
Brendan Dolan-Gavitt 
 
In collaboration with: Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh
Karri, and Siddharth Garg

Lost at C
Security Implications of Large Language
Model Code Assistants

Lost at C: Security Implications of Large Language Model Code Assistants

Surprising Progress in Code Models
Before 2021

• 2015: Karpathy’s Char-RNN, generating Linux kernel code

• 2019: GPT-2 “accidentally” learns some PHP and JavaScript

2

Char-RNN; Karpathy, 2015 GPT-2; OpenAI, 2015

Lost at C: Security Implications of Large Language Model Code Assistants

Surprising Progress in Code Models
June 2021 - Present: Large Language Models (LLMs)

• 2021: OpenAI Codex - a large GPT-3-based model fine-tuned on code

• Released commercially as a code completion tool: GitHub Copilot

• 2022: DeepMind AlphaCode - Transformer (encoder/decoder)

• Reaches human-level (top 54%) performance in an online code competition
(Codeforces)

• Both systems treat source code as plain text, “predict next token”

• Trained on large volumes of code (e.g. all of GitHub)

3

Lost at C: Security Implications of Large Language Model Code Assistants

GPT-3, but on code

• Objective: predict token i given
tokens {1, ..., i-1}

• Model: Transformer (decoder-only)

• GPT-3 training data: WebText,
Wikipedia, CommonCrawl, etc.

• Codex: Fine-tuned on approximately
all of GitHub public repositories

• Copilot: commercial version of
Codex

Background: How Do Code LLMs Work? 4

Train

Fine-Tune

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

5

public static void

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

6

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

7

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

7

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

8

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void main

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

8

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void

main

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

8

public static void

mainpublic static void

main

Lost at C: Security Implications of Large Language Model Code Assistants

Autoregressive Sampling
How to generate text and code

9

public static void

mainpublic static void

main

Token Probability

(String 97%

␣ 2%

\n 0.01%

() 0.003%

{ 0.001%

[0.0006%

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

How Secure is the Code LLMs Write? 10

Lost at C: Security Implications of Large Language Model Code Assistants

Copilot Writes Vulnerable Code 12

SQL Injection

Lost at C: Security Implications of Large Language Model Code Assistants

Asleep at the Keyboard
Prior work at IEEE Security and Privacy 2022

• We did a systematic study of Copilot’s code completions in security-sensitive
scenarios, measuring vulnerability rates with GitHub CodeQL

• Key findings:

• Across all scenarios, 42% of the generated programs were vulnerable

• Features of the prompt, including comments, affects the rate of vulnerable
code

• The strongest predictor of whether Copilot will produce a vulnerability is the
presence of an existing vulnerability in the prompt

13

Lost at C: Security Implications of Large Language Model Code Assistants

Some objections from Reviewer #2

• In the real world, Copilot works
with human assistance

• Maybe humans would spot and
fix these mistakes?

• For that matter, maybe
unassisted humans would write
bugs at the same rate!

• Strong reject

But Wait! 14

Lost at C: Security Implications of Large Language Model Code Assistants

Time for a User Study
Oh no, IRB forms

• We ran a user study using NYU students (undergraduate and graduate) and asked
them to implement a linked list API

• Participants were randomly assigned to the Assisted (AI code assistant
enabled) or Control group

• Participants had two weeks to complete the assigned task, and were given $50
as compensation upon completion

• Recruitment: an undergraduate Operating Systems class, an Application
Security course (mixed undergraduate/graduate), and an informal NYU CS
Discord server

• 105 participants signed up, but only 58 actually signed in to our web IDE and
wrote code for us to analyze

15

Lost at C: Security Implications of Large Language Model Code Assistants

Participant Demographics
Enrollment

16

Fig. 8. The study environment: Visual Studio Code running in web-based
container, shown in the Firefox Web Browser.

F. Experimental Infrastructure
To ensure that the IDE used in the study presented a

consistent environment for all users, we provided a container-
ized cloud-based IDE designed using the open-source Anubis
software3. This is a common set up to that used in the
Computer Science and Engineering Department at New York
University. Anubis has been used every semester for the past
three years by almost 1,000 students per semester. For this
study, we modified Anubis slightly to support the environment
for the research.

Within this environment, we ensured that Visual Studio
Code was pre-installed and opened automatically to the project
on sign in to the tool. Each user was randomly assigned to
‘control’ or ‘assisted’ groups. The LLM would either provide
suggestions or not - the users did not have to set this up
themselves. Fig. 8 is a snapshot of the IDE.

Using the custom IDE made it straightforward to add data
collection for active participants. In addition to the ‘final
form upload’, which collected the self-reported ‘finished’
list.c files (as well as collected the study’s demographic
information), we also took snapshots of the complete list.c
file environment every 60 seconds that the file was open. This
allowed us to track changes over time. In addition, we recorded
when suggestions from the Codex-based AI assistant were
taken or when they were rejected.

IV. STUDY RESULTS AND ANALYSIS

A. User Population (Demographics)
As previously noted (Section III-B), 58 participants signed

up to the study and completed code for analysis. As part
of the study the participants completed a brief questionnaire
allowing us to collect demographic information. Table I shows
the academic enrolment information for the users, broken
down by study group. As can be seen, there was a good
balance between undergraduates (UG), postgraduates (PG),
and others (e.g. recent graduates), across the two study groups
(‘control’ and ‘assisted’). Where students did not want to
report fine-grained information (their exact undergraduate year

3https://github.com/AnubisLMS/Anubis.

TABLE I
STUDY PARTICIPANT ENROLMENT DEMOGRAPHICS

Control Assisted Total
Undergraduates (UG)

UG Y2 (Sophomores) 1 8
UG Y3 (Juniors) 8 5
UG Y4 (Seniors) 4 5
UG (Unspecified) 2 0

UG (Total) 15 18 N (UG) = 33
Postgraduates (PG)

PG (MS) 10 10
PG (PhDs) 1 0

PG (Unspecified) 1 1
PG (Total) 12 11 N (PG) = 23

Other Participants
Other (Total) 1 1 N (Other) = 2

Total N (Control) = 28 N (Assisted) = 30 N (Total) = 58

TABLE II
STUDY PARTICIPANT EXPERIENCE DEMOGRAPHICS

Control Assisted Total
Is this the first linked list implementation you have ever made in C?

Yes (first list) 14 16 30
No (not first list) 11 12 23

Declined to answer 3 2 5
Is this the first time that you have ever programmed in C?

Yes (first time) 3 4 7
No (not first time) 22 23 45

Declined to answer 3 3 6
Are you taking, or have you ever taken a data structures or algo. class?

Currently taking 2 3 5
Previously taken 21 25 46

Never taken 2 1 3
Declined to answer 3 1 4

or graduate status) they could still be categorized into UG /
PG using the ‘unspecified’ flag.

To examine pre-existing participant knowledge, we also
asked the three questions presented in Table II. The first
question aimed to check if this assignment was similar to
previous assignment(s) completed by the participants. This had
a good mix of responses, with approximately half of each
of the ‘control’ and ‘assisted’ groups each reporting having
written a linked list in C before. The latter two questions
aimed to validate our goals with participant recruitment (i.e.,
they should have some experience with C and knowledge of
the linked list data structure). As can be seen, the majority of
participants in both study groups had both written C code
before and had previously or were currently taking a data
structures or algorithms class.

B. RQ1 - Functionality
We assess functionality of the code using unit tests. Besides

the 11 Basic Tests (see Figure 9) that we provided to the
participants, we wrote 43 Expanded Tests to exercise edge
cases (e.g., adding an element to the head of the list, pro-
viding the same position for both arguments to list swap
item positions), invalid parameters (e.g., NULL pointers,
zero/negative indices), and validating that return value and
state of the list are correct after each API call.

Lost at C: Security Implications of Large Language Model Code Assistants

Participant Demographics
Experience Level

17

Fig. 8. The study environment: Visual Studio Code running in web-based
container, shown in the Firefox Web Browser.

F. Experimental Infrastructure
To ensure that the IDE used in the study presented a

consistent environment for all users, we provided a container-
ized cloud-based IDE designed using the open-source Anubis
software3. This is a common set up to that used in the
Computer Science and Engineering Department at New York
University. Anubis has been used every semester for the past
three years by almost 1,000 students per semester. For this
study, we modified Anubis slightly to support the environment
for the research.

Within this environment, we ensured that Visual Studio
Code was pre-installed and opened automatically to the project
on sign in to the tool. Each user was randomly assigned to
‘control’ or ‘assisted’ groups. The LLM would either provide
suggestions or not - the users did not have to set this up
themselves. Fig. 8 is a snapshot of the IDE.

Using the custom IDE made it straightforward to add data
collection for active participants. In addition to the ‘final
form upload’, which collected the self-reported ‘finished’
list.c files (as well as collected the study’s demographic
information), we also took snapshots of the complete list.c
file environment every 60 seconds that the file was open. This
allowed us to track changes over time. In addition, we recorded
when suggestions from the Codex-based AI assistant were
taken or when they were rejected.

IV. STUDY RESULTS AND ANALYSIS

A. User Population (Demographics)
As previously noted (Section III-B), 58 participants signed

up to the study and completed code for analysis. As part
of the study the participants completed a brief questionnaire
allowing us to collect demographic information. Table I shows
the academic enrolment information for the users, broken
down by study group. As can be seen, there was a good
balance between undergraduates (UG), postgraduates (PG),
and others (e.g. recent graduates), across the two study groups
(‘control’ and ‘assisted’). Where students did not want to
report fine-grained information (their exact undergraduate year

3https://github.com/AnubisLMS/Anubis.

TABLE I
STUDY PARTICIPANT ENROLMENT DEMOGRAPHICS

Control Assisted Total
Undergraduates (UG)

UG Y2 (Sophomores) 1 8
UG Y3 (Juniors) 8 5
UG Y4 (Seniors) 4 5
UG (Unspecified) 2 0

UG (Total) 15 18 N (UG) = 33
Postgraduates (PG)

PG (MS) 10 10
PG (PhDs) 1 0

PG (Unspecified) 1 1
PG (Total) 12 11 N (PG) = 23

Other Participants
Other (Total) 1 1 N (Other) = 2

Total N (Control) = 28 N (Assisted) = 30 N (Total) = 58

TABLE II
STUDY PARTICIPANT EXPERIENCE DEMOGRAPHICS

Control Assisted Total
Is this the first linked list implementation you have ever made in C?

Yes (first list) 14 16 30
No (not first list) 11 12 23

Declined to answer 3 2 5
Is this the first time that you have ever programmed in C?

Yes (first time) 3 4 7
No (not first time) 22 23 45

Declined to answer 3 3 6
Are you taking, or have you ever taken a data structures or algo. class?

Currently taking 2 3 5
Previously taken 21 25 46

Never taken 2 1 3
Declined to answer 3 1 4

or graduate status) they could still be categorized into UG /
PG using the ‘unspecified’ flag.

To examine pre-existing participant knowledge, we also
asked the three questions presented in Table II. The first
question aimed to check if this assignment was similar to
previous assignment(s) completed by the participants. This had
a good mix of responses, with approximately half of each
of the ‘control’ and ‘assisted’ groups each reporting having
written a linked list in C before. The latter two questions
aimed to validate our goals with participant recruitment (i.e.,
they should have some experience with C and knowledge of
the linked list data structure). As can be seen, the majority of
participants in both study groups had both written C code
before and had previously or were currently taking a data
structures or algorithms class.

B. RQ1 - Functionality
We assess functionality of the code using unit tests. Besides

the 11 Basic Tests (see Figure 9) that we provided to the
participants, we wrote 43 Expanded Tests to exercise edge
cases (e.g., adding an element to the head of the list, pro-
viding the same position for both arguments to list swap
item positions), invalid parameters (e.g., NULL pointers,
zero/negative indices), and validating that return value and
state of the list are correct after each API call.

Lost at C: Security Implications of Large Language Model Code Assistants

• Goals:

• Minimize environment setup hassle

• Log all the things

• Participants were asked to use our Anubis web-
based IDE, which provides a VNC session to a
Linux desktop with VSCode and a C compiler

• Created a VSCode plugin that mimics Copilot,
but uses suggestions provided by the Codex
API

• Logged: document snapshots every minute,
prompt+suggestion data (including accepted/
not accepted)

Study Environment 18

Lost at C: Security Implications of Large Language Model Code Assistants

Code Assistant Setup

• To get better logging and instrumentation, we decided to use OpenAI Codex
for our study rather than Copilot

• OpenAI generously provided an non-rate limited API token for the duration
of the study (Thanks OpenAI!)

• Code model: cushman-code-001

• Weaker model, but very low latency

• Temperature: 0.6, top-p: 1.0

• Relatively high temp to get more diverse solutions

20

Lost at C: Security Implications of Large Language Model Code Assistants

The Worst Singly Linked List API (11 functions total)

• Since we’re studying security
chose C because it’s a “target-
rich environment”

• We deliberately included some
pitfalls in the data structure and
API to further broaden the range
of possible errors

• Singly linked list: lots of
opportunity for pointer mistakes

• Includes a string field (buffer
overflows, etc.)

Study Task: “Shopping List” 21

* Core documents:

README.md - contains study instructions

Makefile - script for compiling code/running tests

list.h - documentation and list API

list.c - file for participants to complete

* Supplementary documents:

main.c - instantiates a basic list application

runtests.c - the basic unit test suite

example load file.txt - for testing

Fig. 3. Provided study documents / files

1 / / Node of t h e s i n g l y l i n k e d l i s t
2 t y p e d e f s t r u c t node {
3 c h a r * i tem name ;
4 f l o a t p r i c e ;
5 i n t q u a n t i t y ;
6 s t r u c t node * n e x t ;
7 } node ;

(a) Node definition (in list.h)

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <s t d l i b . h>
3 # i n c l u d e <g e t o p t . h>
4 # i n c l u d e <s t r i n g . h>
5 # i n c l u d e ” l i s t . h ”
6

7 # d e f i n e MAX ITEM PRINT LEN 100
8

9 / / Note : A l l l i s t f u n c t i o n s s h o u l d r e t u r n a s t a t u s code
10 / / EXIT FAILURE or EXIT SUCCESS t o i n d i c a t e whe the r t h e

o p e r a t i o n was
11 / / s u c c e s s f u l o r n o t .

(b) #includes and implementation hints (in list.c)

Fig. 4. Preliminary codes

list definition is provided in Fig. 4(a). It is a singly-linked
list with each node containing a char* string pointer, a price
(float), and a quantity (int). No specific information is pro-
vided regarding other properties of these variables. The users
are then provided with the function APIs in the remainder
of list.h, as #includes and implementation hints at the
beginning of list.c (Fig. 4(b)).

Basic functions: The ‘basic’ API functions are presented in
Fig. 5. Here, ‘basic’ refers not to the difficulty of the underly-
ing code, but of the fundamental code required in any linked
list implementation – functions to add an item (at a position),
update an item, remove an item, and swap two items. We
chose to complicate matters by (1) making all API functions
use a position index rather than importing and exporting node
pointers; (2) making the linked-list one-indexed, rather than
the more standard zero-indexed; and (3) making all I/O to
the API via function arguments and argument pointers with
the API functions instead of returning success/failure status.
These design choices increase the chance of unintended bugs,
as they increase the complexity of traversing the linked list.

‘Tricky’ functions - string manipulation, advanced
traversal, saving and loading: The list of complex, non-
standard functions are presented in Fig. 6(b). These are
separated into print functions (Fig. 6(a)), the advanced traver-
sal functions (Fig. 6(b)), and saving and loading functions
(Fig. 6(c)). These functions also use index positions as inputs
and outputs and pass values in and out via argument pointers.

1 / / c r e a t e a new l i s t
2 i n t l i s t i n i t (node ** head) ;
3

4 / / add a new i t em (name , p r i c e , q u a n t i t y) t o t h e l i s t a t
p o s i t i o n pos ,

5 / / such t h a t t h e added i t em i s t h e i t em a t p o s i t i o n pos
6 / / For example :
7 / / I f t h e l i s t i s :
8 / / 1 : 3 * banana @ $1 . 0 0 ea
9 / / 2 : 2 * o ra ng e @ $2 . 0 0 ea

10 / / and you c a l l l i s t a d d i t e m a t p o s (&head , ” a p p l e ” , 3 . 0 ,
4 , 2)

11 / / t h e l i s t s h o u l d be :
12 / / 1 : 3 * banana @ $1 . 0 0 ea
13 / / 2 : 4 * a p p l e @ $3 . 0 0 ea
14 / / 3 : 2 * o ra ng e @ $2 . 0 0 ea
15 i n t l i s t a d d i t e m a t p o s (node ** head , c h a r * item name ,

f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos) ;
16

17 / / u p d a t e t h e i t em a t p o s i t i o n pos
18 i n t l i s t u p d a t e i t e m a t p o s (node ** head , c h a r * item name ,

f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos) ;
19

20 / / remove t h e i t em a t p o s i t i o n * pos *
21 i n t l i s t r e m o v e i t e m a t p o s (node ** head , i n t pos) ;
22

23 / / swap t h e i t em a t p o s i t i o n pos1 wi th t h e i t em a t p o s i t i o n
pos2

24 i n t l i s t s w a p i t e m p o s i t i o n s (node ** head , i n t pos1 , i n t
pos2) ;

Fig. 5. Basic linked list functionality

Using pointers to return values increases the number of pointer
manipulations required to achieve functionality, increasing the
chance that code may be written with unintended security-
relevant bugs. For example, list item to string, which
uses a documented “externally allocated string”, needs to
be written to avoid potential buffer overflows (what is
the maximum length this string is allowed to be? It is
provided in the earlier #define from Fig. 4(b)). This is
easy to miss. Other complex implementations arise from
list deduplicate, which requires traversal and item re-
moval code, and list save and list load which need to
deal with files and the list.

D. The ‘Codex Assistant’ for code suggestions

In this section we will introduce the AI-based system which
generates code for the ‘assisted’ study group. This assistant
was modelled after the commercial GitHub Copilot. It is built
as an extension for Visual Studio Code which parses the file
under development, sends data to the OpenAI Codex API, and
provides a completion back to the user presented in faded grey
text which they may accept or reject (see Fig. 7).

The general flow for using a coding assistant like ours
or Copilot is as follows. The user types any amount of
code, such as comments, function names and arguments, or
implementations. On the user pausing (750 ms of inactivity)
the extension will select all code prior to their cursor and select
text in reverse up to a finite amount—ours took up to 1,800
tokens (see Section II-B). It passes this text to the OpenAI
Codex API for the code-cushman-001 LLM. We chose this
LLM as it is the fastest to operate and gave us response times
similar to GitHub Copilot. To prompt the LLM we used the
settings max tokens: 64, temperature: 0.6, top p: 1.0.

Fixed length

Uh oh, strings

Lost at C: Security Implications of Large Language Model Code Assistants

API: Basic List Manipulation

• Concepts tested:

• Basic list traversal

• List manipulation

• Managing lifetime of
item_name

• Pitfalls: updates the list via a
double-pointer to head,
item_name needs to be freed/
copied, one-indexed, position is
sometimes a signed int

Study Task: “Shopping List” 22
One-indexed

* Core documents:

README.md - contains study instructions

Makefile - script for compiling code/running tests

list.h - documentation and list API

list.c - file for participants to complete

* Supplementary documents:

main.c - instantiates a basic list application

runtests.c - the basic unit test suite

example load file.txt - for testing

Fig. 3. Provided study documents / files

1 / / Node of t h e s i n g l y l i n k e d l i s t
2 t y p e d e f s t r u c t node {
3 c h a r * i tem name ;
4 f l o a t p r i c e ;
5 i n t q u a n t i t y ;
6 s t r u c t node * n e x t ;
7 } node ;

(a) Node definition (in list.h)

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <s t d l i b . h>
3 # i n c l u d e <g e t o p t . h>
4 # i n c l u d e <s t r i n g . h>
5 # i n c l u d e ” l i s t . h ”
6

7 # d e f i n e MAX ITEM PRINT LEN 100
8

9 / / Note : A l l l i s t f u n c t i o n s s h o u l d r e t u r n a s t a t u s code
10 / / EXIT FAILURE or EXIT SUCCESS t o i n d i c a t e whe the r t h e

o p e r a t i o n was
11 / / s u c c e s s f u l o r n o t .

(b) #includes and implementation hints (in list.c)

Fig. 4. Preliminary codes

list definition is provided in Fig. 4(a). It is a singly-linked
list with each node containing a char* string pointer, a price
(float), and a quantity (int). No specific information is pro-
vided regarding other properties of these variables. The users
are then provided with the function APIs in the remainder
of list.h, as #includes and implementation hints at the
beginning of list.c (Fig. 4(b)).

Basic functions: The ‘basic’ API functions are presented in
Fig. 5. Here, ‘basic’ refers not to the difficulty of the underly-
ing code, but of the fundamental code required in any linked
list implementation – functions to add an item (at a position),
update an item, remove an item, and swap two items. We
chose to complicate matters by (1) making all API functions
use a position index rather than importing and exporting node
pointers; (2) making the linked-list one-indexed, rather than
the more standard zero-indexed; and (3) making all I/O to
the API via function arguments and argument pointers with
the API functions instead of returning success/failure status.
These design choices increase the chance of unintended bugs,
as they increase the complexity of traversing the linked list.

‘Tricky’ functions - string manipulation, advanced
traversal, saving and loading: The list of complex, non-
standard functions are presented in Fig. 6(b). These are
separated into print functions (Fig. 6(a)), the advanced traver-
sal functions (Fig. 6(b)), and saving and loading functions
(Fig. 6(c)). These functions also use index positions as inputs
and outputs and pass values in and out via argument pointers.

1 / / c r e a t e a new l i s t
2 i n t l i s t i n i t (node ** head) ;
3

4 / / add a new i t em (name , p r i c e , q u a n t i t y) t o t h e l i s t a t
p o s i t i o n pos ,

5 / / such t h a t t h e added i t em i s t h e i t em a t p o s i t i o n pos
6 / / For example :
7 / / I f t h e l i s t i s :
8 / / 1 : 3 * banana @ $1 . 0 0 ea
9 / / 2 : 2 * o ra ng e @ $2 . 0 0 ea

10 / / and you c a l l l i s t a d d i t e m a t p o s (&head , ” a p p l e ” , 3 . 0 ,
4 , 2)

11 / / t h e l i s t s h o u l d be :
12 / / 1 : 3 * banana @ $1 . 0 0 ea
13 / / 2 : 4 * a p p l e @ $3 . 0 0 ea
14 / / 3 : 2 * o ra ng e @ $2 . 0 0 ea
15 i n t l i s t a d d i t e m a t p o s (node ** head , c h a r * item name ,

f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos) ;
16

17 / / u p d a t e t h e i t em a t p o s i t i o n pos
18 i n t l i s t u p d a t e i t e m a t p o s (node ** head , c h a r * item name ,

f l o a t p r i c e , i n t q u a n t i t y , u n s i g n e d i n t pos) ;
19

20 / / remove t h e i t em a t p o s i t i o n * pos *
21 i n t l i s t r e m o v e i t e m a t p o s (node ** head , i n t pos) ;
22

23 / / swap t h e i t em a t p o s i t i o n pos1 wi th t h e i t em a t p o s i t i o n
pos2

24 i n t l i s t s w a p i t e m p o s i t i o n s (node ** head , i n t pos1 , i n t
pos2) ;

Fig. 5. Basic linked list functionality

Using pointers to return values increases the number of pointer
manipulations required to achieve functionality, increasing the
chance that code may be written with unintended security-
relevant bugs. For example, list item to string, which
uses a documented “externally allocated string”, needs to
be written to avoid potential buffer overflows (what is
the maximum length this string is allowed to be? It is
provided in the earlier #define from Fig. 4(b)). This is
easy to miss. Other complex implementations arise from
list deduplicate, which requires traversal and item re-
moval code, and list save and list load which need to
deal with files and the list.

D. The ‘Codex Assistant’ for code suggestions

In this section we will introduce the AI-based system which
generates code for the ‘assisted’ study group. This assistant
was modelled after the commercial GitHub Copilot. It is built
as an extension for Visual Studio Code which parses the file
under development, sends data to the OpenAI Codex API, and
provides a completion back to the user presented in faded grey
text which they may accept or reject (see Fig. 7).

The general flow for using a coding assistant like ours
or Copilot is as follows. The user types any amount of
code, such as comments, function names and arguments, or
implementations. On the user pausing (750 ms of inactivity)
the extension will select all code prior to their cursor and select
text in reverse up to a finite amount—ours took up to 1,800
tokens (see Section II-B). It passes this text to the OpenAI
Codex API for the code-cushman-001 LLM. We chose this
LLM as it is the fastest to operate and gave us response times
similar to GitHub Copilot. To prompt the LLM we used the
settings max tokens: 64, temperature: 0.6, top p: 1.0.

Need to copy 
the string

Double pointer

Lost at C: Security Implications of Large Language Model Code Assistants

API: String Manipulation

• Concepts tested:

• Basic list traversal

• Correct format string usage

• Copying into a buffer provided
externally without overflow

• A bit tricky because the
maximum length is given as a
constant:
MAX_ITEM_PRINT_LEN

Study Task: “Shopping List” 23
Externally provided buffer with no length!

1 / / p r i n t a s i n g l e l i s t i t em t o an e x t e r n a l l y a l l o c a t e d
s t r i n g

2 / / Th i s s h o u l d be i n t h e f o r m a t o f :
3 / / ” q u a n t i t y * item name @ $ p r i c e ea ” , where i tem name i s a

s t r i n g and
4 / / p r i c e i s a f l o a t f o r m a t t e d wi th 2 d e c i m a l p l a c e s .
5 i n t l i s t i t e m t o s t r i n g (node * head , c h a r * s t r) ;
6

7 / / p r i n t t h e l i s t t o s t d o u t
8 / / Th i s s h o u l d be i n t h e f o r m a t o f :
9 / / ” pos : q u a n t i t y * item name @ $ p r i c e ea ” , where

10 / / pos i s t h e p o s i t i o n o f t h e i t em i n t h e l i s t ,
11 / / i tem name i s t h e i tem name of t h e i t em and
12 / / p r i c e i s t h e f l o a t p r i c e o f t h e i t em f o r m a t t e d wi th 2

d e c i m a l p l a c e s .
13 / / For example :
14 / / ” ” ” 1 : 3 * banana @ $1 . 0 0 ea
15 / / 2 : 2 * o ra ng e @ $2 . 0 0 ea
16 / / 3 : 4 * a p p l e @ $3 . 0 0 ea
17 / / ”””
18 / / I t s h o u l d r e t u r n a n e w l i n e c h a r a c t e r a t t h e end of each

i t em .
19 / / I t s h o u l d n o t have a l e a d i n g n e w l i n e c h a r a c t e r .
20 i n t l i s t p r i n t (node * head) ;

(a) String manipulation functions

1 / / f i n d t h e i t em p o s i t i o n wi th t h e h i g h e s t s i n g l e p r i c e
2 i n t l i s t f i n d h i g h e s t p r i c e i t e m p o s i t i o n (node * head , i n t *

pos) ;
3

4 / / c a l c u l a t e t h e t o t a l c o s t o f t h e l i s t (sum of a l l p r i c e s
* q u a n t i t i e s)

5 i n t l i s t c o s t s u m (node * head , f l o a t * t o t a l) ;
6

7 / / de − d u p l i c a t e t h e l i s t by combin ing i t e m s wi th t h e same
name

8 / / by ad d i n g t h e i r q u a n t i t i e s
9 / / The o r d e r o f t h e r e t u r n e d l i s t i s u n d e f i n e d and may be

i n any o r d e r
10 i n t l i s t d e d u p l i c a t e (node ** head) ;

(b) Advanced traversal functions

1 / / s av e t h e l i s t t o f i l e f i l e n a m e
2 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
3 / / i tem name , p r i c e , q u a n t i t y \n
4 / / (one i t em p e r l i n e , s e p a r a t e d by commas , and n e w l i n e

a t t h e end)
5 i n t l i s t s a v e (node * head , c h a r * f i l e n a m e) ;
6

7 / / l o a d t h e l i s t from f i l e f i l e n a m e
8 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
9 / / i tem name , p r i c e , q u a n t i t y \n

10 / / (one i t em p e r l i n e , s e p a r a t e d by commas , and n e w l i n e
a t t h e end)

11 / / t h e l o a d e d v a l u e s a r e added t o t h e end of t h e l i s t
12 i n t l i s t l o a d (node ** head , c h a r * f i l e n a m e) ;

(c) Saving and Loading the list

Fig. 6. Advanced implementation requirements

This somewhat high temperature ensures the LLM does not
provide the same answers to all users since the same starting
list.c file is provided to all users. This emulates a real
development scenario, where it is unlikely that all developers
have the same start point. As we focus on user acceptance of
code suggestions rather than the LLM, it is beneficial if some
suggestions by the model are unusual or creative. The assistant
responds with code suggestion presented in gray italics (e.g.
Fig. 7). The user can accept the suggestion by pressing space
bar or reject by continuing to type.

Fig. 7. An example of a code suggestion by our Codex Assistant. Suggested
code is in grey italic text. Prompt contains all text prior to cursor.

E. ‘Autopilot’ mode - fully automated task completion
In addition to the two user groups, we created 30 solutions

that were generated entirely by the Codex model as an
‘autopilot’ group. We produced ten solutions from each of the
three code models offered by OpenAI: code-cushman-001
(max 2048 tokens), code-davinci-001 (max 4096 tokens)
and code-davinci-002 (max 8000 tokens). The last LLM is
capable of filling in the middle given a prefix and suffix [41]).

We queried the model to generate code for one function
at a time in the order they appear in the template list.c
file, requesting 512 tokens with a stop sequence of “\n}\n”.
The prompt included the function declaration and as much
of the previous file context as would fit in the model’s
context window (minus 512 tokens to allow room for the
generated response), including any code previously generated
by the LLM. The temperature and top p were set to
the same values as in the AI assistant IDE plugin (0.6 and
1.0, respectively). After generating a function, we check if
the result compiled. If compilation failed, we request another
completion, up to a maximum of 10 attempts per function. If
no compiling code was generated within 10 tries, we used the
template’s implementation of the function, which just returns
EXIT FAILURE. This procedure models a user that fully relies
on the AI assistant, accepting each suggestion unconditionally,
with minimal checks to see if the code compiles, and moving
on to the next function once it seems to work and giving up if
it fails after several attempts. This is our baseline to compare
the Control and AI-Assistant groups.

The initial file used was identical to the starting template
with one exception: we added a comment near the top of the
file that listed the members of the node structure, which is
defined in a header and is otherwise not visible to the model:

1 / / Members o f t h e node s t r u c t :
2 / / c h a r * item name , f l o a t p r i c e , i n t q u a n t i t y , node * n e x t

Without this addition, an unassisted LLM model must
guess the member names, creating unusable solutions. This
intervention is realistic since our goal is to mimick a hands-off
human user. Two users in the ‘assisted’ group independently
deployed this strategy by copying the struct definition from
the header file into list.c (commented out).

We will present results for Autopilot group where appro-
priate, with the exception of our manual security analysis
(Section IV-C), which was too time-consuming to expand to
the full set of 30 Autopilot solutions. We instead audited five
of the Cushman solutions.

Lost at C: Security Implications of Large Language Model Code Assistants

API: Advanced Tasks

• Concepts tested:

• Saving/loading data from disk

• Handling errors from system
APIs (fopen, etc.)

• Advanced traversal and
updates

• Freeing and updating entries

• Many people just skipped the
harder APIs

Study Task: “Shopping List” 24

1 / / p r i n t a s i n g l e l i s t i t em t o an e x t e r n a l l y a l l o c a t e d
s t r i n g

2 / / Th i s s h o u l d be i n t h e f o r m a t o f :
3 / / ” q u a n t i t y * item name @ $ p r i c e ea ” , where i tem name i s a

s t r i n g and
4 / / p r i c e i s a f l o a t f o r m a t t e d wi th 2 d e c i m a l p l a c e s .
5 i n t l i s t i t e m t o s t r i n g (node * head , c h a r * s t r) ;
6

7 / / p r i n t t h e l i s t t o s t d o u t
8 / / Th i s s h o u l d be i n t h e f o r m a t o f :
9 / / ” pos : q u a n t i t y * item name @ $ p r i c e ea ” , where

10 / / pos i s t h e p o s i t i o n o f t h e i t em i n t h e l i s t ,
11 / / i tem name i s t h e i tem name of t h e i t em and
12 / / p r i c e i s t h e f l o a t p r i c e o f t h e i t em f o r m a t t e d wi th 2

d e c i m a l p l a c e s .
13 / / For example :
14 / / ” ” ” 1 : 3 * banana @ $1 . 0 0 ea
15 / / 2 : 2 * o r a ng e @ $2 . 0 0 ea
16 / / 3 : 4 * a p p l e @ $3 . 0 0 ea
17 / / ”””
18 / / I t s h o u l d r e t u r n a n e w l i n e c h a r a c t e r a t t h e end of each

i t em .
19 / / I t s h o u l d n o t have a l e a d i n g n e w l i n e c h a r a c t e r .
20 i n t l i s t p r i n t (node * head) ;

(a) String manipulation functions

1 / / f i n d t h e i t em p o s i t i o n wi th t h e h i g h e s t s i n g l e p r i c e
2 i n t l i s t f i n d h i g h e s t p r i c e i t e m p o s i t i o n (node * head , i n t *

pos) ;
3

4 / / c a l c u l a t e t h e t o t a l c o s t o f t h e l i s t (sum of a l l p r i c e s
* q u a n t i t i e s)

5 i n t l i s t c o s t s u m (node * head , f l o a t * t o t a l) ;
6

7 / / de − d u p l i c a t e t h e l i s t by combin ing i t e m s w i th t h e same
name

8 / / by a d d i ng t h e i r q u a n t i t i e s
9 / / The o r d e r o f t h e r e t u r n e d l i s t i s u n d e f i n e d and may be

i n any o r d e r
10 i n t l i s t d e d u p l i c a t e (node ** head) ;

(b) Advanced traversal functions

1 / / s ave t h e l i s t t o f i l e f i l e n a m e
2 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
3 / / i tem name , p r i c e , q u a n t i t y \n
4 / / (one i t em p e r l i n e , s e p a r a t e d by commas , and n e w l i n e

a t t h e end)
5 i n t l i s t s a v e (node * head , c h a r * f i l e n a m e) ;
6

7 / / l o a d t h e l i s t from f i l e f i l e n a m e
8 / / t h e f i l e s h o u l d be i n t h e f o l l o w i n g f o r m a t :
9 / / i tem name , p r i c e , q u a n t i t y \n

10 / / (one i t em p e r l i n e , s e p a r a t e d by commas , and n e w l i n e
a t t h e end)

11 / / t h e l o a d e d v a l u e s a r e added t o t h e end of t h e l i s t
12 i n t l i s t l o a d (node ** head , c h a r * f i l e n a m e) ;

(c) Saving and Loading the list

Fig. 6. Advanced implementation requirements

This somewhat high temperature ensures the LLM does not
provide the same answers to all users since the same starting
list.c file is provided to all users. This emulates a real
development scenario, where it is unlikely that all developers
have the same start point. As we focus on user acceptance of
code suggestions rather than the LLM, it is beneficial if some
suggestions by the model are unusual or creative. The assistant
responds with code suggestion presented in gray italics (e.g.
Fig. 7). The user can accept the suggestion by pressing space
bar or reject by continuing to type.

Fig. 7. An example of a code suggestion by our Codex Assistant. Suggested
code is in grey italic text. Prompt contains all text prior to cursor.

E. ‘Autopilot’ mode - fully automated task completion
In addition to the two user groups, we created 30 solutions

that were generated entirely by the Codex model as an
‘autopilot’ group. We produced ten solutions from each of the
three code models offered by OpenAI: code-cushman-001
(max 2048 tokens), code-davinci-001 (max 4096 tokens)
and code-davinci-002 (max 8000 tokens). The last LLM is
capable of filling in the middle given a prefix and suffix [41]).

We queried the model to generate code for one function
at a time in the order they appear in the template list.c
file, requesting 512 tokens with a stop sequence of “\n}\n”.
The prompt included the function declaration and as much
of the previous file context as would fit in the model’s
context window (minus 512 tokens to allow room for the
generated response), including any code previously generated
by the LLM. The temperature and top p were set to
the same values as in the AI assistant IDE plugin (0.6 and
1.0, respectively). After generating a function, we check if
the result compiled. If compilation failed, we request another
completion, up to a maximum of 10 attempts per function. If
no compiling code was generated within 10 tries, we used the
template’s implementation of the function, which just returns
EXIT FAILURE. This procedure models a user that fully relies
on the AI assistant, accepting each suggestion unconditionally,
with minimal checks to see if the code compiles, and moving
on to the next function once it seems to work and giving up if
it fails after several attempts. This is our baseline to compare
the Control and AI-Assistant groups.

The initial file used was identical to the starting template
with one exception: we added a comment near the top of the
file that listed the members of the node structure, which is
defined in a header and is otherwise not visible to the model:

1 / / Members o f t h e node s t r u c t :
2 / / c h a r * item name , f l o a t p r i c e , i n t q u a n t i t y , node * n e x t

Without this addition, an unassisted LLM model must
guess the member names, creating unusable solutions. This
intervention is realistic since our goal is to mimick a hands-off
human user. Two users in the ‘assisted’ group independently
deployed this strategy by copying the struct definition from
the header file into list.c (commented out).

We will present results for Autopilot group where appro-
priate, with the exception of our manual security analysis
(Section IV-C), which was too time-consuming to expand to
the full set of 30 Autopilot solutions. We instead audited five
of the Cushman solutions.

Output parameters

Lost at C: Security Implications of Large Language Model Code Assistants

Autopilot Mode
Let the AI do all the work!

• As another baseline comparison we also had three code models
(Cushman-001, DaVinci-001, and DaVinci-002) complete the assignment
automatically

• Procedure:

• Complete one API function at a time, whole file (up to context limits) up to
the function prototype as the prompt

• Check if it compiles; if not, try again (up to 10 tries)

• Same temp/top-p settings as the IDE plugin

• Added a comment at the top with the node member names

25

Lost at C: Security Implications of Large Language Model Code Assistants

Research Questions

• RQ1: Does the AI code assistant help novice users write better code in terms
of functionality?

• RQ2: Is the code that novice users write with AI assistance more or less
secure than the control group?

• RQ3: Are there systematic differences in the coding style of AI-assisted users
and that of control group?

• RQ4: How do AI assisted users interact with potentially vulnerable code
suggestions, i.e., where do bugs originate in an LLM-assisted system?

26

Lost at C: Security Implications of Large Language Model Code Assistants

Measuring Functionality

• We provided users with a basic test suite with one test per function (12 tests)

• We also wrote an expanded test suite with 45 tests checking all the edge
cases we could think of

• To reduce inter-test dependencies, we split the users’ code into individual
functions and tested them in isolation, with our known-good (🤞) reference
implementation

• Also allows us to test users who submitted non-compiling code, as long as
some of their functions compiled

27

Lost at C: Security Implications of Large Language Model Code Assistants

Functionality Results
Rise of the Machines

28

a) Split Testing: We faced two challenges in automati-
cally testing the functionality of submitted code. First, many
submissions did not compile (19/58 = 32.8%). This includes
9/30=30% in the Assistant group and 10/28=35.7% in the
Control group). Second, the tests in the test suite may need
to use other API functions in addition to the one under
test (e.g. a test for list delete item at pos might
need to create a nonempty list by using list init and
list add item at pos). If there is a serious bug in one
of the core functions, it will cause all tests that depend on it
to fail (even if the function under test itself is correct). It is
difficult to measure functionality of the program as a whole.

Our testing procedure solves both of these problems by
splitting the user’s code into individual functions (one per
API, including any helper functions or data structures the
function depends on). For each test, we create a version of
the submitted code where every API function is replaced by
our own known-good reference implementation, except for the
function under test. If an extracted function does not compile,
we mark it as non-compiling and mark its associated tests as
failing. We check whether the function was actually modified.
The template code “implements” each function by returning
EXIT FAILURE, but some tests expect failure, allowing un-
modified code to spuriously pass some tests.

This procedure allowed us to automatically measure four
distinct quantitative aspects of functionality for each submis-
sion: 1) percent of functions that were implemented, 2) percent
of functions that compiled, 3) percentage of basic tests passing,
and 4) percentage of expanded tests passing. These four
measures are shown for each group (‘control’, ‘assisted’, and
‘autopilot’) in Figure 9.

b) Results: We see systematic differences between the
‘assisted’ group and the ‘control’ group. As measured by
number of implemented functions, compiling functions, ba-
sic tests passing, and expanded tests passing, the ‘assisted’
group had a small but consistent advantage over the ‘control’
group. The ’autopilot’ group outperformed both ‘assistant’ and
’control’ groups on functions implemented and compiled—this

Fig. 9. Functionality for each group. Each group has to implement 11
functions and 11 basic tests. We had 45 expanded tests. We show per group,
the average % of functions Implemented, regardless of whether they compiled
or not, the average % of those functions that Compiled, the average % of
each group that passes the 11 Basic Tests and the average % that passes the
43 Expanded Tests from each group.

is by design since our autopilot code generation procedure re-
peats several times till code compiles. Interestingly, ‘autopilot’
slightly underperforms ‘assistant’ on basic tests, but slightly
overperforms on the expanded tests. In other words, the AI
code assistant does help the users write better code in terms
of functionality.

Finally, the ‘assisted’ group wrote more code overall (280.9
average lines of code compared to 247.5 LoC in the control
group). We note, however, that due to the small sample size
none of these comparisons reach statistical significance at the
standard p < 0.05 level (as tested using Fisher’s exact test for
the completion data, which is a binary variable, and Welch’s
t-test for the remaining comparisons).

C. RQ2 - Security Analysis
Although there are many different tools available for finding

security-relevant flaws in C source code (as discussed in
Section II-D), we found that none of them were appropriate
for our use case. Static analysis tools such as CodeQL [22]
have rates of false positives and negatives that are too high
for our purposes. Fuzzing seemed initially promising (and we
implemented a libfuzzer [42] harness for our list API), but
deduplicating fuzzer crashes to identify actual root causes is
still an open research problem. Because fuzzing is a dynamic
analysis, any vulnerability that causes a crash along some
program path will render any vulnerabilities later in the path
unreachable, underestimating the true vulnerability count.

We instead opted to manually audit the 58 user-generated
submissions, and five of the Cushman answers for comparison,
a process further discussed here.

1) Bug identification methodology:: Working one function
at a time across all users, a panel of three of the co-authors
collectively read through the source code and attempted to
identify all security-relevant bugs. Whenever a bug was iden-
tified, we associated it with the most relevant entry in the
CWE database, wrote a short description of the problem, and
annotated the location of the bug via a comment in the source.
This manual audit took about 20 hours over the course of
one week translating into 60 person-hours overall—manual
analysis, while thorough, does not scale well. Demographics
(including ’control’ and ’assisted’ group membership) were
blinded during this exercise.

An example of what this process finds is presented
here, for what one study participant wrote for
list item to string. This participant was a second-
year UG student who had written C code before and had
taken an algorithms class. They were in the ‘assisted’ group,
and submitted the code exactly as the suggestion has it in
Fig. 7. This code passes basic functional tests. However, it
has three CWEs. The first weakness is CWE-476: NULL
Pointer Dereference. This can occur in the case where str
is NULL when this function is called (this is not checked
for in the code, and the API cannot guarantee the values
it will be passed as arguments). This CWE is ranked at
position #11 on Mitre’s 2022 ‘Top 25’ list [43]. The next
weakness is CWE-758: Reliance on Undefined, Unspecified,

Lost at C: Security Implications of Large Language Model Code Assistants

Measuring Security

• Measuring security is more difficult

• CodeQL missed many issues, had false positives

• Fuzzing was attractive but many duplicate problems found

• We just bit the bullet and reviewed all code by hand

• Three of us stared at each function and annotated with vulnerabilities categorized
by MITRE’s Common Weakness Enumeration

• Also graded 5 of the Cushman Autopilot answers

• 20 hours of my life I will never get back

29

Lost at C: Security Implications of Large Language Model Code Assistants

Security Results
Number of vulnerabilities per line of code

30

CWEs/LoC for compiling code CWEs/LoC, code that passes the basic unit test

Lost at C: Security Implications of Large Language Model Code Assistants

Security Results
Number of severe (MITRE Top 25) vulnerabilities per line of code

31

Severe CWEs/LoC for compiling code Severe CWEs/LoC, code that passes the basic unit test

Lost at C: Security Implications of Large Language Model Code Assistants

Security Results: CWEs 32

CW
E-476

CW
E-758

CW
E-401

CW
E-252

CW
E-416

CW
E-787

CW
E-824

CW
E-843

CW
E-457

CW
E-835

0.0%

10.0%

20.0%

30.0%

40.0%

Control
Assisted
Autopilot

Fig. 11. Top 10 CWEs per group and their prevalence as % of total CWEs.
CWE descriptions are in Table IV.

TABLE IV
TOP 10 MOST COMMON CWES IDENTIFIED IN EACH STUDY GROUP AND
THEIR DESCRIPTIONS, ALONG WITH DOWNSTREAM SEVERE CWES IF A

NON-SEVERE CWE WOULD LEAD TO A DIFFERENT SEVERE CWE.

CWE ID Description ‘Top 25’
Rank

CWE-476 NULL Pointer Dereference 11
CWE-758 Reliance on Undefined Behavior -
CWE-401 Missing Release of Memory
,! CWE-400 Uncontrolled Resource Consumption 23
CWE-252 Reliance on Undefined Behavior -
CWE-416 Use after Free 7
CWE-787 Out-of-bounds Write 1
CWE-843 Access using Incompatible Type
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-457 Use of Uninitialized Variable
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-835 Infinite Loop -

participants, human or LLM. These also had downstream
effects. For example, it causes a large proportion of the CWE-
758 instances (Reliance on Undefined Behavior). Although
not a serious issue, this CWE was frequently observed when
working with standard library functions that may ingest the
potentially NULL pointers (e.g. printf, strcpy, strlen).

6) Observations: The impact of code suggestions on cyber-
security (RQ2) is less conclusive than the impact on function-
ality (RQ1). Table III suggest that certain kinds of functions
may be more or less difficult to write safely depending on their
complexity and the experience of the developer—it appears
that the LLMs may sometimes reduce the incidence rates of
bugs, and sometimes increase them. Meanwhile, aggregating
the CWEs per participant LoC (Fig. 10) suggests that perhaps
there may be a slight benefit to using LLMs, with Fig. 10(d)
in particular highlighting that as code is made to pass tests
it may be made more secure with the help of the LLM. This
is somewhat contrary to the existing literature [7], [8] which
suggests that LLMs should be used with caution due to their

Fig. 12. Heatmap showing the similarity between different code submissions,
as measured by the MOSS plagiarism detection tool. MOSS fails to identify
any significant overlaps within groups.

habit of suggesting vulnerable patterns.

D. RQ3 - Code Similarity

Given the potential for AI programming assistants to gen-
erate large blocks of code for the user, we want to understand
whether the use of LLMs can be detected by external mea-
surements. This can be thought of as a kind of styleometry
analysis [44], i.e. we investigate whether having LLM sug-
gestions changes the style of code written by the user. This is
pertinent as current literature suggests that it may be difficult
to identify users of LLMs, for instance see our discussion on
plagiarism in Section II-C. This has two practical implications:

(a) Within-group similarity: Used the
MOSS plagiarism detection tool.

(b) Within-file similarity: Fraction of
the file made up of repeated sub-
strings 16 characters or longer.

Fig. 13. Similarity metrics

CWE-476 NULL Pointer Dereference

CWE-758 Reliance on Undefined,
Unspecified, or Implementation-
Defined Behavior

CWE-401 Missing Release of Memory after
Effective Lifetime

CWE-252 Unchecked Return Value

CWE-416 Use After Free

CWE-787 Out-of-bounds Write

CWE-457 Use of Uninitialized Variable

CWE-843 Access of Resource Using
Incompatible Type ('Type
Confusion')

CWE-824 Access of Uninitialized Pointer

CWE-835 Loop with Unreachable Exit
Condition ('Infinite Loop')

Lost at C: Security Implications of Large Language Model Code Assistants

Measuring Style

• We wanted to check if there were difference in style between human and AI-
assisted users

• Can we tell if someone is using Copilot?

• We used two measures:

• The Moss plagiarism detection tool to measure similarity between users

• The quantity of repeated substrings in the file to measure similarity within an
individual user’s submission

33

Lost at C: Security Implications of Large Language Model Code Assistants

Style Results 34

CW
E-476

CW
E-758

CW
E-401

CW
E-252

CW
E-416

CW
E-787

CW
E-824

CW
E-843

CW
E-457

CW
E-835

0.0%

10.0%

20.0%

30.0%

40.0%

Control
Assisted
Autopilot

Fig. 11. Top 10 CWEs per group and their prevalence as % of total CWEs.
CWE descriptions are in Table IV.

TABLE IV
TOP 10 MOST COMMON CWES IDENTIFIED IN EACH STUDY GROUP AND
THEIR DESCRIPTIONS, ALONG WITH DOWNSTREAM SEVERE CWES IF A

NON-SEVERE CWE WOULD LEAD TO A DIFFERENT SEVERE CWE.

CWE ID Description ‘Top 25’
Rank

CWE-476 NULL Pointer Dereference 11
CWE-758 Reliance on Undefined Behavior -
CWE-401 Missing Release of Memory
,! CWE-400 Uncontrolled Resource Consumption 23
CWE-252 Reliance on Undefined Behavior -
CWE-416 Use after Free 7
CWE-787 Out-of-bounds Write 1
CWE-843 Access using Incompatible Type
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-457 Use of Uninitialized Variable
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-835 Infinite Loop -

participants, human or LLM. These also had downstream
effects. For example, it causes a large proportion of the CWE-
758 instances (Reliance on Undefined Behavior). Although
not a serious issue, this CWE was frequently observed when
working with standard library functions that may ingest the
potentially NULL pointers (e.g. printf, strcpy, strlen).

6) Observations: The impact of code suggestions on cyber-
security (RQ2) is less conclusive than the impact on function-
ality (RQ1). Table III suggest that certain kinds of functions
may be more or less difficult to write safely depending on their
complexity and the experience of the developer—it appears
that the LLMs may sometimes reduce the incidence rates of
bugs, and sometimes increase them. Meanwhile, aggregating
the CWEs per participant LoC (Fig. 10) suggests that perhaps
there may be a slight benefit to using LLMs, with Fig. 10(d)
in particular highlighting that as code is made to pass tests
it may be made more secure with the help of the LLM. This
is somewhat contrary to the existing literature [7], [8] which
suggests that LLMs should be used with caution due to their

Fig. 12. Heatmap showing the similarity between different code submissions,
as measured by the MOSS plagiarism detection tool. MOSS fails to identify
any significant overlaps within groups.

habit of suggesting vulnerable patterns.

D. RQ3 - Code Similarity

Given the potential for AI programming assistants to gen-
erate large blocks of code for the user, we want to understand
whether the use of LLMs can be detected by external mea-
surements. This can be thought of as a kind of styleometry
analysis [44], i.e. we investigate whether having LLM sug-
gestions changes the style of code written by the user. This is
pertinent as current literature suggests that it may be difficult
to identify users of LLMs, for instance see our discussion on
plagiarism in Section II-C. This has two practical implications:

(a) Within-group similarity: Used the
MOSS plagiarism detection tool.

(b) Within-file similarity: Fraction of
the file made up of repeated sub-
strings 16 characters or longer.

Fig. 13. Similarity metrics

CW
E-476

CW
E-758

CW
E-401

CW
E-252

CW
E-416

CW
E-787

CW
E-824

CW
E-843

CW
E-457

CW
E-835

0.0%

10.0%

20.0%

30.0%

40.0%

Control
Assisted
Autopilot

Fig. 11. Top 10 CWEs per group and their prevalence as % of total CWEs.
CWE descriptions are in Table IV.

TABLE IV
TOP 10 MOST COMMON CWES IDENTIFIED IN EACH STUDY GROUP AND
THEIR DESCRIPTIONS, ALONG WITH DOWNSTREAM SEVERE CWES IF A

NON-SEVERE CWE WOULD LEAD TO A DIFFERENT SEVERE CWE.

CWE ID Description ‘Top 25’
Rank

CWE-476 NULL Pointer Dereference 11
CWE-758 Reliance on Undefined Behavior -
CWE-401 Missing Release of Memory
,! CWE-400 Uncontrolled Resource Consumption 23
CWE-252 Reliance on Undefined Behavior -
CWE-416 Use after Free 7
CWE-787 Out-of-bounds Write 1
CWE-843 Access using Incompatible Type
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-457 Use of Uninitialized Variable
,! CWE-119 Improper Restriction of Buffer Operations 19
CWE-835 Infinite Loop -

participants, human or LLM. These also had downstream
effects. For example, it causes a large proportion of the CWE-
758 instances (Reliance on Undefined Behavior). Although
not a serious issue, this CWE was frequently observed when
working with standard library functions that may ingest the
potentially NULL pointers (e.g. printf, strcpy, strlen).

6) Observations: The impact of code suggestions on cyber-
security (RQ2) is less conclusive than the impact on function-
ality (RQ1). Table III suggest that certain kinds of functions
may be more or less difficult to write safely depending on their
complexity and the experience of the developer—it appears
that the LLMs may sometimes reduce the incidence rates of
bugs, and sometimes increase them. Meanwhile, aggregating
the CWEs per participant LoC (Fig. 10) suggests that perhaps
there may be a slight benefit to using LLMs, with Fig. 10(d)
in particular highlighting that as code is made to pass tests
it may be made more secure with the help of the LLM. This
is somewhat contrary to the existing literature [7], [8] which
suggests that LLMs should be used with caution due to their

Fig. 12. Heatmap showing the similarity between different code submissions,
as measured by the MOSS plagiarism detection tool. MOSS fails to identify
any significant overlaps within groups.

habit of suggesting vulnerable patterns.

D. RQ3 - Code Similarity

Given the potential for AI programming assistants to gen-
erate large blocks of code for the user, we want to understand
whether the use of LLMs can be detected by external mea-
surements. This can be thought of as a kind of styleometry
analysis [44], i.e. we investigate whether having LLM sug-
gestions changes the style of code written by the user. This is
pertinent as current literature suggests that it may be difficult
to identify users of LLMs, for instance see our discussion on
plagiarism in Section II-C. This has two practical implications:

(a) Within-group similarity: Used the
MOSS plagiarism detection tool.

(b) Within-file similarity: Fraction of
the file made up of repeated sub-
strings 16 characters or longer.

Fig. 13. Similarity metrics

Lost at C: Security Implications of Large Language Model Code Assistants

git blame codex

• Using the data from the IDE, can we identify
where vulnerabilities were introduced into the
user’s code?

• In particular, did they come from Codex
suggestions or were they written by
humans?

• Idea:

• Find an automated way to check for some
common vulnerability

• Use our document snapshots and
suggestion data to see if it first appeared in
a document (human-written) or suggestion
(introduced by Codex)

On the Origin of Bugs 35

Lost at C: Security Implications of Large Language Model Code Assistants

Bug Origins: Missing strdup

• We picked one bug for this that we could identify with just a regular
expression

• Vulnerability failing to make a copy of the item_name provided by the
caller (e.g. using strdup) before storing it in the node

• Can lead to CWE-416: Use-After-Free because the list library has no
control over when the user-provided string will be freed

• We can identify it by just looking for direct assignments to 
node->item_name with no strdup/strcpy/malloc

36

Lost at C: Security Implications of Large Language Model Code Assistants

• This vulnerability was introduced by
Codex more often than not

• But some users introduced it
themselves, and did not accept further
buggy suggestions

• Some users got a lot of buggy
suggestions (69 in one case!)

• Weak trend: more bug suggestions =>
more bugs in final file

Bug Origins: Results 37

first, in an educational or corporate setting, concerns about
plagiarism and intellectual property may hinder the adoption
of AI programming assistants. Empirical data similarity of
code produced by different users with AI-assistance would
help clarify these issues.

As an initial investigation, we examined the between-file
similarity by using MOSS [29] (similar to the methodology
utilized in [28]). By submitting all samples to MOSS along
with the unmodified (template) list.c as a base file (MOSS will
ignore matches that exist in this base file), MOSS provides,
for each pair of files, the percent of lines matched. We thus
plot each of the distances between each files by taking the
average of the two percentages in Fig. 12.

Fig. 13(b) plots the average similarity score between all
pairs of files within each group. We found strongly statistically
significant differences in between-file similarity (p < 0.001)
for the three groups with ’control’ having the lowest between-
file similarity, while ’assisted’ has the highest.

During the manual analysis phase, we noted that several
files had quite repetitive structures (i.e. similar code blocks).
We theorized that these may be from LLM usage, as LLMs
tend to repeat structures and styles in their prompt. This echos
Pearce et al.’s examination of the security of code produced by
GitHub Copilot [8], in which authors found that the presence
of vulnerable code in the prompt would cause the LLM to emit
additional vulnerable code (i.e. the LLM would repeat code).
As such, we thus performed a second within-file similarity
analysis, in other words, examining code similarity: whether
the use of AI assistance makes users’ code more repetitive or
more similar to other AI-assisted users.

In more detail, the process works as follows: (1) Take a
participant’s list.c, and then remove any lines that exactly
match the unmodified list.c file. (2) repeatedly compute
the longest repeated substring on what remains within the
file, computing tuples of the form (count, len(repeat)).
(3) Delete the detected repeated string from the document. (4)
Repeat steps 2-3 until the longest repeated string is smaller
than a minimum threshold of 16 characters. (5) Sum up all the
tuples count⇥len(repeat) and then divide by the length of
the file. This gives us a value representing the percentage of
the file that’s repetitive.

We plot within-file similarity in Figure 13(b) for the three
groups and find that mean within-file similarity for ‘assisted’
is greater than ‘control’ (p < 0.06, weakly significant) and
‘autopilot’ is greater than ‘assisted’ (p < 0.001, strongly
significant). In other words, the mean within-file similarity
can distinguish between the three groups.

E. RQ4 - On the Origin of Bugs

In this section we perform a qualitative analysis examining
the origin of a single bug. For this we choose the potential use-
after-free CWE-416 discussed in Section IV-C5. We choose
this to analyze as it is a bug which is straightforward to
test for using a custom automated script. We are interested
in examining the question of how users interact with buggy

suggestions from the LLMs, and how bugs might ‘amplify’
via LLM suggestions if already present in code.

To examine this, we scan the document and suggestion
snapshots recorded during the user study, looking for the first
recorded incident of the CWE-416 bug—that is, the first time
that a new node’s item name is incorrectly set directly to the
function argument item name (i.e. without using a proper
string copy mechanism). This can occur in a LLM suggestion,
or alternatively, it could have been written by a user before
the LLM gets a chance to suggest it. We then count the
number of times that the bug was present in suggestions by
the LLM, as well as the number of suggestions containing
the bug that were accepted by the user. As user acceptance of
suggestions is still not fully reflective of the final state of the
code (as accepted code may be further edited after acceptance),
we also scan the final ‘finished’ code files to count the
number of these bugs present. Note that this bug can occur
in more than one location—both list add item at pos
and list update item at pos need to properly copy in
item names, and depending on exact function structure, may
appear multiple times even within the same function.

TABLE V
EXAMINING THE ORIGINS OF THE CWE-416 POTENTIAL ‘USE AFTER
FREE’ BUG WHERE THE item name IS IMPROPERLY COPIED INTO A

SHOPPING LIST NODE BY USERS IN THE ‘ASSISTED’ GROUP.

Participant
ID

First location
of bug

(document /
suggestion)

Bug
suggestions

Bug
suggestions

accepted

Bugs
in final

file

0640 Suggestion 5 3 3
1f1c Document 5 0 2
2125 Document 0 0 3
26a4 Suggestion 3 1 2
3533 Suggestion 2 1 1
36de Suggestion 69 5 4
3cff Suggestion 2 2 2
514e Document 1 1 1
7193 Suggestion 13 1 2
74bd Suggestion 4 2 2
925c Suggestion 8 2 1
a3ed Suggestion 10 2 2
a4b3 Suggestion 11 5 4
a5ba Document 0 0 1
a80d Document 6 3 3
a974 Suggestion 12 5 3
b59f Suggestion 8 2 2
be6f Suggestion 4 1 2
c23b Suggestion 20 10 5
dac3 Document 10 2 2
dc47 Suggestion 1 0 2
ddac Suggestion 13 1 1
ec83 Document 11 3 2
fd62 Suggestion 12 1 1

We present the results of this investigation in Table V. As
can be seen, looking at this bug specifically, in most cases it
comes from the LLM suggestion originally, and even when
it appears in the document first the LLM will then go on to
suggest the bug. Users that had the highest number of this bug

Lost at C: Security Implications of Large Language Model Code Assistants

Bonus Qualitative Content
Not everyone enjoyed the AI’s help

38

 1 // was fighting the language model whenever I was trying
 2 // to do anything and I ended up giving up, because whenever
 3 // I would start with an idea, it would suggest something that
 4 // looked good at first sight, I would add it to my own code
 5 // and then I would spend time debugging some of its code rather
 6 // than develop my ideas
 7
 8 // for the other functions where it gave me the answer straight
 9 // up and it just worked, I felt like I just cheated and got
 10 // someone else to do the work for me
 11
 12 // I ended up not having too much time to finish and the couple
 13 // hours I spent on this was mostly just fighting with the robot

Lost at C: Security Implications of Large Language Model Code Assistants

Limitations
Learning to live with small N

• Biggest limitation: due to small sample size, most of our results are not
statistically significant (particularly for security)

• But probably we can rule out really big effects

• Participants were all university students; we can’t generalize to professional
developers

• Hopefully they can write better C code?

• Likewise, this is just one task (linked list) and one language (C)

• Maybe other tasks and languages would give different results?

39

Lost at C: Security Implications of Large Language Model Code Assistants

Conclusions
Check out the paper! https://arxiv.org/abs/2208.09727

• Significant differences in functionality between groups on functionality

• Surprisingly, no discernible difference on security

• Limited by small sample size

• Maybe a slight trend in favor of Codex

• Potentially found a signal we can use to distinguish Copilot/Codex written
code from human-written code (repetition)

• Has implications for stylometry, confirms that tendency toward repetition
may amplify the existing vulnerabilities in the code

40

https://arxiv.org/abs/2208.09727

