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• Two major ways for attacker 
input to reach a driver:


1. From userspace, via ioctl


2. From the outside world, via a 
compromised or malicious 
peripheral


• Traditionally, driver writers have 
mostly ignored (2)


• Assumed peripherals are 
“honest” (but maybe flaky/buggy)

Attack Surface in Device Drivers 2
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Importance of Testing Drivers

• Device drivers are buggy: Chou et al. found error rates 3-7x higher than the 
rest of the kernel [An empirical study of operating systems errors, SOSP’01]


• Malicious peripherals can be plugged in via USB, Thunderbolt, etc.


• Modern peripherals are highly complex and run their own (vulnerable) 
firmware


• Attacks like Broadpwn compromise the WiFi SoC firmware and then 
exploit bugs in drivers to take over the rest of the system


• Note: older systems gave PCI devices unrestricted access to RAM, making 
attacks trivial – newer systems use IOMMU to restrict access
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• Lots of different hardware, many 
different drivers


• ~14.7 million SLoC in Linux 
kernel’s drivers


• Malicious peripherals can 
pretend to be any of them to 
target a vulnerable driver


• Impractical to get real hardware 
for all of these!

Challenges of Testing Device Drivers 4
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Emulation: Testing Drivers Without HW

• Can we just emulate peripherals with (e.g.) QEMU?


• Usually no: lots of effort needed to create an emulated model for each 
peripheral


• Often more work than writing a device driver


• Solution: create “dummy” emulated peripherals and then feed inputs to test 
the device driver


• Memory-mapped I/O


• Direct Memory Access (DMA)

5
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• Basic idea: make input symbolic 
and track derived values as 
symbolic expressions 


• At a symbolic branch, fork the 
execution and explore both true 
and false conditions


• The collection of branch 
conditions for each path can be 
sent to a constraint solver like Z3 
to check satisfiability 

Symbolic Execution 6

y = read() 
y = 2 * y 
if (y == 12) 
   fail() 
print("OK")

y*2 = 12?

y

y*2 = 12y*2 ≠ 12

OK FAIL

OK => (y*2 ≠ 12) => y ≠ 6
FAIL => (y*2 = 12) => y = 6



Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds

• Concolic execution 
explores one path at a 
time, starting with a 
concrete input


• Uses constraint solver 
to flip individual 
branches one at a time


• Figure credit: SAGE: 
Whitebox Fuzzing for 
Security Testing, 
Godefroid et al. (2012)

Concolic Execution 7

SECURITY

3

In theory, systematic dynamic test generation can lead to full program path coverage, i.e., program 
ver ification. In practice, however, the search is typically incomplete both because the number of 
execution paths in the program under test is huge, and because symbolic execution, constraint 
generation, and constraint solving can be imprecise due to complex program statements (pointer 
manipulations, floating-point operations, etc.), calls to external operating-system and library func-
tions, and large numbers of constraints that cannot all be solved perfectly in a reasonable amount of 
time. Therefore, we are forced to explore practical tradeoffs. 

SAGE
Whitebox fuzzing was first implemented in SAGE (Scalable Automated Guided Execu tion).5 Because 
SAGE targets large applications where a single execution may contain hundreds of millions of 
instructions, symbolic execution is its slowest compo nent. Therefore, SAGE implements a novel 
directed-search algorithm, dubbed generational search, that maximizes the number of new input tests 
generated from each symbolic execution. Given a path con straint, all the constraints in that path 
are systemati cally negated one by one, placed in a conjunction with the prefix of the path constraint 
leading to it, and at tempted to be solved by a constraint solver. This way, a single symbolic execution 
can generate thousands of new tests. (In contrast, a standard depth-first or breadth-first search would 
negate only the last or first constraint in each path constraint and generate at most one new test per 
symbolic execution.) 

The pro gram shown in figure 2 takes four bytes as input and contains an error when the value of 

void top(char input[4] {
 int cnt=0;
 if (input[0] == ’b’) cnt++;
 if (input[1] == ’a’) cnt++;
 if (input[2] == ’d’) cnt++;
 if (input[3] == ’!’) cnt++;
 if (cnt >= 4) abort(); ?? error
}  

0
good

1
goo!

1
godd

2
god!

1
gaod

2
gao!

2
gadd

3
gad!

1
bood

2
boo!

3
bod!

1
bodd

2
baod

3
bao!

3
badd

4
bad!

Example of Program (Left) and Its Search Space (Right) 
with the Value of cnt at the End of Each Run
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Symbolic Execution

• Symbolic execution has been 
previously used to test device 
drivers (SymDrive, 2012)


• But complex drivers (WiFi, 
Ethernet) contain patterns that 
make life hard for symbolic 
execution


• Repetitive loops with symbolic 
branches can cause path 
explosion

Hard-to-Test Code Patterns 8

1 int test_io() {

2 for (u32 i = 0; i < 0x100; i++) {

3 iowrite(OFFSET, i);

4 delay(10);

5 reg = ioread(OFFSET);

6 if (reg != i)

7 return -EIO;

8 }

9 return 0;

10 }

Listing 3: Atheros ath9k driver initialization test code snippet

runs.
To overcome this limitation of concolic execution, we use

forced execution [33] to get the desired path and generate the
correct input that will traverse that path, avoiding unnecessary
branch flips. For the example in Listing 3, forced execution
would allow us to traverse all 0x100 iterations of the loop
with a single execution by setting the branch on line 6 to false.
Concolic execution can then be used on this path to find the
inputs that satisfy the branch condition in a single step, rather
than having to solve each instance of the branch one at a time.

One pitfall of forced execution is that we cannot guarantee
that the executions we generate correspond to any input: we
may traverse paths that have conflicting conditions, resulting
in an infeasible path. During golden seed search, we always
try forced execution first, and retry with an input provided
by the solver if the first execution fails due to an infeasible
path. If that also fails, we exclude the tested branches from
consideration in the golden seed search. In Section 4.5 we
describe in detail how we implement forced execution by
modifying the generated TCG IR on the fly.

3.4 Traditional and Hybrid Fuzzing
Our design inherits kAFL’s [43] traditional fuzzing design.
The core fuzzer mutates and records inputs based on the cov-
erage feedback. With the ability to run concolic execution,
we are able to provide hybrid fuzzing as well. After seed
generation, we use traditional fuzzing most of the time and
invoke concolic execution to get over hard-to-pass branch
conditions. When encountering a new path, the fuzzer core
forwards the input to the concolic executor to generate inputs
for neighboring paths. The new inputs are sent to the fuzzer
core to test whether they result in new coverage.

4 Implementation

In this section, we discuss several relevant implementation
details of our implementation. Overall, our implementation
consists of 8,754 lines of new or modified code in C and
Python; the total lines of code for each component are listed
in Table 1. All code is released as open source to help future

research and replication of our results.

Component Lines
Linux Comm Driver and DMA Tracking 470 + 0

PANDA Concolic Support 842 + 77
PANDA Customization 2421 + 146

Fuzzing Backend (adapted from kAFL) 872 + 331
Fuzzing Scripts 874 + 0
Concolic Scripts 2721 + 0

Table 1: Drifuzz components and lines of code, as counted by
cloc. We describe changes by added line + modified line.

4.1 Multi-buffer Input Feeding
Prior OS-peripheral boundary fuzzers [50] represent the
fuzzer input as a single file, returning data from this file se-
quentially as the driver attempts to read data from the device.
This compact sequential representation allows mutation strate-
gies such as bit-flips and interesting bytes to work well, but
may cause the same input to exhibit different behavior with
concurrent drivers, as the kernel scheduler could run threads
in a different order. This in turn could make it more difficult
to reproduce test cases produced by the fuzzer and makes cov-
erage measurements less stable. Concurrency is common in
device drivers, which may register some tasks to run in back-
ground threads while interrupt handling occurs in another
thread.

Instead, we store the fuzzer input as a collection of se-
quences separated according to their I/O address or DMA
buffer size. The intuition is that different I/O addresses usu-
ally have different purposes and different threads usually work
on different tasks, so this separation is more likely to provide
the same behavior and coverage even if threads run in a dif-
ferent order. Our evaluation of this technique did not uncover
major differences in bitmap coverage for the drivers we tested.
However, because it does not add additional overhead and
could still have benefits for drivers we have not yet tested, we
leave it enabled.

4.2 KASAN Optimization
A major factor in the effectiveness of a fuzzer is the speed
at which it can test a single input. While evaluating prior
work [50], we found that virtual machine execution speed is
much slower than native speed for tasks such as running the
Linux modprobe command, which loads and initializes a de-
vice driver. Although the command can finish in milliseconds
natively, it takes more than one second for some drivers inside
the virtual machine.

Analyzing the performance of the execution, we found that
the overhead is caused by stack walking in Kernel Address
Sanitizer (KASAN). By default, KASAN records each mem-
ory (de)allocation and its call stack; although this information

6
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Fuzzing

• Another popular technique for software testing in recent years is fuzzing


• Popularized by mutational fuzzers like American Fuzzy Lop (AFL) 

• Starting with some seed inputs, loop:


• Apply random mutation to inputs


• Execute the program on each input


• Measure coverage (usually edge coverage)


• Select inputs that find new coverage

9
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Hard-to-Test Code Patterns
Fuzzing

10

1 #define VNIC_RES_MAGIC 0x766E6963L

2 #define VNIC_RES_VERSION 0L

3 if (ioread32(&rh->magic) != VNIC_RES_MAGIC ||

4 ioread32(&rh->version) != VNIC_RES_VERSION) {

5 return -EINVAL;

6 }

7 return 0;

Listing 1: Magic value check in snic.

3 Drifuzz Design

As shown in Figure 1, we design Drifuzz with three ma-
jor parts: seed generation, fuzzing, and concolic execution.
We first generate the golden seed (Section 3.2) that helps us
reach deep driver code with the help of concolic execution
and forced execution (Section 3.3). We then pass the golden
seed to our fuzzer, which sends mutated inputs to multiple
KVM virtual machines. Each virtual machine (VM) handles
MMIO/DMA reads with the content of the input seeds (Sec-
tion 3.1); seeds are split up and reserved by I/O address to
improve stability (Section 4.1). The virtual machine guest
initializes the device driver and brings up the target network
interface. After execution, the virtual machine reports the
branch coverage bitmap to the fuzzer core. The fuzzer sup-
ports hybrid fuzzing using a concolic execution thread (Sec-
tion 3.4).

3.1 Device Driver Inputs
MMIO and DMA are the two major sources of input for a
device driver. Working on low level, PCI drivers usually use
port I/O, MMIO and DMA directly. On the other hand, USB
drivers work on higher layer with a universal protocol where
data are transferred as packets.

MMIO is handled by QEMU’s PCI device emulation inter-
face. When we create an emulated device, we add memory-
mapped regions that reflect the PCI memory layout on real
hardware. Whenever the guest OS accesses these MMIO re-
gions, QEMU queries our emulated device, which forwards
MMIO reads to the fuzzer core. We ignore any writes to the
emulated MMIO. Because QEMU implements the port I/O
space as another memory region in its own address space, we
also handle port I/O in this way.

DMA accesses require special handling. The Linux docu-
mentation defines two types of DMA buffers: consistent DMA
and streaming DMA. Consistent DMA works synchronously:
the driver and the device can read and write to the allocated
space at any time and the result is visible to the other end
immediately. Streaming DMA uses asynchronous communi-
cation, where the driver allocates a buffer and lets the device
asynchronously access the buffer. When the device finishes
the work, it notifies the driver through MMIO or an interrupt.
The driver then deallocates the buffer and reads the data if
needed.

We modify the kernel code to intercept DMA allocation and
feed fuzzed input via the DMA buffer. We handle consistent
and streaming DMA in different ways. Because consistent
DMA is similar to MMIO, we register the memory region
as an MMIO region with QEMU when allocating consistent
DMA, and remove the region when it is deallocated. On the
other hand, streaming DMA is used for transferring a larger
amount of data asynchronously. Reading input happens after
deallocation. Therefore, we fill the buffer with fuzzing input
whenever deallocation occurs.

USB devices communicate data mostly via bulk transfers.
At the lowest level, these data packets are transferred by the
DMA controller and work similarly to streaming DMA. How-
ever, we leverage the USB layer of QEMU and handle them
at the packet level, similar to USBFuzz [36].

3.2 Golden Seed Search
In Section 2.3.2, we noted that the key problem of fuzzing
drivers without the corresponding hardware is the lack of
a good initial seed: without such input, fuzzing mostly gets
stuck early in driver initialization and cannot explore more
complex device driver code. In this subsection, we introduce
a search algorithm based on concolic execution to find such a
“golden seed” for our fuzzer.

Many symbolic branches in driver code have preferred
conditions. Examples include an I/O flag that indicates the
device is still alive, a check if there is new input, or a version
ID check. Such branches must always resolve the same way if
driver initialization is to succeed. If they do not, the driver will
typically abort and prevent further exploration of the driver
code; we call these blocking branches. Hence, we can find
such branches using concolic execution and fix them to the
preferred condition to reach deeper code.

We define a preference as the mapping from branch instruc-
tions to their preferred conditions (Pre f erence : Branch !
Condition). A blocking branch is often indicated by an in-
crease in coverage when flipped and there may be multiple
blocking branches in one execution. Our algorithm greed-
ily attempts to maximize a score based on the number of
unique symbolic branches. Our golden seed search algorithm
iteratively identifies the blocking branches while executing
the seeds and improves the seed using a constraint solver to
unlock key branches.

Listing 2 shows our algorithm in detail. Starting from an
empty preferences map (line 2), we initialize the set of sym-
bolic branches to consider by executing a random input and
noting any branches that depend on input from the device
and storing it in new_branches. The while loop (lines 6–27)
then iteratively grows the preference map by attempting to
find the preferred condition for each new branch. It does so
by using forced execution (described in the next section) to
run the input with the branch set to either true or false (line
13), which records all symbolic branches and produces a new

4

Problem: random mutations have a very hard time guessing magic values!
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Golden Seed Generation

• Key Idea: Many of these hard-to-test patterns occur during driver initialization


• There is often one “main path” that leads to successful initialization


• Fuzzers get stuck on hard-to-pass blocking branches in this phase


• If we can find a good seed that initializes the driver using more heavyweight 
techniques like symbolic execution, then we can use it to bootstrap our fuzzing


• Approach: use concolic execution to greedily increase the number of symbolic 
branches covered and learn “preferred conditions” for blocking branches


• To help with repetitive loops, use forced execution to gather many constraints at 
once

11
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• Recall our problematic example 
from before: repetitive check in a 
loop


• Normal concolic execution would 
need 256 (0x100) iterations to get 
past the loop


• We can instead force the branch 
on line 6 to always return false 

• Then collect all the path 
constraints & solve with a single 
iteration

Optimization: Forced Execution 12

1 int test_io() {

2 for (u32 i = 0; i < 0x100; i++) {

3 iowrite(OFFSET, i);

4 delay(10);

5 reg = ioread(OFFSET);

6 if (reg != i)

7 return -EIO;

8 }

9 return 0;

10 }

Listing 3: Atheros ath9k driver initialization test code snippet

runs.
To overcome this limitation of concolic execution, we use

forced execution [33] to get the desired path and generate the
correct input that will traverse that path, avoiding unnecessary
branch flips. For the example in Listing 3, forced execution
would allow us to traverse all 0x100 iterations of the loop
with a single execution by setting the branch on line 6 to false.
Concolic execution can then be used on this path to find the
inputs that satisfy the branch condition in a single step, rather
than having to solve each instance of the branch one at a time.

One pitfall of forced execution is that we cannot guarantee
that the executions we generate correspond to any input: we
may traverse paths that have conflicting conditions, resulting
in an infeasible path. During golden seed search, we always
try forced execution first, and retry with an input provided
by the solver if the first execution fails due to an infeasible
path. If that also fails, we exclude the tested branches from
consideration in the golden seed search. In Section 4.5 we
describe in detail how we implement forced execution by
modifying the generated TCG IR on the fly.

3.4 Traditional and Hybrid Fuzzing
Our design inherits kAFL’s [43] traditional fuzzing design.
The core fuzzer mutates and records inputs based on the cov-
erage feedback. With the ability to run concolic execution,
we are able to provide hybrid fuzzing as well. After seed
generation, we use traditional fuzzing most of the time and
invoke concolic execution to get over hard-to-pass branch
conditions. When encountering a new path, the fuzzer core
forwards the input to the concolic executor to generate inputs
for neighboring paths. The new inputs are sent to the fuzzer
core to test whether they result in new coverage.

4 Implementation

In this section, we discuss several relevant implementation
details of our implementation. Overall, our implementation
consists of 8,754 lines of new or modified code in C and
Python; the total lines of code for each component are listed
in Table 1. All code is released as open source to help future

research and replication of our results.

Component Lines
Linux Comm Driver and DMA Tracking 470 + 0

PANDA Concolic Support 842 + 77
PANDA Customization 2421 + 146

Fuzzing Backend (adapted from kAFL) 872 + 331
Fuzzing Scripts 874 + 0
Concolic Scripts 2721 + 0

Table 1: Drifuzz components and lines of code, as counted by
cloc. We describe changes by added line + modified line.

4.1 Multi-buffer Input Feeding
Prior OS-peripheral boundary fuzzers [50] represent the
fuzzer input as a single file, returning data from this file se-
quentially as the driver attempts to read data from the device.
This compact sequential representation allows mutation strate-
gies such as bit-flips and interesting bytes to work well, but
may cause the same input to exhibit different behavior with
concurrent drivers, as the kernel scheduler could run threads
in a different order. This in turn could make it more difficult
to reproduce test cases produced by the fuzzer and makes cov-
erage measurements less stable. Concurrency is common in
device drivers, which may register some tasks to run in back-
ground threads while interrupt handling occurs in another
thread.

Instead, we store the fuzzer input as a collection of se-
quences separated according to their I/O address or DMA
buffer size. The intuition is that different I/O addresses usu-
ally have different purposes and different threads usually work
on different tasks, so this separation is more likely to provide
the same behavior and coverage even if threads run in a dif-
ferent order. Our evaluation of this technique did not uncover
major differences in bitmap coverage for the drivers we tested.
However, because it does not add additional overhead and
could still have benefits for drivers we have not yet tested, we
leave it enabled.

4.2 KASAN Optimization
A major factor in the effectiveness of a fuzzer is the speed
at which it can test a single input. While evaluating prior
work [50], we found that virtual machine execution speed is
much slower than native speed for tasks such as running the
Linux modprobe command, which loads and initializes a de-
vice driver. Although the command can finish in milliseconds
natively, it takes more than one second for some drivers inside
the virtual machine.

Analyzing the performance of the execution, we found that
the overhead is caused by stack walking in Kernel Address
Sanitizer (KASAN). By default, KASAN records each mem-
ory (de)allocation and its call stack; although this information

6

• NB: This can lead to infeasible 
path constraints! But works well 
in practice.
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Golden Seed Generation Algorithm 13Figure 1: OS-peripheral boundary fuzzing with Drifuzz: our golden seed generation algorithm creates good initial inputs to
overcome difficult checks during driver initialization. These seeds are then used as a starting point for a hypervisor-based
concolic fuzzer that tests deeper code in the driver by repeatedly restoring a VM snapshot, initializing the driver, and feeding
fuzzer-generated inputs via a virtual peripheral.

input that induces the path. If this exposes new branches,
preferred_results is updated so the branches can be consid-
ered in the next iteration. Branch conditions that are already
present in the most recent execution are skipped (lines 11–12),
since they are already satisfied by the current trace.

Once all branches in the current iteration have been evalu-
ated, we pick the highest-scoring branch condition, save it in
the preferences (lines 23–24), and select corresponding input
and the branches it exposed to work on in the next iteration
(lines 26–27). The loop terminates when no new branches are
uncovered while testing branch conditions (lines 18–20), and
designates the current input as the golden seed.

Empirically, we have found that the best metric for evalu-
ating inputs is the number of unique symbolic branches they
expose. Compared to block or branch coverage, the number of
unique symbolic branches emphasizes how our inputs affect
the execution path. If there is a tie, we prefer the input that
results in fewer total symbolic branches (as shorter traces are
more efficient for fuzzing).

3.3 Forced Execution
Forced execution optimizes flipping repetitive concolic
branches in device drivers by simply forcing a branch to
go in the desired direction rather than attempting to solve the
constraints. Conventional concolic execution can only flip
one branch per execution; if a check is repetitive and has a
preferred condition, this will result in many wasted executions
and calls to the constraint solver. The code in Listing 3 shows
a real-world example in the Atheros ath9k driver. The optimal
path traverses the loop 256 (0x100) times with the condition
on line 6 returning false each time, requiring 256 concolic

1 def greedy_search(input):

2 preferences = {} # pc: cond

3 result = forced_execute(input, preferences)

4 new_branches = result.concolic_branches()

5
6 while True:

7 preferred_results = {}

8 for br in new_branches:

9 # Test for the preference condition

10 for c in [True, False]:

11 if satisfy(result, {br, c}):

12 continue

13 test_result = forced_execute(input,

merge(preferences, {br: c}))

14 if has_new_branch(test_result):

15 preferred_results[(br, c)] =

test_result

16
17 # No new branches found.

18 if len(preferred_results) == 0:

19 print("The end.")

20 break

21
22 # Prepare for next iteration

23 br, cond, result =

24 select_best_preference(

preferred_results)

25 preferences = merge(preferences, {br:cond})

26 new_branches = new_branches(result)

27 input = result.output

28 golden_seed = input

Listing 2: Golden seed search algorithm
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Figure 1: OS-peripheral boundary fuzzing with Drifuzz: our golden seed generation algorithm creates good initial inputs to
overcome difficult checks during driver initialization. These seeds are then used as a starting point for a hypervisor-based
concolic fuzzer that tests deeper code in the driver by repeatedly restoring a VM snapshot, initializing the driver, and feeding
fuzzer-generated inputs via a virtual peripheral.
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Figure 1: OS-peripheral boundary fuzzing with Drifuzz: our golden seed generation algorithm creates good initial inputs to
overcome difficult checks during driver initialization. These seeds are then used as a starting point for a hypervisor-based
concolic fuzzer that tests deeper code in the driver by repeatedly restoring a VM snapshot, initializing the driver, and feeding
fuzzer-generated inputs via a virtual peripheral.

input that induces the path. If this exposes new branches,
preferred_results is updated so the branches can be consid-
ered in the next iteration. Branch conditions that are already
present in the most recent execution are skipped (lines 11–12),
since they are already satisfied by the current trace.

Once all branches in the current iteration have been evalu-
ated, we pick the highest-scoring branch condition, save it in
the preferences (lines 23–24), and select corresponding input
and the branches it exposed to work on in the next iteration
(lines 26–27). The loop terminates when no new branches are
uncovered while testing branch conditions (lines 18–20), and
designates the current input as the golden seed.

Empirically, we have found that the best metric for evalu-
ating inputs is the number of unique symbolic branches they
expose. Compared to block or branch coverage, the number of
unique symbolic branches emphasizes how our inputs affect
the execution path. If there is a tie, we prefer the input that
results in fewer total symbolic branches (as shorter traces are
more efficient for fuzzing).

3.3 Forced Execution
Forced execution optimizes flipping repetitive concolic
branches in device drivers by simply forcing a branch to
go in the desired direction rather than attempting to solve the
constraints. Conventional concolic execution can only flip
one branch per execution; if a check is repetitive and has a
preferred condition, this will result in many wasted executions
and calls to the constraint solver. The code in Listing 3 shows
a real-world example in the Atheros ath9k driver. The optimal
path traverses the loop 256 (0x100) times with the condition
on line 6 returning false each time, requiring 256 concolic

1 def greedy_search(input):

2 preferences = {} # pc: cond

3 result = forced_execute(input, preferences)

4 new_branches = result.concolic_branches()

5
6 while True:

7 preferred_results = {}

8 for br in new_branches:

9 # Test for the preference condition

10 for c in [True, False]:

11 if satisfy(result, {br, c}):

12 continue

13 test_result = forced_execute(input,

merge(preferences, {br: c}))

14 if has_new_branch(test_result):

15 preferred_results[(br, c)] =

test_result

16
17 # No new branches found.

18 if len(preferred_results) == 0:

19 print("The end.")

20 break

21
22 # Prepare for next iteration

23 br, cond, result =

24 select_best_preference(

preferred_results)

25 preferences = merge(preferences, {br:cond})

26 new_branches = new_branches(result)

27 input = result.output

28 golden_seed = input

Listing 2: Golden seed search algorithm
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• Golden seed search implemented using 
PANDA dynamic analysis platform 
(https://panda.re)


• PANDA supports dynamic taint analysis by 
lifting binary code to LLVM (via S2E), 
supports whole-system record/replay


• We added concolic execution support by 
having taint system track Z3 symbolic exprs


• Fuzzing component extends previous KVM-
based fuzzer, kAFL

Implementation 15
1 int test_io() {

2 for (u32 i = 0; i < 0x100; i++) {

3 iowrite(OFFSET, i);

4 delay(10);

5 reg = ioread(OFFSET);

6 if (reg != i)

7 return -EIO;

8 }

9 return 0;

10 }

Listing 3: Atheros ath9k driver initialization test code snippet

runs.
To overcome this limitation of concolic execution, we use

forced execution [33] to get the desired path and generate the
correct input that will traverse that path, avoiding unnecessary
branch flips. For the example in Listing 3, forced execution
would allow us to traverse all 0x100 iterations of the loop
with a single execution by setting the branch on line 6 to false.
Concolic execution can then be used on this path to find the
inputs that satisfy the branch condition in a single step, rather
than having to solve each instance of the branch one at a time.

One pitfall of forced execution is that we cannot guarantee
that the executions we generate correspond to any input: we
may traverse paths that have conflicting conditions, resulting
in an infeasible path. During golden seed search, we always
try forced execution first, and retry with an input provided
by the solver if the first execution fails due to an infeasible
path. If that also fails, we exclude the tested branches from
consideration in the golden seed search. In Section 4.5 we
describe in detail how we implement forced execution by
modifying the generated TCG IR on the fly.

3.4 Traditional and Hybrid Fuzzing
Our design inherits kAFL’s [43] traditional fuzzing design.
The core fuzzer mutates and records inputs based on the cov-
erage feedback. With the ability to run concolic execution,
we are able to provide hybrid fuzzing as well. After seed
generation, we use traditional fuzzing most of the time and
invoke concolic execution to get over hard-to-pass branch
conditions. When encountering a new path, the fuzzer core
forwards the input to the concolic executor to generate inputs
for neighboring paths. The new inputs are sent to the fuzzer
core to test whether they result in new coverage.

4 Implementation

In this section, we discuss several relevant implementation
details of our implementation. Overall, our implementation
consists of 8,754 lines of new or modified code in C and
Python; the total lines of code for each component are listed
in Table 1. All code is released as open source to help future

research and replication of our results.

Component Lines
Linux Comm Driver and DMA Tracking 470 + 0

PANDA Concolic Support 842 + 77
PANDA Customization 2421 + 146

Fuzzing Backend (adapted from kAFL) 872 + 331
Fuzzing Scripts 874 + 0
Concolic Scripts 2721 + 0

Table 1: Drifuzz components and lines of code, as counted by
cloc. We describe changes by added line + modified line.

4.1 Multi-buffer Input Feeding
Prior OS-peripheral boundary fuzzers [50] represent the
fuzzer input as a single file, returning data from this file se-
quentially as the driver attempts to read data from the device.
This compact sequential representation allows mutation strate-
gies such as bit-flips and interesting bytes to work well, but
may cause the same input to exhibit different behavior with
concurrent drivers, as the kernel scheduler could run threads
in a different order. This in turn could make it more difficult
to reproduce test cases produced by the fuzzer and makes cov-
erage measurements less stable. Concurrency is common in
device drivers, which may register some tasks to run in back-
ground threads while interrupt handling occurs in another
thread.

Instead, we store the fuzzer input as a collection of se-
quences separated according to their I/O address or DMA
buffer size. The intuition is that different I/O addresses usu-
ally have different purposes and different threads usually work
on different tasks, so this separation is more likely to provide
the same behavior and coverage even if threads run in a dif-
ferent order. Our evaluation of this technique did not uncover
major differences in bitmap coverage for the drivers we tested.
However, because it does not add additional overhead and
could still have benefits for drivers we have not yet tested, we
leave it enabled.

4.2 KASAN Optimization
A major factor in the effectiveness of a fuzzer is the speed
at which it can test a single input. While evaluating prior
work [50], we found that virtual machine execution speed is
much slower than native speed for tasks such as running the
Linux modprobe command, which loads and initializes a de-
vice driver. Although the command can finish in milliseconds
natively, it takes more than one second for some drivers inside
the virtual machine.

Analyzing the performance of the execution, we found that
the overhead is caused by stack walking in Kernel Address
Sanitizer (KASAN). By default, KASAN records each mem-
ory (de)allocation and its call stack; although this information
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• Evaluation somewhat limited — SymDrive is 10 years old, had to backport Drifuzz to 
Linux 3.1.1 and add configs for some WiFi drivers


• Evaluation tests bugs found & whether network interface is initialized


• Result: SymDrive usually completes more quickly, but can get stuck due to path 
explosion often does not successfully initialize interface


• Drifuzz also finds two bugs, one of which was still unfixed in current Linux

Evaluation: Comparison with SymDrive 16

Driver RandomSeed RS+C GoldenSeed GS+C Increase Signif
ath9k 310.9 522.9 2070.9 2793.7 798.6% ***

ath10k_pci 462.8 657.2 785.6 793.4 71.4% ***
rtwpci 183.1 163.6 384.1 386 110.8% ***
8139cp 173.1 172.4 173.3 173.7 0.3% *
atlantic 372.1 1441.9 1033.7 1532.5 311.9% ***

stmmac_pci 798.9 749.5 818.5 812.9 1.8% n.s.
snic 54 81.7 83 83.7 55.0% ****

Table 3: Mean bitmap byte coverage when fuzzing PCI network drivers across 10 trials with coverage increase between the
baseline (RandomSeed) and our full system (GS+C). RS: random seed; GS: golden seed; +C: concolic-assisted. Asterisks indicate
the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.

Driver SymDrive Intf Drifuzz Intf Bugs
ath5k 13s ⇥ 65m X 1
ath9k 193s X 138m X ⇥

atmel_pci 2s ⇥ 29m X ⇥
orinoco_pci �420m ⇥ 64m X 1

Table 4: Comparison between SymDrive and Drifuzz’s con-
colic search; we perform three trials and report the mean. Intf
indicates whether the network interface is found. The Bugs
column shows bugs Drifuzz discovered in Linux v3.1.1 that
SymDrive does not find.

Driver Agamotto Drifuzz Increase Signif
ath9k 503.4 2782.5 452.7% ***

ath10k_pci 412.9 889.9 115.5% ***
rtwpci 163 394.2 141.8% ***
8139cp 105.7 171.8 62.5% ****
atlantic 265.8 841 216.4% ***

stmmac_pci 742.9 914.8 23.1% ***
snic 51 86.1 68.7% ****

Table 5: Mean bitmap byte coverage from 10 trials for Ag-
amotto and Drifuzz with coverage increase and statistical
significance: *: p<0.05, **: p<0.01,***: p<0.001 and ****:
p<0.0001).

Agamotto also measures coverage in the entire network sub-
system; because Drifuzz is optimized for driver fuzzing (in
particular, its concolic analysis is disabled outside of driver
code); we limit Agamotto’s coverage tracking to driver code
as well.

PCI Drivers We compare Drifuzz with Agamotto on PCI-
based drivers in Table 5. We find that Drifuzz achieves, on
average, 154% (2.5×) higher coverage across PCI drivers.
These results are significant at the p<0.001 level or better for
all tested drivers. Despite a shorter experiment, the coverage
is generally on par with the results of our ablation study;
we believe this is due to the significantly faster single-core
performance on the desktop system.

Driver Agamotto Drifuzz Bug Signif
ar5523 47 60.7 1 ****
mwifiex 66 126.7 1 ****

rsi 76 217.3 2 ****

Table 6: Mean block coverage for USB targets from 10 trials,
Agamotto vs Drifuzz, the number of newly discovered bugs
by Drifuzz, and statistical significance: *: p<0.05, **: p<0.01,
***: p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding
In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;
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the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.
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Table 4: Comparison between SymDrive and Drifuzz’s con-
colic search; we perform three trials and report the mean. Intf
indicates whether the network interface is found. The Bugs
column shows bugs Drifuzz discovered in Linux v3.1.1 that
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Table 5: Mean bitmap byte coverage from 10 trials for Ag-
amotto and Drifuzz with coverage increase and statistical
significance: *: p<0.05, **: p<0.01,***: p<0.001 and ****:
p<0.0001).

Agamotto also measures coverage in the entire network sub-
system; because Drifuzz is optimized for driver fuzzing (in
particular, its concolic analysis is disabled outside of driver
code); we limit Agamotto’s coverage tracking to driver code
as well.

PCI Drivers We compare Drifuzz with Agamotto on PCI-
based drivers in Table 5. We find that Drifuzz achieves, on
average, 154% (2.5×) higher coverage across PCI drivers.
These results are significant at the p<0.001 level or better for
all tested drivers. Despite a shorter experiment, the coverage
is generally on par with the results of our ablation study;
we believe this is due to the significantly faster single-core
performance on the desktop system.

Driver Agamotto Drifuzz Bug Signif
ar5523 47 60.7 1 ****
mwifiex 66 126.7 1 ****

rsi 76 217.3 2 ****

Table 6: Mean block coverage for USB targets from 10 trials,
Agamotto vs Drifuzz, the number of newly discovered bugs
by Drifuzz, and statistical significance: *: p<0.05, **: p<0.01,
***: p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding
In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;
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Table 3: Mean bitmap byte coverage when fuzzing PCI network drivers across 10 trials with coverage increase between the
baseline (RandomSeed) and our full system (GS+C). RS: random seed; GS: golden seed; +C: concolic-assisted. Asterisks indicate
the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.
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atmel_pci 2s ⇥ 29m X ⇥
orinoco_pci �420m ⇥ 64m X 1

Table 4: Comparison between SymDrive and Drifuzz’s con-
colic search; we perform three trials and report the mean. Intf
indicates whether the network interface is found. The Bugs
column shows bugs Drifuzz discovered in Linux v3.1.1 that
SymDrive does not find.
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Table 5: Mean bitmap byte coverage from 10 trials for Ag-
amotto and Drifuzz with coverage increase and statistical
significance: *: p<0.05, **: p<0.01,***: p<0.001 and ****:
p<0.0001).

Agamotto also measures coverage in the entire network sub-
system; because Drifuzz is optimized for driver fuzzing (in
particular, its concolic analysis is disabled outside of driver
code); we limit Agamotto’s coverage tracking to driver code
as well.

PCI Drivers We compare Drifuzz with Agamotto on PCI-
based drivers in Table 5. We find that Drifuzz achieves, on
average, 154% (2.5×) higher coverage across PCI drivers.
These results are significant at the p<0.001 level or better for
all tested drivers. Despite a shorter experiment, the coverage
is generally on par with the results of our ablation study;
we believe this is due to the significantly faster single-core
performance on the desktop system.

Driver Agamotto Drifuzz Bug Signif
ar5523 47 60.7 1 ****
mwifiex 66 126.7 1 ****

rsi 76 217.3 2 ****

Table 6: Mean block coverage for USB targets from 10 trials,
Agamotto vs Drifuzz, the number of newly discovered bugs
by Drifuzz, and statistical significance: *: p<0.05, **: p<0.01,
***: p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding
In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;
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ath9k 310.9 522.9 2070.9 2793.7 798.6% ***

ath10k_pci 462.8 657.2 785.6 793.4 71.4% ***
rtwpci 183.1 163.6 384.1 386 110.8% ***
8139cp 173.1 172.4 173.3 173.7 0.3% *
atlantic 372.1 1441.9 1033.7 1532.5 311.9% ***

stmmac_pci 798.9 749.5 818.5 812.9 1.8% n.s.
snic 54 81.7 83 83.7 55.0% ****

Table 3: Mean bitmap byte coverage when fuzzing PCI network drivers across 10 trials with coverage increase between the
baseline (RandomSeed) and our full system (GS+C). RS: random seed; GS: golden seed; +C: concolic-assisted. Asterisks indicate
the significance level as measured by the Mann-Whitney U test: *: p<0.05, **: p<0.01, ***: p<0.001, and ****: p<0.0001.

Driver SymDrive Intf Drifuzz Intf Bugs
ath5k 13s ⇥ 65m X 1
ath9k 193s X 138m X ⇥

atmel_pci 2s ⇥ 29m X ⇥
orinoco_pci �420m ⇥ 64m X 1

Table 4: Comparison between SymDrive and Drifuzz’s con-
colic search; we perform three trials and report the mean. Intf
indicates whether the network interface is found. The Bugs
column shows bugs Drifuzz discovered in Linux v3.1.1 that
SymDrive does not find.
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based drivers in Table 5. We find that Drifuzz achieves, on
average, 154% (2.5×) higher coverage across PCI drivers.
These results are significant at the p<0.001 level or better for
all tested drivers. Despite a shorter experiment, the coverage
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Agamotto vs Drifuzz, the number of newly discovered bugs
by Drifuzz, and statistical significance: *: p<0.05, **: p<0.01,
***: p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding
In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;
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***: p<0.001 and ****: p<0.0001). GS: golden seed byte
coverage.

USB Drivers Here, we evaluate Agamotto and Drifuzz on
the three USB WiFi drivers that were included in Agamotto’s
evaluation. For consistency with Drifuzz, we omit the USB
disconnect option when testing Agamotto and compare cov-
erage achieved within the driver. Note that unlike the other
experiments in our evaluation, we measure block coverage
rather than edge coverage because Agamotto (and Syzkaller,
on which Agamotto’s USB support is based) do not report
branch coverage when fuzzing USB devices. The results are
shown in Table 6.

Drifuzz outperforms Agamotto on every driver, finding four
previously unknown bugs that Agamotto fails to detect. We
use the interactive coverage UI (inherited by Syzkaller) and
confirm that the buggy code is not covered by Agamotto in
any of the three drivers.

5.4 Bug Finding
In addition to the bugs discovered in the course of our main
evaluation, we also conducted an ad hoc test of the ath9k
USB driver with the golden seed generation algorithm. We
were able to find two bugs in this driver using Drifuzz, both
of which were already reported by Syzkaller. We submitted
patch for one of the two, which had not yet been fixed.

Overall, we have used Drifuzz to find eleven previously
unknown bugs in four PCI drivers and four USB drivers. We
discovered two other PCI driver bugs manually during the
development of our fuzzer. We have submitted patches to the
Linux open-source community for fourteen discovered bugs;

11
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Summary Driver Type Fixed Stage
KASAN: slab-out-of-bounds in ath10k_pci_hif_exchange_bmi_msg ath10k PCI X seed-gen
KASAN: slab-out-of-bounds in hw_atl_utils_fw_upload_dwords atlantic PCI X fuzzing
KASAN: double-free or invalid-free in consume_skb atlantic PCI X seed-gen
KASAN: use-after-free in stmmac_napi_poll_rx stmmac PCI X seed-gen
KASAN: use-after-free in aq_ring_rx_clean atlantic PCI X seed-gen
KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111 ath5k PCI X seed-gen
KASAN: null-ptr-deref ar5523 USB X seed-gen
skbuff: skb_over_panic mwifiex USB X seed-gen
KASAN: slab-out-of-bounds in ath9k_hif_usb_rx_cb ath9k_htc USB X seed-gen
KASAN: slab-out-of-bounds in rsi_read_pkt rsi USB X seed-gen
KASAN: use-after-free in rsi_rx_done_handler rsi USB X seed-gen
KASAN: use-after-free in rsi_read_pkt rsi USB fuzzing

Table 7: Summary of new memory/panic bugs we found, the name of the buggy device driver, bus type, whether fixed upstream
and the stage we found the bug

is better able to handle complicated drivers and reach deeper
paths, the snapshot mechanism could also potentially bene-
fit Drifuzz if the necessary symbolic state were saved in the
snapshot.

Symbolic Execution SymDrive [40] and DDT [28] are ear-
lier works that use symbolic execution to test device drivers.
However, as we see in our comparison with SymDrive (Sec-
tion 5.3.1), these symbolic approaches may struggle with
complex code such as WiFi drivers due to path explosion.

Hardware-based Device Driver Testing Hardware-in-the-
loop testing can be an effective bug-finding strategy [34, 41,
49, 52]. Unfortunately, this technique requires significant hu-
man effort and resources to test a new device. For example,
Periscope [49] needs to flash a custom Android kernel to the
device under test and Charm [52] requires porting the device
driver to a modified kernel. One recent work, BOSD [29],
uses record and replay to scale fuzzing of GPU drivers by
replaying recorded responses from the real hardware on mul-
tiple cores, but at least one real device is still needed, and it
focuses only on the system call boundary.

Firmware Rehosting On the embedded side, there are
firmware testing tools that apply fuzzing [19, 32] and sym-
bolic execution [5, 22, 58]. These tools mainly work with IoT
devices that run custom firmware on the ARM architecture.
P2IM [19] and DICE [32] use heuristics tuned for micro-
controllers to categorize the type of input registers, such as
control registers, status registers and data registers.

In concurrent work, µemu [58] and Jetset [22] use symbolic
execution in an attempt to create higher-fidelity models of
embedded peripherals; while µemu targets relatively simple
microcontrollers, Jetset can partially emulate more complex
embedded systems such as a Raspberry Pi. Jetset approxi-
mates the interprocedural distance to a goal location in the
firmware and uses this distance to choose a direction at sym-
bolic branches. This heuristic can bypass some constructs

such as query loops, but in more complex device drivers, er-
ror paths are often shorter than paths that correctly initialize
the driver. For example, Jetset’s distance-based heuristic will
favor the error return in Listing 3; while Jetset can eventually
recover by backtracking, this can be quite expensive, particu-
larly when the initial error and the goal are far apart.

8 Conclusion

In this paper we presented a technique for efficiently generat-
ing “golden seeds” that allow the OS-peripheral boundary to
be tested efficiently without access to real hardware periph-
erals. Our implementation augments PANDA’s existing taint
analysis to perform concolic execution, and leverages TCG
modification to optimize concolic golden seed generation.
Our evaluation of fourteen WiFi and Ethernet drivers shows
that golden seeds and hybrid fuzzing allow Drifuzz to achieve
higher coverage than the previous state of the art and uncover
real vulnerabilities in device drivers. Two bugs with severe
impact were assigned CVEs.

Availability

To facilitate future research, we have made Drifuzz available
as an open source project at:
https://github.com/messlabnyu/DrifuzzProject
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Vulnerabilities Found

• Two of the bugs found by Drifuzz were considered serious enough to warrant 
CVE identifiers


• CVE-2021-43975 is an out-of-bounds read followed by an out-of-bound write 
with attacker-controlled length in the atlantic PCI Ethernet driver 


• CVE-2021-43976 is a kernel panic (denial of service) in the Marvell mwifiex 
USB driver


• Vulnerabilities + patches were reported via LKML, we worked with 
downstream distro to help understand impact
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Conclusions

• Testing device drivers is still difficult!


• Limited hardware availability


• Complex driver conditions & tests


• Slow execution speeds (whole-system VM)


• Drifuzz’s golden seeds can make testing much more efficient and effective


• Golden seeds can also be re-used as good starting points for other driver testing 
techniques


• Check it out! https://github.com/messlabnyu/DrifuzzProject
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We are currently working 
on this one :)
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