Branch data Line data Source code
1 : : /*
2 : : * SPDX-License-Identifier: MIT
3 : : *
4 : : * Copyright © 2019 Intel Corporation
5 : : */
6 : :
7 : : #ifndef _I915_ACTIVE_H_
8 : : #define _I915_ACTIVE_H_
9 : :
10 : : #include <linux/lockdep.h>
11 : :
12 : : #include "i915_active_types.h"
13 : : #include "i915_request.h"
14 : :
15 : : struct i915_request;
16 : : struct intel_engine_cs;
17 : : struct intel_timeline;
18 : :
19 : : /*
20 : : * We treat requests as fences. This is not be to confused with our
21 : : * "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
22 : : * We use the fences to synchronize access from the CPU with activity on the
23 : : * GPU, for example, we should not rewrite an object's PTE whilst the GPU
24 : : * is reading them. We also track fences at a higher level to provide
25 : : * implicit synchronisation around GEM objects, e.g. set-domain will wait
26 : : * for outstanding GPU rendering before marking the object ready for CPU
27 : : * access, or a pageflip will wait until the GPU is complete before showing
28 : : * the frame on the scanout.
29 : : *
30 : : * In order to use a fence, the object must track the fence it needs to
31 : : * serialise with. For example, GEM objects want to track both read and
32 : : * write access so that we can perform concurrent read operations between
33 : : * the CPU and GPU engines, as well as waiting for all rendering to
34 : : * complete, or waiting for the last GPU user of a "fence register". The
35 : : * object then embeds a #i915_active_fence to track the most recent (in
36 : : * retirement order) request relevant for the desired mode of access.
37 : : * The #i915_active_fence is updated with i915_active_fence_set() to
38 : : * track the most recent fence request, typically this is done as part of
39 : : * i915_vma_move_to_active().
40 : : *
41 : : * When the #i915_active_fence completes (is retired), it will
42 : : * signal its completion to the owner through a callback as well as mark
43 : : * itself as idle (i915_active_fence.request == NULL). The owner
44 : : * can then perform any action, such as delayed freeing of an active
45 : : * resource including itself.
46 : : */
47 : :
48 : : void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb);
49 : :
50 : : /**
51 : : * __i915_active_fence_init - prepares the activity tracker for use
52 : : * @active - the active tracker
53 : : * @fence - initial fence to track, can be NULL
54 : : * @func - a callback when then the tracker is retired (becomes idle),
55 : : * can be NULL
56 : : *
57 : : * i915_active_fence_init() prepares the embedded @active struct for use as
58 : : * an activity tracker, that is for tracking the last known active fence
59 : : * associated with it. When the last fence becomes idle, when it is retired
60 : : * after completion, the optional callback @func is invoked.
61 : : */
62 : : static inline void
63 : 0 : __i915_active_fence_init(struct i915_active_fence *active,
64 : : void *fence,
65 : : dma_fence_func_t fn)
66 : : {
67 : 0 : RCU_INIT_POINTER(active->fence, fence);
68 : 0 : active->cb.func = fn ?: i915_active_noop;
69 : : }
70 : :
71 : : #define INIT_ACTIVE_FENCE(A) \
72 : : __i915_active_fence_init((A), NULL, NULL)
73 : :
74 : : struct dma_fence *
75 : : __i915_active_fence_set(struct i915_active_fence *active,
76 : : struct dma_fence *fence);
77 : :
78 : : /**
79 : : * i915_active_fence_set - updates the tracker to watch the current fence
80 : : * @active - the active tracker
81 : : * @rq - the request to watch
82 : : *
83 : : * i915_active_fence_set() watches the given @rq for completion. While
84 : : * that @rq is busy, the @active reports busy. When that @rq is signaled
85 : : * (or else retired) the @active tracker is updated to report idle.
86 : : */
87 : : int __must_check
88 : : i915_active_fence_set(struct i915_active_fence *active,
89 : : struct i915_request *rq);
90 : : /**
91 : : * i915_active_fence_get - return a reference to the active fence
92 : : * @active - the active tracker
93 : : *
94 : : * i915_active_fence_get() returns a reference to the active fence,
95 : : * or NULL if the active tracker is idle. The reference is obtained under RCU,
96 : : * so no locking is required by the caller.
97 : : *
98 : : * The reference should be freed with dma_fence_put().
99 : : */
100 : : static inline struct dma_fence *
101 : 0 : i915_active_fence_get(struct i915_active_fence *active)
102 : : {
103 : 0 : struct dma_fence *fence;
104 : :
105 : 0 : rcu_read_lock();
106 : 0 : fence = dma_fence_get_rcu_safe(&active->fence);
107 : 0 : rcu_read_unlock();
108 : :
109 [ # # ]: 0 : return fence;
110 : : }
111 : :
112 : : /**
113 : : * i915_active_fence_isset - report whether the active tracker is assigned
114 : : * @active - the active tracker
115 : : *
116 : : * i915_active_fence_isset() returns true if the active tracker is currently
117 : : * assigned to a fence. Due to the lazy retiring, that fence may be idle
118 : : * and this may report stale information.
119 : : */
120 : : static inline bool
121 : 0 : i915_active_fence_isset(const struct i915_active_fence *active)
122 : : {
123 [ # # # # : 0 : return rcu_access_pointer(active->fence);
# # # # ]
124 : : }
125 : :
126 : : /*
127 : : * GPU activity tracking
128 : : *
129 : : * Each set of commands submitted to the GPU compromises a single request that
130 : : * signals a fence upon completion. struct i915_request combines the
131 : : * command submission, scheduling and fence signaling roles. If we want to see
132 : : * if a particular task is complete, we need to grab the fence (struct
133 : : * i915_request) for that task and check or wait for it to be signaled. More
134 : : * often though we want to track the status of a bunch of tasks, for example
135 : : * to wait for the GPU to finish accessing some memory across a variety of
136 : : * different command pipelines from different clients. We could choose to
137 : : * track every single request associated with the task, but knowing that
138 : : * each request belongs to an ordered timeline (later requests within a
139 : : * timeline must wait for earlier requests), we need only track the
140 : : * latest request in each timeline to determine the overall status of the
141 : : * task.
142 : : *
143 : : * struct i915_active provides this tracking across timelines. It builds a
144 : : * composite shared-fence, and is updated as new work is submitted to the task,
145 : : * forming a snapshot of the current status. It should be embedded into the
146 : : * different resources that need to track their associated GPU activity to
147 : : * provide a callback when that GPU activity has ceased, or otherwise to
148 : : * provide a serialisation point either for request submission or for CPU
149 : : * synchronisation.
150 : : */
151 : :
152 : : void __i915_active_init(struct i915_active *ref,
153 : : int (*active)(struct i915_active *ref),
154 : : void (*retire)(struct i915_active *ref),
155 : : struct lock_class_key *mkey,
156 : : struct lock_class_key *wkey);
157 : :
158 : : /* Specialise each class of i915_active to avoid impossible lockdep cycles. */
159 : : #define i915_active_init(ref, active, retire) do { \
160 : : static struct lock_class_key __mkey; \
161 : : static struct lock_class_key __wkey; \
162 : : \
163 : : __i915_active_init(ref, active, retire, &__mkey, &__wkey); \
164 : : } while (0)
165 : :
166 : : int i915_active_ref(struct i915_active *ref,
167 : : struct intel_timeline *tl,
168 : : struct dma_fence *fence);
169 : :
170 : : static inline int
171 : 0 : i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
172 : : {
173 : 0 : return i915_active_ref(ref, i915_request_timeline(rq), &rq->fence);
174 : : }
175 : :
176 : : void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f);
177 : :
178 : : static inline bool i915_active_has_exclusive(struct i915_active *ref)
179 : : {
180 : : return rcu_access_pointer(ref->excl.fence);
181 : : }
182 : :
183 : : int i915_active_wait(struct i915_active *ref);
184 : :
185 : : int i915_request_await_active(struct i915_request *rq, struct i915_active *ref);
186 : :
187 : : int i915_active_acquire(struct i915_active *ref);
188 : : bool i915_active_acquire_if_busy(struct i915_active *ref);
189 : : void i915_active_release(struct i915_active *ref);
190 : :
191 : 0 : static inline void __i915_active_acquire(struct i915_active *ref)
192 : : {
193 : 0 : GEM_BUG_ON(!atomic_read(&ref->count));
194 : 0 : atomic_inc(&ref->count);
195 : : }
196 : :
197 : : static inline bool
198 : 0 : i915_active_is_idle(const struct i915_active *ref)
199 : : {
200 : 0 : return !atomic_read(&ref->count);
201 : : }
202 : :
203 : : #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
204 : : void i915_active_fini(struct i915_active *ref);
205 : : #else
206 [ # # ]: 0 : static inline void i915_active_fini(struct i915_active *ref) { }
207 : : #endif
208 : :
209 : : int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
210 : : struct intel_engine_cs *engine);
211 : : void i915_active_acquire_barrier(struct i915_active *ref);
212 : : void i915_request_add_active_barriers(struct i915_request *rq);
213 : :
214 : : void i915_active_print(struct i915_active *ref, struct drm_printer *m);
215 : : void i915_active_unlock_wait(struct i915_active *ref);
216 : :
217 : : #endif /* _I915_ACTIVE_H_ */
|