t's okay If the program crashes on malicious inputs

* |In many cases this Is okay — think server-side
processes that get restarted, or browser tabs that
get relaunched automatically

Chaff Bugs: Deterring Attackers by Making Software Buggier

8
Goals

NYU

 Add many bugs
* (Guarantee non-exploitability

* Make it difficult to tell that a bug is non-exploitable

Chaff Bugs: Deterring Attackers by Making Software Buggier

Plan ’

NYU

* Add thousands of bugs
* Make sure they're not exploitable

o V77

e Profit

Chaff Bugs: Deterring Attackers by Making Software Buggier

(%// Plan "
NYU How can we do
this?

* Add thousands of bugs

* Make sure they're not exploitable

o V77

e Profit

Chaff Bugs: Deterring Attackers by Making Software Buggier

(%// Plan :
NYU How can we do
this?

* Add thousands of bugs

* Make sure they're not exploitable

o V77

Q77
° PrOﬂt

Chaff Bugs: Deterring Attackers by Making Software Buggier

) Automated Vulnerability Addition 1
NYU

* |In our Oakland 2016 paper we
developed LAVA to add bugs

Q

9,
7001107

[~)

LL,

Q0
(7)

7010

LlOOlOOlOlOOlllOLollo

to programs G\:: " fa
« Take existing software and =
automatically add memory ¥ L AVA

safety bugs

 Fach bug comes with a
triggering input so we can

prove it really is a bug Now open source!

https://github.com/panda-re/lava

2

 This allows us to quickly create
large ground-truth vulnerability

corpora

Chaff Bugs: Deterring Attackers by Making Software Buggier

https://github.com/panda-re/lava

‘%” Building Bugs: DUAS °

NYU

« We want to find parts of the program's input data that are:

 Dead: not currently used much in the program (i.e., we can set
to arbitrary values)

 Uncomplicated: not altered very much (i.e., we can predict their
value throughout the program's lifetime)

« Available in some program variables

* These properties try to capture the notion of attacker-controlled
data

 If we can find these DUAs, we will be able to add code to the
program that uses such data to trigger a bug

Chaff Bugs: Deterring Attackers by Making Software Buggier

8 New Taint-Based Measures

!

NYU

e How do we find out what data is dead and
uncomplicated”

e [woO new taint-based measures:

* [iveness: a count of how many times some input
byte Is used to decide a branch

* Jaint compute number: a measure of how much
computation been done on some data

Chaff Bugs: Deterring Attackers by Making Software Buggier

‘A Dynamic Taint Analysis °

NYU

 We use dynamic taint analysis to
understand the effect of input data
on the program

N

e Qur taint analysis requires some
specific features:

* Large number of labels available

* Taint tracks label sets
C:a+b'a'{vvx}'b'{y,z}
C « {W,X yz}

* Qur open-source dynamic analysis
platform, PANDA, provides all of 0 ®
these features

https: ithub.com/panda-re/panda

* Whole-system & fast (enough)

Chaff Bugs: Deterring Attackers by Making Software Buggier

https://github.com/panda-re/panda

(%// Taint Compute Number (TCN) "

NYU

// a,b,n are inputs
1; int
2:1f (a !'= Oxdeadbeef)
3: return;
4: for (int i=0; i<n; 1i++)

n-1L—.

TCN measures how much cofnputation has been
done on a variable at a given point in the program

Chaff Bugs: Deterring Attackers by Making Software Buggier

. 17
L Iveness

!

NYU

// a,b,n are inputs

1:int c = a+b; | X
2:if [(a 1= Oxdeadbecf) o.. by".es {0..3}
3: return; N. by.es {4..7}
4: for (int 1=0; i++) a: bytes {8..11)
S: c+=s[1];

{0..3} 0

{4..7} n

{8..11} 1

Liveness measures how many
branches use each input byte

Chaff Bugs: Deterring Attackers by Making Software Buggier

18

Attack Point (ATP)
NYU

* An Attack Point (ATP) is any place where we may
want to use attacker-controlled data to cause a bug

 Examples: pointer dereference, data copying,
memory allocation, ...

* |n LAVA we modity array retferences and pointer
arguments passed to functions to create memory

safety errors

Chaff Bugs: Deterring Attackers by Making Software Buggier

L AVA Bugs ”
NYU

* Any (DUA, ATP) pair where the DUA occurs before
the attack point is a potential bug we can inject

* By modifying the source to add new data flow the
from DUA to the attack point we can create a bug

DUA + AIP =

Chaff Bugs: Deterring Attackers by Making Software Buggier

20

(%fz LAVA Bug example

NYU

 PANDA taint analysis shows that bytes 0-3 of buf on
ine 115 of src/encoding. c is attacker-controlled

(dead & uncomplicated)

* From PANDA we also see that in readcdf. c line 365
there is a read from a pointer — if we modify the pointer
value we will likely cause a bug in the program

Attacker controlled data

\

encoding.c 115: } else if (looks_extended (buf, nbytes,

*ubuf, ulen)) {
Corruptible New data flow

pointer

readcdf.c 365: if (cdf read header (&info, &h) == -1) <J

Chaff Bugs: Deterring Attackers by Making Software Buggier

1 LAVA Bug example

!
NYU

21

 PANDA taint analysis shows that bytes 0-3 of buf on
ine 115 of src/encoding. c is attacker-controlled

(dead & uncomplicated)

* From PANDA we also see that in readcdf. c line 365
there is a read from a pointer — if we modify the pointer
value we will likely cause a bug in the program

Attacker controlled data

\

encoding.c 115:

} else if (looks extended(buf, nbytes,

*ubuf, ulen)) {
Corruptible New data flow

pointer

readcdf.c 365: if (cdf read header(&info, &h) == -1)

Chaff Bugs: Deterring Attackers by Making Software Buggier

| AVA Bug Example *
NYU (ravids

(({int rv =
looks extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *)buf) [0];
lava |= ((unsigned char *)buf) [1] << 8;
lava |= ((unsigned char *)buf) [2] << 16;
lava |= ((unsigned char *)buf) [3] << 24;

lava set(lava) ;

}; rv; 1)) {

// readcdf.c:
if (cdf read header
((&info) + (lava get()) *
(0x6c617661 == (lava get()) || O0x6l766l6c == (lava _get())),
&h) == -1)

When the input file data that ends up in buf is set
to 0x6¢c6176¢1, we will add 0x6¢c6176¢1 to the
pointer info, causing an out of bounds access

Chaff Bugs: Deterring Attackers by Making Software Buggier

Plan ”

NYU

VAdd thousands of bugs

* Make sure they're not exploitable

o V77

e Profit

Chaff Bugs: Deterring Attackers by Making Software Buggier

24

Ensuring Non-Exploitability

W
v

NYU

e Context: overflow bugs only

* Exploitability here depends on two things:
1. What thing the attacker can overwrite
2. What values they can overwrite it with

* This suggests two strategies for constructing non-
exploitable bugs

Chaff Bugs: Deterring Attackers by Making Software Buggier

1 Strategy 1: Unused Values =

NYU

* Jo make a bug non-exploitable we can make sure
that the thing we overtlow is unused

* How?” Easy: we add a new, unused variable!

Overflow Target

Chaff Bugs: Deterring Attackers by Making Software Buggier

1 Strategy 1: Unused Values N

NYU

* Jo make a bug non-exploitable we can make sure
that the thing we overtlow is unused

* How?” Easy: we add a new, unused variable!

Attacker Data

Chaff Bugs: Deterring Attackers by Making Software Buggier

1 Strategy 1: Unused Values y

NYU

* Jo make a bug non-exploitable we can make sure
that the thing we overtlow is unused

* How?” Easy: we add a new, unused variable!

Attacker Data

Chaff Bugs: Deterring Attackers by Making Software Buggier

(%// Making Unused Data Look Used -
NYU

* Jo make sure the bugs look exploitable we need to make it
look plausible that the overwritten data is used by the
program

* Solution: add fake dataflow
Top Level Caller [Func: intlava_dataflow_var[1];]
Callee 1 &b [Calling Foo : (int *lava_dataflow_arg, §
Callee 2 [Calling Fun : (int *lava_dataflow_arg, ...) J
Callee 3 Q { Unused Local Variable 1 }
<
[,

Unused Local Variable 2

Overflow

Chaff Bugs: Deterring Attackers by Making Software Buggier

: 29
(§¢ Implementation: Unused Values

NYU

* We can create stack-based overflows by adding
local variables and ensuring the unused one is
placed after the overflow target

* But heap-based overflows are not possible:
there's no way to reliably guarantee that a malloc'd
bufter will be placed after another

Chaff Bugs: Deterring Attackers by Making Software Buggier

(M Strategy |I: Overconstrained Values 30

!
NYU

* We can also allow the attacker to overflow
something important, but constrain the values

* For a given piece of data (say, a return address)
there is a range of values that are non-exploitable

* Example: overwrite return address but only with
NULL

* Since we create the bugs however we like, we can
ensure that the attacker can only write safe values

Chaff Bugs: Deterring Attackers by Making Software Buggier

: 31
Overconstrained Values

0 OxFfff ffff

4 N

All Possible Values

Memory
Mappings ' P
Q C1: a & 0xff00 0000 ==0

N

C2: a & 0x00ff 0000 ==0

C3:a & 0xff==0

(Safe Value

0x0100 0xff00

Chaff Bugs: Deterring Attackers by Making Software Buggier

: : 32
(%// Overconstrained Implementation

NYU

 For stack-based overflows, we can overwrite the
frame pointer and the return address with known-
safe values

* |n the current implementation, just NULL

* As long as we know the heap implementation being
used, we can actually do heap overflows as well

Chaff Bugs: Deterring Attackers by Making Software Buggier

Plan ”

NYU

VAdd thousands of bugs

/ Make sure they're not exploitable

o V77

e Profit

Chaff Bugs: Deterring Attackers by Making Software Buggier

: 34
Evaluation

NYU

* We evaluated chaff bugs by testing
* Does the program still work correctly?

* How much performance overhead do the bugs
add?

* Do current triage tools think the bugs look
exploitable?

Chaff Bugs: Deterring Attackers by Making Software Buggier

Functionality >
NYU

* We tested nginx, libflac, and file

* Programs continue to work correctly for all "normal’
iInputs - only our triggering inputs cause crashes

Chaff Bugs: Deterring Attackers by Making Software Buggier

36
& Performance

!
NYU

* We tested the throughput of our buggy nginx using
apachebench with different numbers of bugs

1.05 A
1.4
T L 1 T
. 1T . T -
5 0.95 4 7 2
-+ T +J
0 0
S J— 1 T 1.0-
5 0.90 1 o
Q ()
o o
8 0.85 8 0.8
o N
© T ©
e 080 € 0.6 -
S T S
< 0.75 =
0.4 A
==
0.2 A T - -
065 T T T T T T I I I I I I
native 10 bugs 50 bugs 200 bugs 1000 bugs 2000 bugs native 10 bugs 50 bugs 200 bugs 1000 bugs 2000 bugs
(a) 1 worker (b) 24 worker

Chaff Bugs: Deterring Attackers by Making Software Buggier

& Iriage lTool Results

!
NYU

e There are not a ton of triage tools out there

 The most popular is Microsoft's lexploitable, an extension
to WinDbg

« We tested the gdb version of this
Table 4: Triage Tool Results

Heap Bugs Stack Bugs EXPLOITABLE PROBABLY_EXPLOITABLE

nginx 810 54 856 8
file 500 500 500 500
flac 500 500 548 452

Chaff Bugs: Deterring Attackers by Making Software Buggier

37

Limitations (Lots of 'Em!) *
NYU

* Won't work on open-source code

* Current implementation does not try to prevent
distinguishability attacks

* |.e., attackers can find patterns in our bugs that
distinguish them from naturally occurring bugs
and then ignore ours

* More work needed to add more variety to bugs

Chaff Bugs: Deterring Attackers by Making Software Buggier

Conclusions *
NYU

* Chaff bugs are a new type of defense that wastes
an attacker's most precious resource: time

* You probably do not want to use them just yet

* Lots more interesting work to be done

Chaff Bugs: Deterring Attackers by Making Software Buggier

