
Brendan Dolan-Gavitt

Large Language Models for
Software Security
Prospects and Pitfalls (10 minute version)

Large Language Models for Software Security

Surprising Progress in Code Models
Before 2021

• 2015: Karpathy’s Char-RNN, generating Linux kernel code

• 2019: GPT-2 “accidentally” learns some PHP and JavaScript

2

Char-RNN; Karpathy, 2015 GPT-2; Karpathy, 2015

Large Language Models for Software Security

Surprising Progress in Code Models
June 2021 - Present

• 2021: OpenAI Codex - a large GPT-3-based model fine-tuned on code

• Released commercially as a code completion tool: GitHub Copilot

• 2022: DeepMind AlphaCode - Transformer (encoder/decoder)

• Reaches human-level (top 54%) performance in an online code competition
(Codeforces)

• Both systems treat source code as plain text, “predict next token”

• Trained on large volumes of code (e.g. all of GitHub)

3

Large Language Models for Software Security

Github Copilot 4

Large Language Models for Software Security

Copilot Writes Vulnerable Code 5

SQL Injection

Large Language Models for Software Security

Asleep at the Keyboard

• Examined 18 different vulnerability classes (CWEs) and 89 scenarios, used
Copilot to generate 1,689 total programs

• 40% of generated programs were vulnerable

• (More details in our S&P 2022 paper presented on Monday)

• Open Problem: how can we fix this?

• Fine-tuning to decrease probability of generating vulnerable code?

• Some kind of verification or validation?

6

Large Language Models for Software Security

Fixing Vulnerabilities with LLMs

• Basic idea: use Codex et al. as a code generator to replace vulnerable code

• Use prompt engineering to guide model toward generating fixed versions

• Use functional and security oracles to check if generated code fixes the vuln
without breaking the program ⚠

• Preliminary evaluation: across 7 different code models, could repair*:

• 100% of our own synthetically generated vulnerabilities

• 67% of historical vulnerabilities in our dataset

7

Large Language Models for Software Security

Repair Prompt 8

Large Language Models for Software Security

Successful Repair
libtiff CVE-2016-5321

9

Large Language Models for Software Security

Inadequate Oracles
libtiff CVE-2016-3623

• The language model fixed the
vulnerability... by removing the
problematic options!

• Developer tests are weak proxies
for program functionality

• Open problem: how can we
strengthen these proxies?

• Can we get LLMs to write better
functional tests as well?

10

--- a/rgb2ycbcr.c
+++ b/rgb2ycbcr.c
@@ -94,11 +94,7 @@
 usage(-1);

 break;

 case 'h':

-			 horizSubSampling = atoi(optarg);
-			 break;
-		 case 'v':
-			 vertSubSampling = atoi(optarg);
-			 break;
+			 usage(-1);
 case 'r':

 rowsperstrip = atoi(optarg);

 break;

Patch generated by GPT-CSRC 774M model

Large Language Models for Software Security

Reverse Engineering with LLMs

• For normal source code, Codex does a reasonable job of summarizing code
in natural language

• Can we use this ability on decompiled code to help automate RE?

• Preliminary result: mostly no

• Decompiled code is too dissimilar to original source code

• Eval using true/false Q&A format: 136,260 questions posed, Codex
answered 72,754 correctly

11

+

Large Language Models for Software Security

Embedding Similarity 12

Large Language Models for Software Security

And Beyond...

• Hot take: large language models are vastly underused in software security
right now

• An embarrassment of data:

• Vast amounts of training data (code)

• Easy to create parallel corpora (e.g. using compilers & debug info)

• Can automatically extract semantic information

• What could we do by just scaling up?

• “Industrial” LLMs are ~1000x larger than what we use in software security

13

🔥

Large Language Models for Software Security

Possible Fun Problems
Add your own here!

• Decompilation

• Making fuzzing more effective

• Reverse engineering data types

• Recursively summarizing binaries

• Bug-finding

• Exploit generation

14

