Branch data Line data Source code
1 : : /* inflate.c -- zlib decompression
2 : : * Copyright (C) 1995-2005 Mark Adler
3 : : * For conditions of distribution and use, see copyright notice in zlib.h
4 : : *
5 : : * Based on zlib 1.2.3 but modified for the Linux Kernel by
6 : : * Richard Purdie <richard@openedhand.com>
7 : : *
8 : : * Changes mainly for static instead of dynamic memory allocation
9 : : *
10 : : */
11 : :
12 : : #include <linux/zutil.h>
13 : : #include "inftrees.h"
14 : : #include "inflate.h"
15 : : #include "inffast.h"
16 : : #include "infutil.h"
17 : :
18 : : /* architecture-specific bits */
19 : : #ifdef CONFIG_ZLIB_DFLTCC
20 : : # include "../zlib_dfltcc/dfltcc.h"
21 : : #else
22 : : #define INFLATE_RESET_HOOK(strm) do {} while (0)
23 : : #define INFLATE_TYPEDO_HOOK(strm, flush) do {} while (0)
24 : : #define INFLATE_NEED_UPDATEWINDOW(strm) 1
25 : : #define INFLATE_NEED_CHECKSUM(strm) 1
26 : : #endif
27 : :
28 : 3 : int zlib_inflate_workspacesize(void)
29 : : {
30 : 3 : return sizeof(struct inflate_workspace);
31 : : }
32 : :
33 : 0 : int zlib_inflateReset(z_streamp strm)
34 : : {
35 : 0 : struct inflate_state *state;
36 : :
37 [ # # # # ]: 0 : if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
38 : 0 : state = (struct inflate_state *)strm->state;
39 : 0 : strm->total_in = strm->total_out = state->total = 0;
40 : 0 : strm->msg = NULL;
41 : 0 : strm->adler = 1; /* to support ill-conceived Java test suite */
42 : 0 : state->mode = HEAD;
43 : 0 : state->last = 0;
44 : 0 : state->havedict = 0;
45 : 0 : state->dmax = 32768U;
46 : 0 : state->hold = 0;
47 : 0 : state->bits = 0;
48 : 0 : state->lencode = state->distcode = state->next = state->codes;
49 : :
50 : : /* Initialise Window */
51 : 0 : state->wsize = 1U << state->wbits;
52 : 0 : state->write = 0;
53 : 0 : state->whave = 0;
54 : :
55 : 0 : INFLATE_RESET_HOOK(strm);
56 : 0 : return Z_OK;
57 : : }
58 : :
59 : 0 : int zlib_inflateInit2(z_streamp strm, int windowBits)
60 : : {
61 : 0 : struct inflate_state *state;
62 : :
63 [ # # ]: 0 : if (strm == NULL) return Z_STREAM_ERROR;
64 : 0 : strm->msg = NULL; /* in case we return an error */
65 : :
66 : 0 : state = &WS(strm)->inflate_state;
67 : 0 : strm->state = (struct internal_state *)state;
68 : :
69 [ # # ]: 0 : if (windowBits < 0) {
70 : 0 : state->wrap = 0;
71 : 0 : windowBits = -windowBits;
72 : : }
73 : : else {
74 : 0 : state->wrap = (windowBits >> 4) + 1;
75 : : }
76 [ # # ]: 0 : if (windowBits < 8 || windowBits > 15) {
77 : : return Z_STREAM_ERROR;
78 : : }
79 : 0 : state->wbits = (unsigned)windowBits;
80 : : #ifdef CONFIG_ZLIB_DFLTCC
81 : : /*
82 : : * DFLTCC requires the window to be page aligned.
83 : : * Thus, we overallocate and take the aligned portion of the buffer.
84 : : */
85 : : state->window = PTR_ALIGN(&WS(strm)->working_window[0], PAGE_SIZE);
86 : : #else
87 : 0 : state->window = &WS(strm)->working_window[0];
88 : : #endif
89 : :
90 : 0 : return zlib_inflateReset(strm);
91 : : }
92 : :
93 : : /*
94 : : Return state with length and distance decoding tables and index sizes set to
95 : : fixed code decoding. This returns fixed tables from inffixed.h.
96 : : */
97 : 0 : static void zlib_fixedtables(struct inflate_state *state)
98 : : {
99 : : # include "inffixed.h"
100 : 0 : state->lencode = lenfix;
101 : 0 : state->lenbits = 9;
102 : 0 : state->distcode = distfix;
103 : 0 : state->distbits = 5;
104 : : }
105 : :
106 : :
107 : : /*
108 : : Update the window with the last wsize (normally 32K) bytes written before
109 : : returning. This is only called when a window is already in use, or when
110 : : output has been written during this inflate call, but the end of the deflate
111 : : stream has not been reached yet. It is also called to window dictionary data
112 : : when a dictionary is loaded.
113 : :
114 : : Providing output buffers larger than 32K to inflate() should provide a speed
115 : : advantage, since only the last 32K of output is copied to the sliding window
116 : : upon return from inflate(), and since all distances after the first 32K of
117 : : output will fall in the output data, making match copies simpler and faster.
118 : : The advantage may be dependent on the size of the processor's data caches.
119 : : */
120 : 0 : static void zlib_updatewindow(z_streamp strm, unsigned out)
121 : : {
122 : 0 : struct inflate_state *state;
123 : 0 : unsigned copy, dist;
124 : :
125 : 0 : state = (struct inflate_state *)strm->state;
126 : :
127 : : /* copy state->wsize or less output bytes into the circular window */
128 : 0 : copy = out - strm->avail_out;
129 [ # # ]: 0 : if (copy >= state->wsize) {
130 : 0 : memcpy(state->window, strm->next_out - state->wsize, state->wsize);
131 : 0 : state->write = 0;
132 : 0 : state->whave = state->wsize;
133 : : }
134 : : else {
135 : 0 : dist = state->wsize - state->write;
136 : 0 : if (dist > copy) dist = copy;
137 : 0 : memcpy(state->window + state->write, strm->next_out - copy, dist);
138 : 0 : copy -= dist;
139 [ # # ]: 0 : if (copy) {
140 : 0 : memcpy(state->window, strm->next_out - copy, copy);
141 : 0 : state->write = copy;
142 : 0 : state->whave = state->wsize;
143 : : }
144 : : else {
145 : 0 : state->write += dist;
146 [ # # ]: 0 : if (state->write == state->wsize) state->write = 0;
147 [ # # ]: 0 : if (state->whave < state->wsize) state->whave += dist;
148 : : }
149 : : }
150 : 0 : }
151 : :
152 : :
153 : : /*
154 : : * At the end of a Deflate-compressed PPP packet, we expect to have seen
155 : : * a `stored' block type value but not the (zero) length bytes.
156 : : */
157 : : /*
158 : : Returns true if inflate is currently at the end of a block generated by
159 : : Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
160 : : implementation to provide an additional safety check. PPP uses
161 : : Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
162 : : block. When decompressing, PPP checks that at the end of input packet,
163 : : inflate is waiting for these length bytes.
164 : : */
165 : 0 : static int zlib_inflateSyncPacket(z_streamp strm)
166 : : {
167 : 0 : struct inflate_state *state;
168 : :
169 : 0 : if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
170 : 0 : state = (struct inflate_state *)strm->state;
171 : :
172 [ # # # # ]: 0 : if (state->mode == STORED && state->bits == 0) {
173 : 0 : state->mode = TYPE;
174 : 0 : return Z_OK;
175 : : }
176 : : return Z_DATA_ERROR;
177 : : }
178 : :
179 : : /* Macros for inflate(): */
180 : :
181 : : /* check function to use adler32() for zlib or crc32() for gzip */
182 : : #define UPDATE(check, buf, len) zlib_adler32(check, buf, len)
183 : :
184 : : /* Load registers with state in inflate() for speed */
185 : : #define LOAD() \
186 : : do { \
187 : : put = strm->next_out; \
188 : : left = strm->avail_out; \
189 : : next = strm->next_in; \
190 : : have = strm->avail_in; \
191 : : hold = state->hold; \
192 : : bits = state->bits; \
193 : : } while (0)
194 : :
195 : : /* Restore state from registers in inflate() */
196 : : #define RESTORE() \
197 : : do { \
198 : : strm->next_out = put; \
199 : : strm->avail_out = left; \
200 : : strm->next_in = next; \
201 : : strm->avail_in = have; \
202 : : state->hold = hold; \
203 : : state->bits = bits; \
204 : : } while (0)
205 : :
206 : : /* Clear the input bit accumulator */
207 : : #define INITBITS() \
208 : : do { \
209 : : hold = 0; \
210 : : bits = 0; \
211 : : } while (0)
212 : :
213 : : /* Get a byte of input into the bit accumulator, or return from inflate()
214 : : if there is no input available. */
215 : : #define PULLBYTE() \
216 : : do { \
217 : : if (have == 0) goto inf_leave; \
218 : : have--; \
219 : : hold += (unsigned long)(*next++) << bits; \
220 : : bits += 8; \
221 : : } while (0)
222 : :
223 : : /* Assure that there are at least n bits in the bit accumulator. If there is
224 : : not enough available input to do that, then return from inflate(). */
225 : : #define NEEDBITS(n) \
226 : : do { \
227 : : while (bits < (unsigned)(n)) \
228 : : PULLBYTE(); \
229 : : } while (0)
230 : :
231 : : /* Return the low n bits of the bit accumulator (n < 16) */
232 : : #define BITS(n) \
233 : : ((unsigned)hold & ((1U << (n)) - 1))
234 : :
235 : : /* Remove n bits from the bit accumulator */
236 : : #define DROPBITS(n) \
237 : : do { \
238 : : hold >>= (n); \
239 : : bits -= (unsigned)(n); \
240 : : } while (0)
241 : :
242 : : /* Remove zero to seven bits as needed to go to a byte boundary */
243 : : #define BYTEBITS() \
244 : : do { \
245 : : hold >>= bits & 7; \
246 : : bits -= bits & 7; \
247 : : } while (0)
248 : :
249 : : /*
250 : : inflate() uses a state machine to process as much input data and generate as
251 : : much output data as possible before returning. The state machine is
252 : : structured roughly as follows:
253 : :
254 : : for (;;) switch (state) {
255 : : ...
256 : : case STATEn:
257 : : if (not enough input data or output space to make progress)
258 : : return;
259 : : ... make progress ...
260 : : state = STATEm;
261 : : break;
262 : : ...
263 : : }
264 : :
265 : : so when inflate() is called again, the same case is attempted again, and
266 : : if the appropriate resources are provided, the machine proceeds to the
267 : : next state. The NEEDBITS() macro is usually the way the state evaluates
268 : : whether it can proceed or should return. NEEDBITS() does the return if
269 : : the requested bits are not available. The typical use of the BITS macros
270 : : is:
271 : :
272 : : NEEDBITS(n);
273 : : ... do something with BITS(n) ...
274 : : DROPBITS(n);
275 : :
276 : : where NEEDBITS(n) either returns from inflate() if there isn't enough
277 : : input left to load n bits into the accumulator, or it continues. BITS(n)
278 : : gives the low n bits in the accumulator. When done, DROPBITS(n) drops
279 : : the low n bits off the accumulator. INITBITS() clears the accumulator
280 : : and sets the number of available bits to zero. BYTEBITS() discards just
281 : : enough bits to put the accumulator on a byte boundary. After BYTEBITS()
282 : : and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.
283 : :
284 : : NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
285 : : if there is no input available. The decoding of variable length codes uses
286 : : PULLBYTE() directly in order to pull just enough bytes to decode the next
287 : : code, and no more.
288 : :
289 : : Some states loop until they get enough input, making sure that enough
290 : : state information is maintained to continue the loop where it left off
291 : : if NEEDBITS() returns in the loop. For example, want, need, and keep
292 : : would all have to actually be part of the saved state in case NEEDBITS()
293 : : returns:
294 : :
295 : : case STATEw:
296 : : while (want < need) {
297 : : NEEDBITS(n);
298 : : keep[want++] = BITS(n);
299 : : DROPBITS(n);
300 : : }
301 : : state = STATEx;
302 : : case STATEx:
303 : :
304 : : As shown above, if the next state is also the next case, then the break
305 : : is omitted.
306 : :
307 : : A state may also return if there is not enough output space available to
308 : : complete that state. Those states are copying stored data, writing a
309 : : literal byte, and copying a matching string.
310 : :
311 : : When returning, a "goto inf_leave" is used to update the total counters,
312 : : update the check value, and determine whether any progress has been made
313 : : during that inflate() call in order to return the proper return code.
314 : : Progress is defined as a change in either strm->avail_in or strm->avail_out.
315 : : When there is a window, goto inf_leave will update the window with the last
316 : : output written. If a goto inf_leave occurs in the middle of decompression
317 : : and there is no window currently, goto inf_leave will create one and copy
318 : : output to the window for the next call of inflate().
319 : :
320 : : In this implementation, the flush parameter of inflate() only affects the
321 : : return code (per zlib.h). inflate() always writes as much as possible to
322 : : strm->next_out, given the space available and the provided input--the effect
323 : : documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers
324 : : the allocation of and copying into a sliding window until necessary, which
325 : : provides the effect documented in zlib.h for Z_FINISH when the entire input
326 : : stream available. So the only thing the flush parameter actually does is:
327 : : when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it
328 : : will return Z_BUF_ERROR if it has not reached the end of the stream.
329 : : */
330 : :
331 : 0 : int zlib_inflate(z_streamp strm, int flush)
332 : : {
333 : 0 : struct inflate_state *state;
334 : 0 : const unsigned char *next; /* next input */
335 : 0 : unsigned char *put; /* next output */
336 : 0 : unsigned have, left; /* available input and output */
337 : 0 : unsigned long hold; /* bit buffer */
338 : 0 : unsigned bits; /* bits in bit buffer */
339 : 0 : unsigned in, out; /* save starting available input and output */
340 : 0 : unsigned copy; /* number of stored or match bytes to copy */
341 : 0 : unsigned char *from; /* where to copy match bytes from */
342 : 0 : code this; /* current decoding table entry */
343 : 0 : code last; /* parent table entry */
344 : 0 : unsigned len; /* length to copy for repeats, bits to drop */
345 : 0 : int ret; /* return code */
346 : 0 : static const unsigned short order[19] = /* permutation of code lengths */
347 : : {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
348 : :
349 : : /* Do not check for strm->next_out == NULL here as ppc zImage
350 : : inflates to strm->next_out = 0 */
351 : :
352 [ # # # # ]: 0 : if (strm == NULL || strm->state == NULL ||
353 [ # # # # ]: 0 : (strm->next_in == NULL && strm->avail_in != 0))
354 : : return Z_STREAM_ERROR;
355 : :
356 : 0 : state = (struct inflate_state *)strm->state;
357 : :
358 [ # # ]: 0 : if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */
359 : 0 : LOAD();
360 : 0 : in = have;
361 : 0 : out = left;
362 : 0 : ret = Z_OK;
363 : 0 : for (;;)
364 [ # # # # : 0 : switch (state->mode) {
# # # # #
# # # # #
# # # # #
# # ]
365 : 0 : case HEAD:
366 [ # # ]: 0 : if (state->wrap == 0) {
367 : 0 : state->mode = TYPEDO;
368 : 0 : break;
369 : : }
370 [ # # # # ]: 0 : NEEDBITS(16);
371 : 0 : if (
372 [ # # ]: 0 : ((BITS(8) << 8) + (hold >> 8)) % 31) {
373 : 0 : strm->msg = (char *)"incorrect header check";
374 : 0 : state->mode = BAD;
375 : 0 : break;
376 : : }
377 [ # # ]: 0 : if (BITS(4) != Z_DEFLATED) {
378 : 0 : strm->msg = (char *)"unknown compression method";
379 : 0 : state->mode = BAD;
380 : 0 : break;
381 : : }
382 : 0 : DROPBITS(4);
383 : 0 : len = BITS(4) + 8;
384 [ # # ]: 0 : if (len > state->wbits) {
385 : 0 : strm->msg = (char *)"invalid window size";
386 : 0 : state->mode = BAD;
387 : 0 : break;
388 : : }
389 : 0 : state->dmax = 1U << len;
390 [ # # ]: 0 : strm->adler = state->check = zlib_adler32(0L, NULL, 0);
391 [ # # ]: 0 : state->mode = hold & 0x200 ? DICTID : TYPE;
392 : 0 : INITBITS();
393 : 0 : break;
394 : : case DICTID:
395 [ # # # # ]: 0 : NEEDBITS(32);
396 : 0 : strm->adler = state->check = REVERSE(hold);
397 : 0 : INITBITS();
398 : 0 : state->mode = DICT;
399 : : /* fall through */
400 : 0 : case DICT:
401 [ # # ]: 0 : if (state->havedict == 0) {
402 : 0 : RESTORE();
403 : 0 : return Z_NEED_DICT;
404 : : }
405 : 0 : strm->adler = state->check = zlib_adler32(0L, NULL, 0);
406 : 0 : state->mode = TYPE;
407 : : /* fall through */
408 : 0 : case TYPE:
409 [ # # ]: 0 : if (flush == Z_BLOCK) goto inf_leave;
410 : : /* fall through */
411 : : case TYPEDO:
412 : 0 : INFLATE_TYPEDO_HOOK(strm, flush);
413 [ # # ]: 0 : if (state->last) {
414 : 0 : BYTEBITS();
415 : 0 : state->mode = CHECK;
416 : 0 : break;
417 : : }
418 [ # # # # ]: 0 : NEEDBITS(3);
419 : 0 : state->last = BITS(1);
420 : 0 : DROPBITS(1);
421 [ # # # # ]: 0 : switch (BITS(2)) {
422 : 0 : case 0: /* stored block */
423 : 0 : state->mode = STORED;
424 : 0 : break;
425 : : case 1: /* fixed block */
426 : 0 : zlib_fixedtables(state);
427 : 0 : state->mode = LEN; /* decode codes */
428 : 0 : break;
429 : 0 : case 2: /* dynamic block */
430 : 0 : state->mode = TABLE;
431 : 0 : break;
432 : 0 : case 3:
433 : 0 : strm->msg = (char *)"invalid block type";
434 : 0 : state->mode = BAD;
435 : : }
436 : 0 : DROPBITS(2);
437 : 0 : break;
438 : 0 : case STORED:
439 : 0 : BYTEBITS(); /* go to byte boundary */
440 [ # # # # ]: 0 : NEEDBITS(32);
441 [ # # ]: 0 : if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
442 : 0 : strm->msg = (char *)"invalid stored block lengths";
443 : 0 : state->mode = BAD;
444 : 0 : break;
445 : : }
446 : 0 : state->length = (unsigned)hold & 0xffff;
447 : 0 : INITBITS();
448 : 0 : state->mode = COPY;
449 : : /* fall through */
450 : 0 : case COPY:
451 : 0 : copy = state->length;
452 [ # # ]: 0 : if (copy) {
453 : 0 : if (copy > have) copy = have;
454 : 0 : if (copy > left) copy = left;
455 [ # # ]: 0 : if (copy == 0) goto inf_leave;
456 : 0 : memcpy(put, next, copy);
457 : 0 : have -= copy;
458 : 0 : next += copy;
459 : 0 : left -= copy;
460 : 0 : put += copy;
461 : 0 : state->length -= copy;
462 : 0 : break;
463 : : }
464 : 0 : state->mode = TYPE;
465 : 0 : break;
466 : : case TABLE:
467 [ # # # # ]: 0 : NEEDBITS(14);
468 : 0 : state->nlen = BITS(5) + 257;
469 : 0 : DROPBITS(5);
470 : 0 : state->ndist = BITS(5) + 1;
471 : 0 : DROPBITS(5);
472 : 0 : state->ncode = BITS(4) + 4;
473 : 0 : DROPBITS(4);
474 : : #ifndef PKZIP_BUG_WORKAROUND
475 [ # # # # ]: 0 : if (state->nlen > 286 || state->ndist > 30) {
476 : 0 : strm->msg = (char *)"too many length or distance symbols";
477 : 0 : state->mode = BAD;
478 : 0 : break;
479 : : }
480 : : #endif
481 : 0 : state->have = 0;
482 : 0 : state->mode = LENLENS;
483 : : /* fall through */
484 : : case LENLENS:
485 : 0 : while (state->have < state->ncode) {
486 [ # # # # ]: 0 : NEEDBITS(3);
487 : 0 : state->lens[order[state->have++]] = (unsigned short)BITS(3);
488 [ # # ]: 0 : DROPBITS(3);
489 : : }
490 [ # # ]: 0 : while (state->have < 19)
491 : 0 : state->lens[order[state->have++]] = 0;
492 : 0 : state->next = state->codes;
493 : 0 : state->lencode = (code const *)(state->next);
494 : 0 : state->lenbits = 7;
495 : 0 : ret = zlib_inflate_table(CODES, state->lens, 19, &(state->next),
496 : 0 : &(state->lenbits), state->work);
497 [ # # ]: 0 : if (ret) {
498 : 0 : strm->msg = (char *)"invalid code lengths set";
499 : 0 : state->mode = BAD;
500 : 0 : break;
501 : : }
502 : 0 : state->have = 0;
503 : 0 : state->mode = CODELENS;
504 : : /* fall through */
505 : : case CODELENS:
506 [ # # ]: 0 : while (state->have < state->nlen + state->ndist) {
507 : 0 : for (;;) {
508 : 0 : this = state->lencode[BITS(state->lenbits)];
509 [ # # ]: 0 : if ((unsigned)(this.bits) <= bits) break;
510 [ # # ]: 0 : PULLBYTE();
511 : : }
512 [ # # ]: 0 : if (this.val < 16) {
513 : 0 : NEEDBITS(this.bits);
514 : 0 : DROPBITS(this.bits);
515 : 0 : state->lens[state->have++] = this.val;
516 : : }
517 : : else {
518 [ # # ]: 0 : if (this.val == 16) {
519 [ # # # # ]: 0 : NEEDBITS(this.bits + 2);
520 : 0 : DROPBITS(this.bits);
521 [ # # ]: 0 : if (state->have == 0) {
522 : 0 : strm->msg = (char *)"invalid bit length repeat";
523 : 0 : state->mode = BAD;
524 : 0 : break;
525 : : }
526 : 0 : len = state->lens[state->have - 1];
527 : 0 : copy = 3 + BITS(2);
528 : 0 : DROPBITS(2);
529 : : }
530 [ # # ]: 0 : else if (this.val == 17) {
531 [ # # # # ]: 0 : NEEDBITS(this.bits + 3);
532 : 0 : DROPBITS(this.bits);
533 : 0 : len = 0;
534 : 0 : copy = 3 + BITS(3);
535 : 0 : DROPBITS(3);
536 : : }
537 : : else {
538 [ # # # # ]: 0 : NEEDBITS(this.bits + 7);
539 : 0 : DROPBITS(this.bits);
540 : 0 : len = 0;
541 : 0 : copy = 11 + BITS(7);
542 : 0 : DROPBITS(7);
543 : : }
544 [ # # ]: 0 : if (state->have + copy > state->nlen + state->ndist) {
545 : 0 : strm->msg = (char *)"invalid bit length repeat";
546 : 0 : state->mode = BAD;
547 : 0 : break;
548 : : }
549 [ # # ]: 0 : while (copy--)
550 : 0 : state->lens[state->have++] = (unsigned short)len;
551 : : }
552 : : }
553 : :
554 : : /* handle error breaks in while */
555 [ # # ]: 0 : if (state->mode == BAD) break;
556 : :
557 : : /* build code tables */
558 : 0 : state->next = state->codes;
559 : 0 : state->lencode = (code const *)(state->next);
560 : 0 : state->lenbits = 9;
561 : 0 : ret = zlib_inflate_table(LENS, state->lens, state->nlen, &(state->next),
562 : 0 : &(state->lenbits), state->work);
563 [ # # ]: 0 : if (ret) {
564 : 0 : strm->msg = (char *)"invalid literal/lengths set";
565 : 0 : state->mode = BAD;
566 : 0 : break;
567 : : }
568 : 0 : state->distcode = (code const *)(state->next);
569 : 0 : state->distbits = 6;
570 : 0 : ret = zlib_inflate_table(DISTS, state->lens + state->nlen, state->ndist,
571 : : &(state->next), &(state->distbits), state->work);
572 [ # # ]: 0 : if (ret) {
573 : 0 : strm->msg = (char *)"invalid distances set";
574 : 0 : state->mode = BAD;
575 : 0 : break;
576 : : }
577 : 0 : state->mode = LEN;
578 : : /* fall through */
579 : 0 : case LEN:
580 [ # # ]: 0 : if (have >= 6 && left >= 258) {
581 : 0 : RESTORE();
582 : 0 : inflate_fast(strm, out);
583 : 0 : LOAD();
584 : 0 : break;
585 : : }
586 : 0 : for (;;) {
587 : 0 : this = state->lencode[BITS(state->lenbits)];
588 [ # # ]: 0 : if ((unsigned)(this.bits) <= bits) break;
589 [ # # ]: 0 : PULLBYTE();
590 : : }
591 [ # # # # ]: 0 : if (this.op && (this.op & 0xf0) == 0) {
592 : : last = this;
593 : 0 : for (;;) {
594 : 0 : this = state->lencode[last.val +
595 : 0 : (BITS(last.bits + last.op) >> last.bits)];
596 [ # # ]: 0 : if ((unsigned)(last.bits + this.bits) <= bits) break;
597 [ # # ]: 0 : PULLBYTE();
598 : : }
599 : 0 : DROPBITS(last.bits);
600 : : }
601 : 0 : DROPBITS(this.bits);
602 : 0 : state->length = (unsigned)this.val;
603 [ # # ]: 0 : if ((int)(this.op) == 0) {
604 : 0 : state->mode = LIT;
605 : 0 : break;
606 : : }
607 [ # # ]: 0 : if (this.op & 32) {
608 : 0 : state->mode = TYPE;
609 : 0 : break;
610 : : }
611 [ # # ]: 0 : if (this.op & 64) {
612 : 0 : strm->msg = (char *)"invalid literal/length code";
613 : 0 : state->mode = BAD;
614 : 0 : break;
615 : : }
616 : 0 : state->extra = (unsigned)(this.op) & 15;
617 : 0 : state->mode = LENEXT;
618 : : /* fall through */
619 : 0 : case LENEXT:
620 [ # # ]: 0 : if (state->extra) {
621 [ # # # # ]: 0 : NEEDBITS(state->extra);
622 : 0 : state->length += BITS(state->extra);
623 : 0 : DROPBITS(state->extra);
624 : : }
625 : 0 : state->mode = DIST;
626 : : /* fall through */
627 : 0 : case DIST:
628 : 0 : for (;;) {
629 : 0 : this = state->distcode[BITS(state->distbits)];
630 [ # # ]: 0 : if ((unsigned)(this.bits) <= bits) break;
631 [ # # ]: 0 : PULLBYTE();
632 : : }
633 [ # # ]: 0 : if ((this.op & 0xf0) == 0) {
634 : : last = this;
635 : 0 : for (;;) {
636 : 0 : this = state->distcode[last.val +
637 : 0 : (BITS(last.bits + last.op) >> last.bits)];
638 [ # # ]: 0 : if ((unsigned)(last.bits + this.bits) <= bits) break;
639 [ # # ]: 0 : PULLBYTE();
640 : : }
641 : 0 : DROPBITS(last.bits);
642 : : }
643 : 0 : DROPBITS(this.bits);
644 [ # # ]: 0 : if (this.op & 64) {
645 : 0 : strm->msg = (char *)"invalid distance code";
646 : 0 : state->mode = BAD;
647 : 0 : break;
648 : : }
649 : 0 : state->offset = (unsigned)this.val;
650 : 0 : state->extra = (unsigned)(this.op) & 15;
651 : 0 : state->mode = DISTEXT;
652 : : /* fall through */
653 : 0 : case DISTEXT:
654 [ # # ]: 0 : if (state->extra) {
655 [ # # # # ]: 0 : NEEDBITS(state->extra);
656 : 0 : state->offset += BITS(state->extra);
657 : 0 : DROPBITS(state->extra);
658 : : }
659 : : #ifdef INFLATE_STRICT
660 : : if (state->offset > state->dmax) {
661 : : strm->msg = (char *)"invalid distance too far back";
662 : : state->mode = BAD;
663 : : break;
664 : : }
665 : : #endif
666 [ # # ]: 0 : if (state->offset > state->whave + out - left) {
667 : 0 : strm->msg = (char *)"invalid distance too far back";
668 : 0 : state->mode = BAD;
669 : 0 : break;
670 : : }
671 : 0 : state->mode = MATCH;
672 : : /* fall through */
673 : 0 : case MATCH:
674 [ # # ]: 0 : if (left == 0) goto inf_leave;
675 : 0 : copy = out - left;
676 [ # # ]: 0 : if (state->offset > copy) { /* copy from window */
677 : 0 : copy = state->offset - copy;
678 [ # # ]: 0 : if (copy > state->write) {
679 : 0 : copy -= state->write;
680 : 0 : from = state->window + (state->wsize - copy);
681 : : }
682 : : else
683 : 0 : from = state->window + (state->write - copy);
684 : 0 : if (copy > state->length) copy = state->length;
685 : : }
686 : : else { /* copy from output */
687 : 0 : from = put - state->offset;
688 : 0 : copy = state->length;
689 : : }
690 : 0 : if (copy > left) copy = left;
691 : 0 : left -= copy;
692 : 0 : state->length -= copy;
693 : 0 : do {
694 : 0 : *put++ = *from++;
695 [ # # ]: 0 : } while (--copy);
696 [ # # ]: 0 : if (state->length == 0) state->mode = LEN;
697 : : break;
698 : 0 : case LIT:
699 [ # # ]: 0 : if (left == 0) goto inf_leave;
700 : 0 : *put++ = (unsigned char)(state->length);
701 : 0 : left--;
702 : 0 : state->mode = LEN;
703 : 0 : break;
704 : 0 : case CHECK:
705 [ # # ]: 0 : if (state->wrap) {
706 [ # # # # ]: 0 : NEEDBITS(32);
707 : 0 : out -= left;
708 : 0 : strm->total_out += out;
709 : 0 : state->total += out;
710 [ # # ]: 0 : if (INFLATE_NEED_CHECKSUM(strm) && out)
711 : 0 : strm->adler = state->check =
712 : 0 : UPDATE(state->check, put - out, out);
713 : 0 : out = left;
714 : 0 : if ((
715 [ # # ]: 0 : REVERSE(hold)) != state->check) {
716 : 0 : strm->msg = (char *)"incorrect data check";
717 : 0 : state->mode = BAD;
718 : 0 : break;
719 : : }
720 : 0 : INITBITS();
721 : : }
722 : 0 : state->mode = DONE;
723 : : /* fall through */
724 : 0 : case DONE:
725 : 0 : ret = Z_STREAM_END;
726 : 0 : goto inf_leave;
727 : 0 : case BAD:
728 : 0 : ret = Z_DATA_ERROR;
729 : 0 : goto inf_leave;
730 : : case MEM:
731 : : return Z_MEM_ERROR;
732 : 0 : case SYNC:
733 : : default:
734 : 0 : return Z_STREAM_ERROR;
735 : : }
736 : :
737 : : /*
738 : : Return from inflate(), updating the total counts and the check value.
739 : : If there was no progress during the inflate() call, return a buffer
740 : : error. Call zlib_updatewindow() to create and/or update the window state.
741 : : */
742 : 0 : inf_leave:
743 : 0 : RESTORE();
744 : 0 : if (INFLATE_NEED_UPDATEWINDOW(strm) &&
745 [ # # # # : 0 : (state->wsize || (state->mode < CHECK && out != strm->avail_out)))
# # ]
746 : 0 : zlib_updatewindow(strm, out);
747 : :
748 : 0 : in -= strm->avail_in;
749 : 0 : out -= strm->avail_out;
750 : 0 : strm->total_in += in;
751 : 0 : strm->total_out += out;
752 : 0 : state->total += out;
753 [ # # # # ]: 0 : if (INFLATE_NEED_CHECKSUM(strm) && state->wrap && out)
754 : 0 : strm->adler = state->check =
755 : 0 : UPDATE(state->check, strm->next_out - out, out);
756 : :
757 [ # # ]: 0 : strm->data_type = state->bits + (state->last ? 64 : 0) +
758 [ # # ]: 0 : (state->mode == TYPE ? 128 : 0);
759 : :
760 [ # # ]: 0 : if (flush == Z_PACKET_FLUSH && ret == Z_OK &&
761 [ # # # # ]: 0 : strm->avail_out != 0 && strm->avail_in == 0)
762 [ # # ]: 0 : return zlib_inflateSyncPacket(strm);
763 : :
764 [ # # # # : 0 : if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
# # ]
765 : 0 : ret = Z_BUF_ERROR;
766 : :
767 : : return ret;
768 : : }
769 : :
770 : 0 : int zlib_inflateEnd(z_streamp strm)
771 : : {
772 [ # # # # ]: 0 : if (strm == NULL || strm->state == NULL)
773 : 0 : return Z_STREAM_ERROR;
774 : : return Z_OK;
775 : : }
776 : :
777 : : /*
778 : : * This subroutine adds the data at next_in/avail_in to the output history
779 : : * without performing any output. The output buffer must be "caught up";
780 : : * i.e. no pending output but this should always be the case. The state must
781 : : * be waiting on the start of a block (i.e. mode == TYPE or HEAD). On exit,
782 : : * the output will also be caught up, and the checksum will have been updated
783 : : * if need be.
784 : : */
785 : 0 : int zlib_inflateIncomp(z_stream *z)
786 : : {
787 : 0 : struct inflate_state *state = (struct inflate_state *)z->state;
788 : 0 : Byte *saved_no = z->next_out;
789 : 0 : uInt saved_ao = z->avail_out;
790 : :
791 [ # # ]: 0 : if (state->mode != TYPE && state->mode != HEAD)
792 : : return Z_DATA_ERROR;
793 : :
794 : : /* Setup some variables to allow misuse of updateWindow */
795 : 0 : z->avail_out = 0;
796 : 0 : z->next_out = (unsigned char*)z->next_in + z->avail_in;
797 : :
798 : 0 : zlib_updatewindow(z, z->avail_in);
799 : :
800 : : /* Restore saved variables */
801 : 0 : z->avail_out = saved_ao;
802 : 0 : z->next_out = saved_no;
803 : :
804 : 0 : z->adler = state->check =
805 : 0 : UPDATE(state->check, z->next_in, z->avail_in);
806 : :
807 : 0 : z->total_out += z->avail_in;
808 : 0 : z->total_in += z->avail_in;
809 : 0 : z->next_in += z->avail_in;
810 : 0 : state->total += z->avail_in;
811 : 0 : z->avail_in = 0;
812 : :
813 : 0 : return Z_OK;
814 : : }
|