W TANDON SCHOOL
1 NYU OF ENGINEERING

Large Language Models for
Software Security

Prospects and Pitfalls (10 minute version)

j//.\o
o \/‘
Brendan Dolan-Gavitt

EEEEEEEEE
CCCCCCCCCCCCC

W
v

Surprising Progress in Code Models
Before 2021

NYU

 2015: Karpathy’s Char-RNN, generating Linux kernel code
e 2019: GPT-2 “accidentally” learns some PHP and JavaScript

$app = new App ();
// All GET requests that come to add_register() will be sent to this service.

$api = $app -> include(' ');
static int indicate_ policy(void)
{

$api -> register(new DbAppAndFNAAppRegistrationService ());

int error; // Define any services to register. We will override any present in the external
if (fd == MARN EPT) { // DB have the class of .DAO .

$service = new AppAndFNAAppService ($app , |

array (' host ' => ' localhost ')
if (ss->segment < mem total)
unblock graph and set blocked();

Char-RNN; Karpathy, 2015 GPT-2; Karpathy, 2015

1);

Large Language Models for Software Security

W

Surprising Progress in Code Models
June 2021 - Present

!
NYU

 2021: OpenAl Codex - a large GPT-3-based model fine-tuned on code
 Released commercially as a code completion tool: GitHub Copilot
 2022: DeepMind AlphaCode - Transformer (encoder/decoder)

 Reaches human-level (top 54%) performance in an online code competition
(Codeforces)

 Both systems treat source code as plain text, “predict next token”

* Trained on large volumes of code (e.g. all of GitHub)

Large Language Models for Software Security

Github Copilot 4

o
g ddi V¥V The Verge
. re t PROGRAMMING ‘ comments ‘ other discussions (18)

GitHub and OpenAl launch an Al Copilot tool that

: : : . | generates its own code
GItH ub_ C0p| IOt YO u.r AI pal.r,_,p rogram MEr (co pilot.github.com) GitHub and OpenAl have launched a technical preview of a new Al
submitted 2 months ago by violinclipper &3 & € % 4 & 14 more

tool called Copilot, which lives inside the Visual Studio Code editor
and ...

jun 29, 2021
TeChTalks HOME BLOG v TIPS & TRICKS v WHATIS v INT |

581 comments share save hide give award report crosspost

4 GitHub Copilot (copilot.github.com)
What OpenAI and GitH U b’s “AI 2905 points by todsacerdoti 75 days ago | hide | past | favorite | 1272 comments
pair programmer” means for ‘ . ' .
the software industry Introducing GitHub Copilot: your

By Ben Dickson - July 5, 2021 AI pair prog ra m mer
Infoworld gl SDER) & Q — 3 Nat Friedman
VB VentureBeat
Developers react to GitHUb COPilOt GitHub launches Copilot to power pair programming...

Al
The Microsoft Subsidiary has been Working with OpenAI to build an Al tool Copilot, as the new (3' tHub tool is called, uses contextual ues 'tD
that helps developers erte Code by maklng automated Suggestlons Here's ‘:ll-;lt_!E‘St new code, with users able to fl P throu d h alternatives if t'ﬂlt?"_y"
what the early users make of it.

Jun 29, 2021

Large Language Models for Software Security

Copilot Writes Vulnerable Code

NYU

File Edit Selection View Go Run Terminal Help

@ example copilot.py @
ther > @ example_copilot.py
1 from flask import Flask, request,
2 import MysQLdb SQL I - t'
: njeclion
4 app = Flask(name)
-
6 @app.route('/login', methods=['POST'])
7 def login():
N ser = request.form|['username’]
g isswd = request.form|['password’]
10
11 #check 1f username and password combo exists in the database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", dbwylgest")
13 ursor = db.cursor()
14 Accept (Tab) Open Copilot (Ctri+Enter
15 sql = "SELECT * FROM users WHERE username='%s' A

Large Language Models for Software Security

W

2 Asleep at the Keyboard
NYU

 Examined 18 different vulnerability classes (CWEs) and 89 scenarios, used
Copilot to generate 1,689 total programs

 40% of generated programs were vulnerable

* (More details in our S&P 2022 paper presented on Monday)
 Open Problem: how can we fix this?

* Fine-tuning to decrease probability of generating vulnerable code?

e Some kind of verification or validation?

Large Language Models for Software Security

W

Fixing Vulnerabilities with LLMs
NYU

» Basic idea: use Codex et al. as a code generator to replace vulnerable code
 Use prompt engineering to guide model toward generating fixed versions

* Use functional and security oracles to check if generated code fixes the vuln
without breaking the program /!

* Preliminary evaluation: across 7 different code models, could repair*:
 100% of our own synthetically generated vulnerabilities

e 67/% of historical vulnerabilities in our dataset

Large Language Models for Software Security

|| ix Bach 11ie coniains only the aata 10F a4 sinple plane
2| * arranged 1n scanlines of tw * bytes_per_sample bytes.

3 ol

4] for (row = 0: row < 1magelength; row += t])

5| {

6| nrow = (row + tl > 1magelength) ? i1magelength - row : tl;
7l 101 (ool = U ¢e0] < ihAagevidgih: col = 1W)

R

O s Bl Siatk blilfel ovelllow

0| /% for (8 = 0; 8 < Spp; 8+71)
n| @& 4 ff Read each plane of a file sef into srcbufis|[s]
12| % thyfes & SlhHKeaglilefin srcbhufisi|s] col. Tow 0O 8j°

Il 5 PIXE])
4l &/
ISl Tar

(b) Prompt constructed according to Fig. 11 (shortened for brevity). The red
highlighted line 10 1s the original faulty line indicated by ASAN/the oracle.
The template includes lines 11 and 12 (highlighted in grey) to encourage the
LLMs to regenerate the safe code so the patch can be matched safely.

Large Language Models for Software Security

W

!
NYU

Successful Repair

libtiff CVE-2016-5321

ol s B % s T R Uy e R

WV S—
— O

Jj£ Bach tile econtains only (He (dfd 101 o sinole plane

K arrangcd 1N scanlines O tW % pUIes DEl saniple hyics
% /

for (row = 0; row < 1magelength; row += tl)
{nrow = (row + tl > 1magelength) ? 1magelength — row : tl;
for (col = 0; col < imagewidth; col += tw)
{for (s = 0; (s < spp) & (s < MAX_ SAMPLES) ; s++)
{tbytes = l1kIReadliule(1n . srcbuflisis] eol 10w U S

(d) The repaired program once reassembled with the LLM patched line 11
highlighted 1n yellow. This generated patch 1s semantically equivalent with
the real-world human patch used to repair this bug.

Large Language Models for Software Security

10

W

2 Inadequate Oracles

libtiff CVE-2016-3623
NYU -—- a/rgb2ycbcr.c

+++ b/rgb2ycbcr.c
@@ -94,11 +94,7 Q@@

* The language model fixed the usage(-1);
vulnerability... by removing the preak;
problematic options! case 'h':
- horizSubSampling = atoi(optarg);
 Developer tests are weak proxies Cabsre ea,]j,’, |
tor program functlonallty — vertSubSampling = atoi(optarqg);
— break;
 Open problem: how can we + usage(-1);
strengthen these proxies? case 'r'-s

| rowsperstrip = atoli(optarg);
 Can we get LLMs to write better break;

: ?
functional tests as well’ Patch generated by GPT-CSRC 774M model

Large Language Models for Software Security

11

W

Reverse Engineering with LLMs

)+

 For normal source code, Codex does a reasonable job of summarizing code
In natural language

!
NYU

 Can we use this ability on decompiled code to help automate RE?
* Preliminary result: mostly no
 Decompiled code is too dissimilar to original source code

* Eval using true/false Q&A format: 136,260 questions posed, Codex
answered 72,754 correctly

Large Language Models for Software Security

‘(’ Embeddlng Slmllarlty
NYU S .

(a) Confusion matrix for 1s with (b) Confusion matrix for 1s with
debug information. debug symbols stripped.

Large Language Models for Software Security

‘%” And Beyond... 13
NYU

é’“p Hot take: large language models are vastly underused in software security
right now

 An embarrassment of data:
e Vast amounts of training data (code)
* Easy to create parallel corpora (e.g. using compilers & debug info)
 Can automatically extract semantic information

 What could we do by just scaling up?

* “Industrial” LLMs are ~1000x larger than what we use in software security

Large Language Models for Software Security

14

A Possible Fun Problems

Add vour own here!
NYU “°°7

 Decompilation

 Making fuzzing more effective
 Reverse engineering data types

* Recursively summarizing binaries
* Bug-finding

* Exploit generation

Large Language Models for Software Security

