Branch data Line data Source code
1 : : /*
2 : : * Non-physical true random number generator based on timing jitter --
3 : : * Jitter RNG standalone code.
4 : : *
5 : : * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019
6 : : *
7 : : * Design
8 : : * ======
9 : : *
10 : : * See http://www.chronox.de/jent.html
11 : : *
12 : : * License
13 : : * =======
14 : : *
15 : : * Redistribution and use in source and binary forms, with or without
16 : : * modification, are permitted provided that the following conditions
17 : : * are met:
18 : : * 1. Redistributions of source code must retain the above copyright
19 : : * notice, and the entire permission notice in its entirety,
20 : : * including the disclaimer of warranties.
21 : : * 2. Redistributions in binary form must reproduce the above copyright
22 : : * notice, this list of conditions and the following disclaimer in the
23 : : * documentation and/or other materials provided with the distribution.
24 : : * 3. The name of the author may not be used to endorse or promote
25 : : * products derived from this software without specific prior
26 : : * written permission.
27 : : *
28 : : * ALTERNATIVELY, this product may be distributed under the terms of
29 : : * the GNU General Public License, in which case the provisions of the GPL2 are
30 : : * required INSTEAD OF the above restrictions. (This clause is
31 : : * necessary due to a potential bad interaction between the GPL and
32 : : * the restrictions contained in a BSD-style copyright.)
33 : : *
34 : : * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35 : : * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36 : : * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37 : : * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
38 : : * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39 : : * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40 : : * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41 : : * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42 : : * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 : : * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44 : : * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45 : : * DAMAGE.
46 : : */
47 : :
48 : : /*
49 : : * This Jitterentropy RNG is based on the jitterentropy library
50 : : * version 2.1.2 provided at http://www.chronox.de/jent.html
51 : : */
52 : :
53 : : #ifdef __OPTIMIZE__
54 : : #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 : : #endif
56 : :
57 : : typedef unsigned long long __u64;
58 : : typedef long long __s64;
59 : : typedef unsigned int __u32;
60 : : #define NULL ((void *) 0)
61 : :
62 : : /* The entropy pool */
63 : : struct rand_data {
64 : : /* all data values that are vital to maintain the security
65 : : * of the RNG are marked as SENSITIVE. A user must not
66 : : * access that information while the RNG executes its loops to
67 : : * calculate the next random value. */
68 : : __u64 data; /* SENSITIVE Actual random number */
69 : : __u64 old_data; /* SENSITIVE Previous random number */
70 : : __u64 prev_time; /* SENSITIVE Previous time stamp */
71 : : #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 : : __u64 last_delta; /* SENSITIVE stuck test */
73 : : __s64 last_delta2; /* SENSITIVE stuck test */
74 : : unsigned int osr; /* Oversample rate */
75 : : #define JENT_MEMORY_BLOCKS 64
76 : : #define JENT_MEMORY_BLOCKSIZE 32
77 : : #define JENT_MEMORY_ACCESSLOOPS 128
78 : : #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 : : unsigned char *mem; /* Memory access location with size of
80 : : * memblocks * memblocksize */
81 : : unsigned int memlocation; /* Pointer to byte in *mem */
82 : : unsigned int memblocks; /* Number of memory blocks in *mem */
83 : : unsigned int memblocksize; /* Size of one memory block in bytes */
84 : : unsigned int memaccessloops; /* Number of memory accesses per random
85 : : * bit generation */
86 : : };
87 : :
88 : : /* Flags that can be used to initialize the RNG */
89 : : #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
90 : : * entropy, saves MEMORY_SIZE RAM for
91 : : * entropy collector */
92 : :
93 : : /* -- error codes for init function -- */
94 : : #define JENT_ENOTIME 1 /* Timer service not available */
95 : : #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */
96 : : #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */
97 : : #define JENT_EVARVAR 5 /* Timer does not produce variations of
98 : : * variations (2nd derivation of time is
99 : : * zero). */
100 : : #define JENT_ESTUCK 8 /* Too many stuck results during init. */
101 : :
102 : : /***************************************************************************
103 : : * Helper functions
104 : : ***************************************************************************/
105 : :
106 : : #include "jitterentropy.h"
107 : :
108 : : /**
109 : : * Update of the loop count used for the next round of
110 : : * an entropy collection.
111 : : *
112 : : * Input:
113 : : * @ec entropy collector struct -- may be NULL
114 : : * @bits is the number of low bits of the timer to consider
115 : : * @min is the number of bits we shift the timer value to the right at
116 : : * the end to make sure we have a guaranteed minimum value
117 : : *
118 : : * @return Newly calculated loop counter
119 : : */
120 : 1200 : static __u64 jent_loop_shuffle(struct rand_data *ec,
121 : : unsigned int bits, unsigned int min)
122 : : {
123 : 1200 : __u64 time = 0;
124 : 1200 : __u64 shuffle = 0;
125 : 1200 : unsigned int i = 0;
126 : 1200 : unsigned int mask = (1<<bits) - 1;
127 : :
128 : 1200 : jent_get_nstime(&time);
129 : : /*
130 : : * Mix the current state of the random number into the shuffle
131 : : * calculation to balance that shuffle a bit more.
132 : : */
133 [ + - ]: 1200 : if (ec)
134 : 1200 : time ^= ec->data;
135 : : /*
136 : : * We fold the time value as much as possible to ensure that as many
137 : : * bits of the time stamp are included as possible.
138 : : */
139 [ + + ]: 20400 : for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
140 : 19200 : shuffle ^= time & mask;
141 : 19200 : time = time >> bits;
142 : : }
143 : :
144 : : /*
145 : : * We add a lower boundary value to ensure we have a minimum
146 : : * RNG loop count.
147 : : */
148 : 1200 : return (shuffle + (1<<min));
149 : : }
150 : :
151 : : /***************************************************************************
152 : : * Noise sources
153 : : ***************************************************************************/
154 : :
155 : : /**
156 : : * CPU Jitter noise source -- this is the noise source based on the CPU
157 : : * execution time jitter
158 : : *
159 : : * This function injects the individual bits of the time value into the
160 : : * entropy pool using an LFSR.
161 : : *
162 : : * The code is deliberately inefficient with respect to the bit shifting
163 : : * and shall stay that way. This function is the root cause why the code
164 : : * shall be compiled without optimization. This function not only acts as
165 : : * folding operation, but this function's execution is used to measure
166 : : * the CPU execution time jitter. Any change to the loop in this function
167 : : * implies that careful retesting must be done.
168 : : *
169 : : * Input:
170 : : * @ec entropy collector struct
171 : : * @time time stamp to be injected
172 : : * @loop_cnt if a value not equal to 0 is set, use the given value as number of
173 : : * loops to perform the folding
174 : : *
175 : : * Output:
176 : : * updated ec->data
177 : : *
178 : : * @return Number of loops the folding operation is performed
179 : : */
180 : 1200 : static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
181 : : {
182 : : unsigned int i;
183 : 1200 : __u64 j = 0;
184 : 1200 : __u64 new = 0;
185 : : #define MAX_FOLD_LOOP_BIT 4
186 : : #define MIN_FOLD_LOOP_BIT 0
187 : : __u64 fold_loop_cnt =
188 : 1200 : jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
189 : :
190 : : /*
191 : : * testing purposes -- allow test app to set the counter, not
192 : : * needed during runtime
193 : : */
194 [ - + ]: 1200 : if (loop_cnt)
195 : 0 : fold_loop_cnt = loop_cnt;
196 [ + + ]: 11360 : for (j = 0; j < fold_loop_cnt; j++) {
197 : 10160 : new = ec->data;
198 [ + + ]: 660400 : for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
199 : 650240 : __u64 tmp = time << (DATA_SIZE_BITS - i);
200 : :
201 : 650240 : tmp = tmp >> (DATA_SIZE_BITS - 1);
202 : :
203 : : /*
204 : : * Fibonacci LSFR with polynomial of
205 : : * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
206 : : * primitive according to
207 : : * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
208 : : * (the shift values are the polynomial values minus one
209 : : * due to counting bits from 0 to 63). As the current
210 : : * position is always the LSB, the polynomial only needs
211 : : * to shift data in from the left without wrap.
212 : : */
213 : 650240 : tmp ^= ((new >> 63) & 1);
214 : 650240 : tmp ^= ((new >> 60) & 1);
215 : 650240 : tmp ^= ((new >> 55) & 1);
216 : 650240 : tmp ^= ((new >> 30) & 1);
217 : 650240 : tmp ^= ((new >> 27) & 1);
218 : 650240 : tmp ^= ((new >> 22) & 1);
219 : 650240 : new <<= 1;
220 : 650240 : new ^= tmp;
221 : : }
222 : : }
223 : 1200 : ec->data = new;
224 : :
225 : 1200 : return fold_loop_cnt;
226 : : }
227 : :
228 : : /**
229 : : * Memory Access noise source -- this is a noise source based on variations in
230 : : * memory access times
231 : : *
232 : : * This function performs memory accesses which will add to the timing
233 : : * variations due to an unknown amount of CPU wait states that need to be
234 : : * added when accessing memory. The memory size should be larger than the L1
235 : : * caches as outlined in the documentation and the associated testing.
236 : : *
237 : : * The L1 cache has a very high bandwidth, albeit its access rate is usually
238 : : * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
239 : : * variations as the CPU has hardly to wait. Starting with L2, significant
240 : : * variations are added because L2 typically does not belong to the CPU any more
241 : : * and therefore a wider range of CPU wait states is necessary for accesses.
242 : : * L3 and real memory accesses have even a wider range of wait states. However,
243 : : * to reliably access either L3 or memory, the ec->mem memory must be quite
244 : : * large which is usually not desirable.
245 : : *
246 : : * Input:
247 : : * @ec Reference to the entropy collector with the memory access data -- if
248 : : * the reference to the memory block to be accessed is NULL, this noise
249 : : * source is disabled
250 : : * @loop_cnt if a value not equal to 0 is set, use the given value as number of
251 : : * loops to perform the folding
252 : : *
253 : : * @return Number of memory access operations
254 : : */
255 : 0 : static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
256 : : {
257 : 0 : unsigned int wrap = 0;
258 : 0 : __u64 i = 0;
259 : : #define MAX_ACC_LOOP_BIT 7
260 : : #define MIN_ACC_LOOP_BIT 0
261 : : __u64 acc_loop_cnt =
262 : 0 : jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
263 : :
264 [ # # # # ]: 0 : if (NULL == ec || NULL == ec->mem)
265 : 0 : return 0;
266 : 0 : wrap = ec->memblocksize * ec->memblocks;
267 : :
268 : : /*
269 : : * testing purposes -- allow test app to set the counter, not
270 : : * needed during runtime
271 : : */
272 [ # # ]: 0 : if (loop_cnt)
273 : 0 : acc_loop_cnt = loop_cnt;
274 : :
275 [ # # ]: 0 : for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
276 : 0 : unsigned char *tmpval = ec->mem + ec->memlocation;
277 : : /*
278 : : * memory access: just add 1 to one byte,
279 : : * wrap at 255 -- memory access implies read
280 : : * from and write to memory location
281 : : */
282 : 0 : *tmpval = (*tmpval + 1) & 0xff;
283 : : /*
284 : : * Addition of memblocksize - 1 to pointer
285 : : * with wrap around logic to ensure that every
286 : : * memory location is hit evenly
287 : : */
288 : 0 : ec->memlocation = ec->memlocation + ec->memblocksize - 1;
289 : 0 : ec->memlocation = ec->memlocation % wrap;
290 : : }
291 : 0 : return i;
292 : : }
293 : :
294 : : /***************************************************************************
295 : : * Start of entropy processing logic
296 : : ***************************************************************************/
297 : :
298 : : /**
299 : : * Stuck test by checking the:
300 : : * 1st derivation of the jitter measurement (time delta)
301 : : * 2nd derivation of the jitter measurement (delta of time deltas)
302 : : * 3rd derivation of the jitter measurement (delta of delta of time deltas)
303 : : *
304 : : * All values must always be non-zero.
305 : : *
306 : : * Input:
307 : : * @ec Reference to entropy collector
308 : : * @current_delta Jitter time delta
309 : : *
310 : : * @return
311 : : * 0 jitter measurement not stuck (good bit)
312 : : * 1 jitter measurement stuck (reject bit)
313 : : */
314 : 1200 : static int jent_stuck(struct rand_data *ec, __u64 current_delta)
315 : : {
316 : 1200 : __s64 delta2 = ec->last_delta - current_delta;
317 : 1200 : __s64 delta3 = delta2 - ec->last_delta2;
318 : :
319 : 1200 : ec->last_delta = current_delta;
320 : 1200 : ec->last_delta2 = delta2;
321 : :
322 [ + - + + : 1200 : if (!current_delta || !delta2 || !delta3)
+ + ]
323 : 64 : return 1;
324 : :
325 : 1136 : return 0;
326 : : }
327 : :
328 : : /**
329 : : * This is the heart of the entropy generation: calculate time deltas and
330 : : * use the CPU jitter in the time deltas. The jitter is injected into the
331 : : * entropy pool.
332 : : *
333 : : * WARNING: ensure that ->prev_time is primed before using the output
334 : : * of this function! This can be done by calling this function
335 : : * and not using its result.
336 : : *
337 : : * Input:
338 : : * @entropy_collector Reference to entropy collector
339 : : *
340 : : * @return result of stuck test
341 : : */
342 : 0 : static int jent_measure_jitter(struct rand_data *ec)
343 : : {
344 : 0 : __u64 time = 0;
345 : 0 : __u64 current_delta = 0;
346 : :
347 : : /* Invoke one noise source before time measurement to add variations */
348 : 0 : jent_memaccess(ec, 0);
349 : :
350 : : /*
351 : : * Get time stamp and calculate time delta to previous
352 : : * invocation to measure the timing variations
353 : : */
354 : 0 : jent_get_nstime(&time);
355 : 0 : current_delta = time - ec->prev_time;
356 : 0 : ec->prev_time = time;
357 : :
358 : : /* Now call the next noise sources which also injects the data */
359 : 0 : jent_lfsr_time(ec, current_delta, 0);
360 : :
361 : : /* Check whether we have a stuck measurement. */
362 : 0 : return jent_stuck(ec, current_delta);
363 : : }
364 : :
365 : : /**
366 : : * Generator of one 64 bit random number
367 : : * Function fills rand_data->data
368 : : *
369 : : * Input:
370 : : * @ec Reference to entropy collector
371 : : */
372 : 0 : static void jent_gen_entropy(struct rand_data *ec)
373 : : {
374 : 0 : unsigned int k = 0;
375 : :
376 : : /* priming of the ->prev_time value */
377 : 0 : jent_measure_jitter(ec);
378 : :
379 : : while (1) {
380 : : /* If a stuck measurement is received, repeat measurement */
381 [ # # ]: 0 : if (jent_measure_jitter(ec))
382 : 0 : continue;
383 : :
384 : : /*
385 : : * We multiply the loop value with ->osr to obtain the
386 : : * oversampling rate requested by the caller
387 : : */
388 [ # # ]: 0 : if (++k >= (DATA_SIZE_BITS * ec->osr))
389 : 0 : break;
390 : : }
391 : 0 : }
392 : :
393 : : /**
394 : : * The continuous test required by FIPS 140-2 -- the function automatically
395 : : * primes the test if needed.
396 : : *
397 : : * Return:
398 : : * returns normally if FIPS test passed
399 : : * panics the kernel if FIPS test failed
400 : : */
401 : 0 : static void jent_fips_test(struct rand_data *ec)
402 : : {
403 [ # # ]: 0 : if (!jent_fips_enabled())
404 : 0 : return;
405 : :
406 : : /* prime the FIPS test */
407 [ # # ]: 0 : if (!ec->old_data) {
408 : 0 : ec->old_data = ec->data;
409 : 0 : jent_gen_entropy(ec);
410 : : }
411 : :
412 [ # # ]: 0 : if (ec->data == ec->old_data)
413 : 0 : jent_panic("jitterentropy: Duplicate output detected\n");
414 : :
415 : 0 : ec->old_data = ec->data;
416 : : }
417 : :
418 : : /**
419 : : * Entry function: Obtain entropy for the caller.
420 : : *
421 : : * This function invokes the entropy gathering logic as often to generate
422 : : * as many bytes as requested by the caller. The entropy gathering logic
423 : : * creates 64 bit per invocation.
424 : : *
425 : : * This function truncates the last 64 bit entropy value output to the exact
426 : : * size specified by the caller.
427 : : *
428 : : * Input:
429 : : * @ec Reference to entropy collector
430 : : * @data pointer to buffer for storing random data -- buffer must already
431 : : * exist
432 : : * @len size of the buffer, specifying also the requested number of random
433 : : * in bytes
434 : : *
435 : : * @return 0 when request is fulfilled or an error
436 : : *
437 : : * The following error codes can occur:
438 : : * -1 entropy_collector is NULL
439 : : */
440 : 0 : int jent_read_entropy(struct rand_data *ec, unsigned char *data,
441 : : unsigned int len)
442 : : {
443 : 0 : unsigned char *p = data;
444 : :
445 [ # # ]: 0 : if (!ec)
446 : 0 : return -1;
447 : :
448 [ # # ]: 0 : while (0 < len) {
449 : : unsigned int tocopy;
450 : :
451 : 0 : jent_gen_entropy(ec);
452 : 0 : jent_fips_test(ec);
453 [ # # ]: 0 : if ((DATA_SIZE_BITS / 8) < len)
454 : 0 : tocopy = (DATA_SIZE_BITS / 8);
455 : : else
456 : 0 : tocopy = len;
457 : 0 : jent_memcpy(p, &ec->data, tocopy);
458 : :
459 : 0 : len -= tocopy;
460 : 0 : p += tocopy;
461 : : }
462 : :
463 : 0 : return 0;
464 : : }
465 : :
466 : : /***************************************************************************
467 : : * Initialization logic
468 : : ***************************************************************************/
469 : :
470 : 0 : struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
471 : : unsigned int flags)
472 : : {
473 : : struct rand_data *entropy_collector;
474 : :
475 : 0 : entropy_collector = jent_zalloc(sizeof(struct rand_data));
476 [ # # ]: 0 : if (!entropy_collector)
477 : 0 : return NULL;
478 : :
479 [ # # ]: 0 : if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
480 : : /* Allocate memory for adding variations based on memory
481 : : * access
482 : : */
483 : 0 : entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
484 [ # # ]: 0 : if (!entropy_collector->mem) {
485 : 0 : jent_zfree(entropy_collector);
486 : 0 : return NULL;
487 : : }
488 : 0 : entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
489 : 0 : entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
490 : 0 : entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
491 : : }
492 : :
493 : : /* verify and set the oversampling rate */
494 [ # # ]: 0 : if (0 == osr)
495 : 0 : osr = 1; /* minimum sampling rate is 1 */
496 : 0 : entropy_collector->osr = osr;
497 : :
498 : : /* fill the data pad with non-zero values */
499 : 0 : jent_gen_entropy(entropy_collector);
500 : :
501 : 0 : return entropy_collector;
502 : : }
503 : :
504 : 0 : void jent_entropy_collector_free(struct rand_data *entropy_collector)
505 : : {
506 : 0 : jent_zfree(entropy_collector->mem);
507 : 0 : entropy_collector->mem = NULL;
508 : 0 : jent_zfree(entropy_collector);
509 : 0 : }
510 : :
511 : 3 : int jent_entropy_init(void)
512 : : {
513 : : int i;
514 : 3 : __u64 delta_sum = 0;
515 : 3 : __u64 old_delta = 0;
516 : 3 : int time_backwards = 0;
517 : 3 : int count_mod = 0;
518 : 3 : int count_stuck = 0;
519 : 3 : struct rand_data ec = { 0 };
520 : :
521 : : /* We could perform statistical tests here, but the problem is
522 : : * that we only have a few loop counts to do testing. These
523 : : * loop counts may show some slight skew and we produce
524 : : * false positives.
525 : : *
526 : : * Moreover, only old systems show potentially problematic
527 : : * jitter entropy that could potentially be caught here. But
528 : : * the RNG is intended for hardware that is available or widely
529 : : * used, but not old systems that are long out of favor. Thus,
530 : : * no statistical tests.
531 : : */
532 : :
533 : : /*
534 : : * We could add a check for system capabilities such as clock_getres or
535 : : * check for CONFIG_X86_TSC, but it does not make much sense as the
536 : : * following sanity checks verify that we have a high-resolution
537 : : * timer.
538 : : */
539 : : /*
540 : : * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
541 : : * definitely too little.
542 : : */
543 : : #define TESTLOOPCOUNT 300
544 : : #define CLEARCACHE 100
545 [ + + ]: 1203 : for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
546 : 1200 : __u64 time = 0;
547 : 1200 : __u64 time2 = 0;
548 : 1200 : __u64 delta = 0;
549 : 1200 : unsigned int lowdelta = 0;
550 : : int stuck;
551 : :
552 : : /* Invoke core entropy collection logic */
553 : 1200 : jent_get_nstime(&time);
554 : 1200 : ec.prev_time = time;
555 : 1200 : jent_lfsr_time(&ec, time, 0);
556 : 1200 : jent_get_nstime(&time2);
557 : :
558 : : /* test whether timer works */
559 [ + - - + ]: 1200 : if (!time || !time2)
560 : 0 : return JENT_ENOTIME;
561 : 1200 : delta = time2 - time;
562 : : /*
563 : : * test whether timer is fine grained enough to provide
564 : : * delta even when called shortly after each other -- this
565 : : * implies that we also have a high resolution timer
566 : : */
567 [ - + ]: 1200 : if (!delta)
568 : 0 : return JENT_ECOARSETIME;
569 : :
570 : 1200 : stuck = jent_stuck(&ec, delta);
571 : :
572 : : /*
573 : : * up to here we did not modify any variable that will be
574 : : * evaluated later, but we already performed some work. Thus we
575 : : * already have had an impact on the caches, branch prediction,
576 : : * etc. with the goal to clear it to get the worst case
577 : : * measurements.
578 : : */
579 [ + + ]: 1200 : if (CLEARCACHE > i)
580 : 300 : continue;
581 : :
582 [ + + ]: 900 : if (stuck)
583 : 52 : count_stuck++;
584 : :
585 : : /* test whether we have an increasing timer */
586 [ - + ]: 900 : if (!(time2 > time))
587 : 0 : time_backwards++;
588 : :
589 : : /* use 32 bit value to ensure compilation on 32 bit arches */
590 : 900 : lowdelta = time2 - time;
591 [ + + ]: 900 : if (!(lowdelta % 100))
592 : 37 : count_mod++;
593 : :
594 : : /*
595 : : * ensure that we have a varying delta timer which is necessary
596 : : * for the calculation of entropy -- perform this check
597 : : * only after the first loop is executed as we need to prime
598 : : * the old_data value
599 : : */
600 [ + + ]: 900 : if (delta > old_delta)
601 : 419 : delta_sum += (delta - old_delta);
602 : : else
603 : 481 : delta_sum += (old_delta - delta);
604 : 900 : old_delta = delta;
605 : : }
606 : :
607 : : /*
608 : : * we allow up to three times the time running backwards.
609 : : * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
610 : : * if such an operation just happens to interfere with our test, it
611 : : * should not fail. The value of 3 should cover the NTP case being
612 : : * performed during our test run.
613 : : */
614 [ - + ]: 3 : if (3 < time_backwards)
615 : 0 : return JENT_ENOMONOTONIC;
616 : :
617 : : /*
618 : : * Variations of deltas of time must on average be larger
619 : : * than 1 to ensure the entropy estimation
620 : : * implied with 1 is preserved
621 : : */
622 [ - + ]: 3 : if ((delta_sum) <= 1)
623 : 0 : return JENT_EVARVAR;
624 : :
625 : : /*
626 : : * Ensure that we have variations in the time stamp below 10 for at
627 : : * least 10% of all checks -- on some platforms, the counter increments
628 : : * in multiples of 100, but not always
629 : : */
630 [ - + ]: 3 : if ((TESTLOOPCOUNT/10 * 9) < count_mod)
631 : 0 : return JENT_ECOARSETIME;
632 : :
633 : : /*
634 : : * If we have more than 90% stuck results, then this Jitter RNG is
635 : : * likely to not work well.
636 : : */
637 [ - + ]: 3 : if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
638 : 0 : return JENT_ESTUCK;
639 : :
640 : 3 : return 0;
641 : : }
|