Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only
2 : : #include <linux/init.h>
3 : :
4 : : #include <linux/mm.h>
5 : : #include <linux/spinlock.h>
6 : : #include <linux/smp.h>
7 : : #include <linux/interrupt.h>
8 : : #include <linux/export.h>
9 : : #include <linux/cpu.h>
10 : : #include <linux/debugfs.h>
11 : :
12 : : #include <asm/tlbflush.h>
13 : : #include <asm/mmu_context.h>
14 : : #include <asm/nospec-branch.h>
15 : : #include <asm/cache.h>
16 : : #include <asm/apic.h>
17 : : #include <asm/uv/uv.h>
18 : :
19 : : #include "mm_internal.h"
20 : :
21 : : /*
22 : : * TLB flushing, formerly SMP-only
23 : : * c/o Linus Torvalds.
24 : : *
25 : : * These mean you can really definitely utterly forget about
26 : : * writing to user space from interrupts. (Its not allowed anyway).
27 : : *
28 : : * Optimizations Manfred Spraul <manfred@colorfullife.com>
29 : : *
30 : : * More scalable flush, from Andi Kleen
31 : : *
32 : : * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
33 : : */
34 : :
35 : : /*
36 : : * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
37 : : * stored in cpu_tlb_state.last_user_mm_ibpb.
38 : : */
39 : : #define LAST_USER_MM_IBPB 0x1UL
40 : :
41 : : /*
42 : : * We get here when we do something requiring a TLB invalidation
43 : : * but could not go invalidate all of the contexts. We do the
44 : : * necessary invalidation by clearing out the 'ctx_id' which
45 : : * forces a TLB flush when the context is loaded.
46 : : */
47 : 0 : static void clear_asid_other(void)
48 : : {
49 : 0 : u16 asid;
50 : :
51 : : /*
52 : : * This is only expected to be set if we have disabled
53 : : * kernel _PAGE_GLOBAL pages.
54 : : */
55 [ # # # ]: 0 : if (!static_cpu_has(X86_FEATURE_PTI)) {
56 : 0 : WARN_ON_ONCE(1);
57 : 0 : return;
58 : : }
59 : :
60 [ # # ]: 0 : for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
61 : : /* Do not need to flush the current asid */
62 [ # # ]: 0 : if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
63 : 0 : continue;
64 : : /*
65 : : * Make sure the next time we go to switch to
66 : : * this asid, we do a flush:
67 : : */
68 : 0 : this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
69 : : }
70 : 0 : this_cpu_write(cpu_tlbstate.invalidate_other, false);
71 : : }
72 : :
73 : : atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
74 : :
75 : :
76 : 1219120 : static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
77 : : u16 *new_asid, bool *need_flush)
78 : : {
79 : 1219120 : u16 asid;
80 : :
81 [ - + - ]: 1219120 : if (!static_cpu_has(X86_FEATURE_PCID)) {
82 : 1219120 : *new_asid = 0;
83 : 1219120 : *need_flush = true;
84 : 1219120 : return;
85 : : }
86 : :
87 [ # # ]: 0 : if (this_cpu_read(cpu_tlbstate.invalidate_other))
88 : 0 : clear_asid_other();
89 : :
90 [ # # ]: 0 : for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
91 : 0 : if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
92 [ # # ]: 0 : next->context.ctx_id)
93 : 0 : continue;
94 : :
95 : 0 : *new_asid = asid;
96 : 0 : *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
97 : : next_tlb_gen);
98 : 0 : return;
99 : : }
100 : :
101 : : /*
102 : : * We don't currently own an ASID slot on this CPU.
103 : : * Allocate a slot.
104 : : */
105 : 0 : *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106 [ # # ]: 0 : if (*new_asid >= TLB_NR_DYN_ASIDS) {
107 : 0 : *new_asid = 0;
108 : 0 : this_cpu_write(cpu_tlbstate.next_asid, 1);
109 : : }
110 : 0 : *need_flush = true;
111 : : }
112 : :
113 : 1219120 : static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114 : : {
115 : 1219120 : unsigned long new_mm_cr3;
116 : :
117 [ + - ]: 1219120 : if (need_flush) {
118 : 1219120 : invalidate_user_asid(new_asid);
119 : 1219120 : new_mm_cr3 = build_cr3(pgdir, new_asid);
120 : : } else {
121 [ # # ]: 0 : new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122 : : }
123 : :
124 : : /*
125 : : * Caution: many callers of this function expect
126 : : * that load_cr3() is serializing and orders TLB
127 : : * fills with respect to the mm_cpumask writes.
128 : : */
129 : 1219120 : write_cr3(new_mm_cr3);
130 : 1219120 : }
131 : :
132 : 0 : void leave_mm(int cpu)
133 : : {
134 : 0 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135 : :
136 : : /*
137 : : * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138 : : * If so, our callers still expect us to flush the TLB, but there
139 : : * aren't any user TLB entries in init_mm to worry about.
140 : : *
141 : : * This needs to happen before any other sanity checks due to
142 : : * intel_idle's shenanigans.
143 : : */
144 [ # # ]: 0 : if (loaded_mm == &init_mm)
145 : : return;
146 : :
147 : : /* Warn if we're not lazy. */
148 [ # # ]: 0 : WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149 : :
150 : 0 : switch_mm(NULL, &init_mm, NULL);
151 : : }
152 : : EXPORT_SYMBOL_GPL(leave_mm);
153 : :
154 : 148708 : void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155 : : struct task_struct *tsk)
156 : : {
157 : 148708 : unsigned long flags;
158 : :
159 : 148708 : local_irq_save(flags);
160 : 148708 : switch_mm_irqs_off(prev, next, tsk);
161 : 148708 : local_irq_restore(flags);
162 : 0 : }
163 : :
164 : : static void sync_current_stack_to_mm(struct mm_struct *mm)
165 : : {
166 : : unsigned long sp = current_stack_pointer;
167 : : pgd_t *pgd = pgd_offset(mm, sp);
168 : :
169 : : if (pgtable_l5_enabled()) {
170 : : if (unlikely(pgd_none(*pgd))) {
171 : : pgd_t *pgd_ref = pgd_offset_k(sp);
172 : :
173 : : set_pgd(pgd, *pgd_ref);
174 : : }
175 : : } else {
176 : : /*
177 : : * "pgd" is faked. The top level entries are "p4d"s, so sync
178 : : * the p4d. This compiles to approximately the same code as
179 : : * the 5-level case.
180 : : */
181 : : p4d_t *p4d = p4d_offset(pgd, sp);
182 : :
183 : : if (unlikely(p4d_none(*p4d))) {
184 : : pgd_t *pgd_ref = pgd_offset_k(sp);
185 : : p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
186 : :
187 : : set_p4d(p4d, *p4d_ref);
188 : : }
189 : : }
190 : : }
191 : :
192 : 0 : static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
193 : : {
194 : 0 : unsigned long next_tif = task_thread_info(next)->flags;
195 : 0 : unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
196 : :
197 : 0 : return (unsigned long)next->mm | ibpb;
198 : : }
199 : :
200 : 1219120 : static void cond_ibpb(struct task_struct *next)
201 : : {
202 [ + + + + ]: 1219120 : if (!next || !next->mm)
203 : : return;
204 : :
205 : : /*
206 : : * Both, the conditional and the always IBPB mode use the mm
207 : : * pointer to avoid the IBPB when switching between tasks of the
208 : : * same process. Using the mm pointer instead of mm->context.ctx_id
209 : : * opens a hypothetical hole vs. mm_struct reuse, which is more or
210 : : * less impossible to control by an attacker. Aside of that it
211 : : * would only affect the first schedule so the theoretically
212 : : * exposed data is not really interesting.
213 : : */
214 [ - + + - ]: 369132 : if (static_branch_likely(&switch_mm_cond_ibpb)) {
215 : 0 : unsigned long prev_mm, next_mm;
216 : :
217 : : /*
218 : : * This is a bit more complex than the always mode because
219 : : * it has to handle two cases:
220 : : *
221 : : * 1) Switch from a user space task (potential attacker)
222 : : * which has TIF_SPEC_IB set to a user space task
223 : : * (potential victim) which has TIF_SPEC_IB not set.
224 : : *
225 : : * 2) Switch from a user space task (potential attacker)
226 : : * which has TIF_SPEC_IB not set to a user space task
227 : : * (potential victim) which has TIF_SPEC_IB set.
228 : : *
229 : : * This could be done by unconditionally issuing IBPB when
230 : : * a task which has TIF_SPEC_IB set is either scheduled in
231 : : * or out. Though that results in two flushes when:
232 : : *
233 : : * - the same user space task is scheduled out and later
234 : : * scheduled in again and only a kernel thread ran in
235 : : * between.
236 : : *
237 : : * - a user space task belonging to the same process is
238 : : * scheduled in after a kernel thread ran in between
239 : : *
240 : : * - a user space task belonging to the same process is
241 : : * scheduled in immediately.
242 : : *
243 : : * Optimize this with reasonably small overhead for the
244 : : * above cases. Mangle the TIF_SPEC_IB bit into the mm
245 : : * pointer of the incoming task which is stored in
246 : : * cpu_tlbstate.last_user_mm_ibpb for comparison.
247 : : */
248 : 0 : next_mm = mm_mangle_tif_spec_ib(next);
249 : 0 : prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
250 : :
251 : : /*
252 : : * Issue IBPB only if the mm's are different and one or
253 : : * both have the IBPB bit set.
254 : : */
255 [ # # ]: 0 : if (next_mm != prev_mm &&
256 [ # # ]: 0 : (next_mm | prev_mm) & LAST_USER_MM_IBPB)
257 : 0 : indirect_branch_prediction_barrier();
258 : :
259 : 369132 : this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
260 : : }
261 : :
262 [ + - + - ]: 738264 : if (static_branch_unlikely(&switch_mm_always_ibpb)) {
263 : : /*
264 : : * Only flush when switching to a user space task with a
265 : : * different context than the user space task which ran
266 : : * last on this CPU.
267 : : */
268 [ # # ]: 0 : if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
269 : 0 : indirect_branch_prediction_barrier();
270 : 369132 : this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
271 : : }
272 : : }
273 : : }
274 : :
275 : 1321923 : void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
276 : : struct task_struct *tsk)
277 : : {
278 : 1321923 : struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
279 : 1321923 : u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
280 : 1321923 : bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
281 : 1321923 : unsigned cpu = smp_processor_id();
282 : 1321923 : u64 next_tlb_gen;
283 : 1321923 : bool need_flush;
284 : 1321923 : u16 new_asid;
285 : :
286 : : /*
287 : : * NB: The scheduler will call us with prev == next when switching
288 : : * from lazy TLB mode to normal mode if active_mm isn't changing.
289 : : * When this happens, we don't assume that CR3 (and hence
290 : : * cpu_tlbstate.loaded_mm) matches next.
291 : : *
292 : : * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
293 : : */
294 : :
295 : : /* We don't want flush_tlb_func_* to run concurrently with us. */
296 : 1321923 : if (IS_ENABLED(CONFIG_PROVE_LOCKING))
297 : : WARN_ON_ONCE(!irqs_disabled());
298 : :
299 : : /*
300 : : * Verify that CR3 is what we think it is. This will catch
301 : : * hypothetical buggy code that directly switches to swapper_pg_dir
302 : : * without going through leave_mm() / switch_mm_irqs_off() or that
303 : : * does something like write_cr3(read_cr3_pa()).
304 : : *
305 : : * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
306 : : * isn't free.
307 : : */
308 : : #ifdef CONFIG_DEBUG_VM
309 : : if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
310 : : /*
311 : : * If we were to BUG here, we'd be very likely to kill
312 : : * the system so hard that we don't see the call trace.
313 : : * Try to recover instead by ignoring the error and doing
314 : : * a global flush to minimize the chance of corruption.
315 : : *
316 : : * (This is far from being a fully correct recovery.
317 : : * Architecturally, the CPU could prefetch something
318 : : * back into an incorrect ASID slot and leave it there
319 : : * to cause trouble down the road. It's better than
320 : : * nothing, though.)
321 : : */
322 : : __flush_tlb_all();
323 : : }
324 : : #endif
325 : 1321923 : this_cpu_write(cpu_tlbstate.is_lazy, false);
326 : :
327 : : /*
328 : : * The membarrier system call requires a full memory barrier and
329 : : * core serialization before returning to user-space, after
330 : : * storing to rq->curr. Writing to CR3 provides that full
331 : : * memory barrier and core serializing instruction.
332 : : */
333 [ + + ]: 1321923 : if (real_prev == next) {
334 : 102803 : VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
335 : : next->context.ctx_id);
336 : :
337 : : /*
338 : : * Even in lazy TLB mode, the CPU should stay set in the
339 : : * mm_cpumask. The TLB shootdown code can figure out from
340 : : * from cpu_tlbstate.is_lazy whether or not to send an IPI.
341 : : */
342 [ + - + - : 308409 : if (WARN_ON_ONCE(real_prev != &init_mm &&
- + - + ]
343 : : !cpumask_test_cpu(cpu, mm_cpumask(next))))
344 : 0 : cpumask_set_cpu(cpu, mm_cpumask(next));
345 : :
346 : : /*
347 : : * If the CPU is not in lazy TLB mode, we are just switching
348 : : * from one thread in a process to another thread in the same
349 : : * process. No TLB flush required.
350 : : */
351 [ + + ]: 102803 : if (!was_lazy)
352 : 102803 : return;
353 : :
354 : : /*
355 : : * Read the tlb_gen to check whether a flush is needed.
356 : : * If the TLB is up to date, just use it.
357 : : * The barrier synchronizes with the tlb_gen increment in
358 : : * the TLB shootdown code.
359 : : */
360 : 101661 : smp_mb();
361 : 101661 : next_tlb_gen = atomic64_read(&next->context.tlb_gen);
362 [ - + ]: 101661 : if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
363 : : next_tlb_gen)
364 : : return;
365 : :
366 : : /*
367 : : * TLB contents went out of date while we were in lazy
368 : : * mode. Fall through to the TLB switching code below.
369 : : */
370 : 0 : new_asid = prev_asid;
371 : 0 : need_flush = true;
372 : : } else {
373 : : /*
374 : : * Avoid user/user BTB poisoning by flushing the branch
375 : : * predictor when switching between processes. This stops
376 : : * one process from doing Spectre-v2 attacks on another.
377 : : */
378 : 1219120 : cond_ibpb(tsk);
379 : :
380 : 1219120 : if (IS_ENABLED(CONFIG_VMAP_STACK)) {
381 : : /*
382 : : * If our current stack is in vmalloc space and isn't
383 : : * mapped in the new pgd, we'll double-fault. Forcibly
384 : : * map it.
385 : : */
386 : : sync_current_stack_to_mm(next);
387 : : }
388 : :
389 : : /*
390 : : * Stop remote flushes for the previous mm.
391 : : * Skip kernel threads; we never send init_mm TLB flushing IPIs,
392 : : * but the bitmap manipulation can cause cache line contention.
393 : : */
394 [ + + ]: 1219120 : if (real_prev != &init_mm) {
395 : 794480 : VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
396 : : mm_cpumask(real_prev)));
397 : 794480 : cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
398 : : }
399 : :
400 : : /*
401 : : * Start remote flushes and then read tlb_gen.
402 : : */
403 [ + + ]: 1219120 : if (next != &init_mm)
404 : 794508 : cpumask_set_cpu(cpu, mm_cpumask(next));
405 : 1219120 : next_tlb_gen = atomic64_read(&next->context.tlb_gen);
406 : :
407 : 1219120 : choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
408 : :
409 : : /* Let nmi_uaccess_okay() know that we're changing CR3. */
410 : 1219120 : this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
411 : 1219120 : barrier();
412 : : }
413 : :
414 [ + - ]: 1219120 : if (need_flush) {
415 : 1219120 : this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
416 : 1219120 : this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
417 : 1219120 : load_new_mm_cr3(next->pgd, new_asid, true);
418 : :
419 : : /*
420 : : * NB: This gets called via leave_mm() in the idle path
421 : : * where RCU functions differently. Tracing normally
422 : : * uses RCU, so we need to use the _rcuidle variant.
423 : : *
424 : : * (There is no good reason for this. The idle code should
425 : : * be rearranged to call this before rcu_idle_enter().)
426 : : */
427 : 1219120 : trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
428 : : } else {
429 : : /* The new ASID is already up to date. */
430 : 0 : load_new_mm_cr3(next->pgd, new_asid, false);
431 : :
432 : : /* See above wrt _rcuidle. */
433 : 0 : trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
434 : : }
435 : :
436 : : /* Make sure we write CR3 before loaded_mm. */
437 : 1219120 : barrier();
438 : :
439 : 1219120 : this_cpu_write(cpu_tlbstate.loaded_mm, next);
440 : 1219120 : this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
441 : :
442 [ + - ]: 1219120 : if (next != real_prev) {
443 : 1219120 : load_mm_cr4_irqsoff(next);
444 : 1219120 : switch_ldt(real_prev, next);
445 : : }
446 : : }
447 : :
448 : : /*
449 : : * Please ignore the name of this function. It should be called
450 : : * switch_to_kernel_thread().
451 : : *
452 : : * enter_lazy_tlb() is a hint from the scheduler that we are entering a
453 : : * kernel thread or other context without an mm. Acceptable implementations
454 : : * include doing nothing whatsoever, switching to init_mm, or various clever
455 : : * lazy tricks to try to minimize TLB flushes.
456 : : *
457 : : * The scheduler reserves the right to call enter_lazy_tlb() several times
458 : : * in a row. It will notify us that we're going back to a real mm by
459 : : * calling switch_mm_irqs_off().
460 : : */
461 : 505232 : void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
462 : : {
463 [ + + ]: 505232 : if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
464 : : return;
465 : :
466 : 453832 : this_cpu_write(cpu_tlbstate.is_lazy, true);
467 : : }
468 : :
469 : : /*
470 : : * Call this when reinitializing a CPU. It fixes the following potential
471 : : * problems:
472 : : *
473 : : * - The ASID changed from what cpu_tlbstate thinks it is (most likely
474 : : * because the CPU was taken down and came back up with CR3's PCID
475 : : * bits clear. CPU hotplug can do this.
476 : : *
477 : : * - The TLB contains junk in slots corresponding to inactive ASIDs.
478 : : *
479 : : * - The CPU went so far out to lunch that it may have missed a TLB
480 : : * flush.
481 : : */
482 : 28 : void initialize_tlbstate_and_flush(void)
483 : : {
484 : 28 : int i;
485 : 28 : struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
486 : 28 : u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
487 : 28 : unsigned long cr3 = __read_cr3();
488 : :
489 : : /* Assert that CR3 already references the right mm. */
490 [ - + - + ]: 56 : WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
491 : :
492 : : /*
493 : : * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
494 : : * doesn't work like other CR4 bits because it can only be set from
495 : : * long mode.)
496 : : */
497 [ - + - - : 28 : WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
- + ]
498 : : !(cr4_read_shadow() & X86_CR4_PCIDE));
499 : :
500 : : /* Force ASID 0 and force a TLB flush. */
501 : 28 : write_cr3(build_cr3(mm->pgd, 0));
502 : :
503 : : /* Reinitialize tlbstate. */
504 : 28 : this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
505 : 28 : this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
506 : 28 : this_cpu_write(cpu_tlbstate.next_asid, 1);
507 : 28 : this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
508 : 28 : this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
509 : :
510 [ + + ]: 196 : for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
511 : 140 : this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
512 : 28 : }
513 : :
514 : : /*
515 : : * flush_tlb_func_common()'s memory ordering requirement is that any
516 : : * TLB fills that happen after we flush the TLB are ordered after we
517 : : * read active_mm's tlb_gen. We don't need any explicit barriers
518 : : * because all x86 flush operations are serializing and the
519 : : * atomic64_read operation won't be reordered by the compiler.
520 : : */
521 : 3466636 : static void flush_tlb_func_common(const struct flush_tlb_info *f,
522 : : bool local, enum tlb_flush_reason reason)
523 : : {
524 : : /*
525 : : * We have three different tlb_gen values in here. They are:
526 : : *
527 : : * - mm_tlb_gen: the latest generation.
528 : : * - local_tlb_gen: the generation that this CPU has already caught
529 : : * up to.
530 : : * - f->new_tlb_gen: the generation that the requester of the flush
531 : : * wants us to catch up to.
532 : : */
533 : 3466636 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
534 : 3466636 : u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
535 : 3466636 : u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
536 : 3466636 : u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
537 : :
538 : : /* This code cannot presently handle being reentered. */
539 : 3466636 : VM_WARN_ON(!irqs_disabled());
540 : :
541 [ + + ]: 3466636 : if (unlikely(loaded_mm == &init_mm))
542 : : return;
543 : :
544 : 3466608 : VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
545 : : loaded_mm->context.ctx_id);
546 : :
547 [ + + ]: 3466608 : if (this_cpu_read(cpu_tlbstate.is_lazy)) {
548 : : /*
549 : : * We're in lazy mode. We need to at least flush our
550 : : * paging-structure cache to avoid speculatively reading
551 : : * garbage into our TLB. Since switching to init_mm is barely
552 : : * slower than a minimal flush, just switch to init_mm.
553 : : *
554 : : * This should be rare, with native_flush_tlb_others skipping
555 : : * IPIs to lazy TLB mode CPUs.
556 : : */
557 : 148280 : switch_mm_irqs_off(NULL, &init_mm, NULL);
558 : 148280 : return;
559 : : }
560 : :
561 [ - + ]: 3318328 : if (unlikely(local_tlb_gen == mm_tlb_gen)) {
562 : : /*
563 : : * There's nothing to do: we're already up to date. This can
564 : : * happen if two concurrent flushes happen -- the first flush to
565 : : * be handled can catch us all the way up, leaving no work for
566 : : * the second flush.
567 : : */
568 : 0 : trace_tlb_flush(reason, 0);
569 : 0 : return;
570 : : }
571 : :
572 [ - + ]: 3318328 : WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
573 [ - + ]: 3318328 : WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
574 : :
575 : : /*
576 : : * If we get to this point, we know that our TLB is out of date.
577 : : * This does not strictly imply that we need to flush (it's
578 : : * possible that f->new_tlb_gen <= local_tlb_gen), but we're
579 : : * going to need to flush in the very near future, so we might
580 : : * as well get it over with.
581 : : *
582 : : * The only question is whether to do a full or partial flush.
583 : : *
584 : : * We do a partial flush if requested and two extra conditions
585 : : * are met:
586 : : *
587 : : * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
588 : : * we've always done all needed flushes to catch up to
589 : : * local_tlb_gen. If, for example, local_tlb_gen == 2 and
590 : : * f->new_tlb_gen == 3, then we know that the flush needed to bring
591 : : * us up to date for tlb_gen 3 is the partial flush we're
592 : : * processing.
593 : : *
594 : : * As an example of why this check is needed, suppose that there
595 : : * are two concurrent flushes. The first is a full flush that
596 : : * changes context.tlb_gen from 1 to 2. The second is a partial
597 : : * flush that changes context.tlb_gen from 2 to 3. If they get
598 : : * processed on this CPU in reverse order, we'll see
599 : : * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
600 : : * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
601 : : * 3, we'd be break the invariant: we'd update local_tlb_gen above
602 : : * 1 without the full flush that's needed for tlb_gen 2.
603 : : *
604 : : * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
605 : : * Partial TLB flushes are not all that much cheaper than full TLB
606 : : * flushes, so it seems unlikely that it would be a performance win
607 : : * to do a partial flush if that won't bring our TLB fully up to
608 : : * date. By doing a full flush instead, we can increase
609 : : * local_tlb_gen all the way to mm_tlb_gen and we can probably
610 : : * avoid another flush in the very near future.
611 : : */
612 [ + + ]: 3318328 : if (f->end != TLB_FLUSH_ALL &&
613 [ + - + - ]: 3023235 : f->new_tlb_gen == local_tlb_gen + 1 &&
614 : 3023235 : f->new_tlb_gen == mm_tlb_gen) {
615 : : /* Partial flush */
616 : 3023235 : unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
617 : 3023235 : unsigned long addr = f->start;
618 : :
619 [ + + ]: 6981374 : while (addr < f->end) {
620 : 3958139 : __flush_tlb_one_user(addr);
621 : 3958139 : addr += 1UL << f->stride_shift;
622 : : }
623 : 3023235 : if (local)
624 : 3023235 : count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
625 : 3023235 : trace_tlb_flush(reason, nr_invalidate);
626 : : } else {
627 : : /* Full flush. */
628 : 295093 : local_flush_tlb();
629 : 295093 : if (local)
630 : 295093 : count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
631 : 295093 : trace_tlb_flush(reason, TLB_FLUSH_ALL);
632 : : }
633 : :
634 : : /* Both paths above update our state to mm_tlb_gen. */
635 : 3318328 : this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
636 : : }
637 : :
638 : 3466636 : static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
639 : : {
640 : 3466636 : const struct flush_tlb_info *f = info;
641 : :
642 : 3466636 : flush_tlb_func_common(f, true, reason);
643 : : }
644 : :
645 : 0 : static void flush_tlb_func_remote(void *info)
646 : : {
647 : 0 : const struct flush_tlb_info *f = info;
648 : :
649 : 0 : inc_irq_stat(irq_tlb_count);
650 : :
651 [ # # # # ]: 0 : if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
652 : : return;
653 : :
654 : 0 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
655 : 0 : flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
656 : : }
657 : :
658 : 0 : static bool tlb_is_not_lazy(int cpu, void *data)
659 : : {
660 : 0 : return !per_cpu(cpu_tlbstate.is_lazy, cpu);
661 : : }
662 : :
663 : 0 : void native_flush_tlb_others(const struct cpumask *cpumask,
664 : : const struct flush_tlb_info *info)
665 : : {
666 : 0 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
667 [ # # ]: 0 : if (info->end == TLB_FLUSH_ALL)
668 : 0 : trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
669 : : else
670 : 0 : trace_tlb_flush(TLB_REMOTE_SEND_IPI,
671 : 0 : (info->end - info->start) >> PAGE_SHIFT);
672 : :
673 [ # # ]: 0 : if (is_uv_system()) {
674 : : /*
675 : : * This whole special case is confused. UV has a "Broadcast
676 : : * Assist Unit", which seems to be a fancy way to send IPIs.
677 : : * Back when x86 used an explicit TLB flush IPI, UV was
678 : : * optimized to use its own mechanism. These days, x86 uses
679 : : * smp_call_function_many(), but UV still uses a manual IPI,
680 : : * and that IPI's action is out of date -- it does a manual
681 : : * flush instead of calling flush_tlb_func_remote(). This
682 : : * means that the percpu tlb_gen variables won't be updated
683 : : * and we'll do pointless flushes on future context switches.
684 : : *
685 : : * Rather than hooking native_flush_tlb_others() here, I think
686 : : * that UV should be updated so that smp_call_function_many(),
687 : : * etc, are optimal on UV.
688 : : */
689 : : cpumask = uv_flush_tlb_others(cpumask, info);
690 : : if (cpumask)
691 : : smp_call_function_many(cpumask, flush_tlb_func_remote,
692 : : (void *)info, 1);
693 : : return;
694 : : }
695 : :
696 : : /*
697 : : * If no page tables were freed, we can skip sending IPIs to
698 : : * CPUs in lazy TLB mode. They will flush the CPU themselves
699 : : * at the next context switch.
700 : : *
701 : : * However, if page tables are getting freed, we need to send the
702 : : * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
703 : : * up on the new contents of what used to be page tables, while
704 : : * doing a speculative memory access.
705 : : */
706 [ # # ]: 0 : if (info->freed_tables)
707 : 0 : smp_call_function_many(cpumask, flush_tlb_func_remote,
708 : : (void *)info, 1);
709 : : else
710 : 0 : on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
711 : : (void *)info, 1, cpumask);
712 : : }
713 : :
714 : : /*
715 : : * See Documentation/x86/tlb.rst for details. We choose 33
716 : : * because it is large enough to cover the vast majority (at
717 : : * least 95%) of allocations, and is small enough that we are
718 : : * confident it will not cause too much overhead. Each single
719 : : * flush is about 100 ns, so this caps the maximum overhead at
720 : : * _about_ 3,000 ns.
721 : : *
722 : : * This is in units of pages.
723 : : */
724 : : unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
725 : :
726 : : static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
727 : :
728 : : #ifdef CONFIG_DEBUG_VM
729 : : static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
730 : : #endif
731 : :
732 : 3894233 : static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
733 : : unsigned long start, unsigned long end,
734 : : unsigned int stride_shift, bool freed_tables,
735 : : u64 new_tlb_gen)
736 : : {
737 : 7788466 : struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
738 : :
739 : : #ifdef CONFIG_DEBUG_VM
740 : : /*
741 : : * Ensure that the following code is non-reentrant and flush_tlb_info
742 : : * is not overwritten. This means no TLB flushing is initiated by
743 : : * interrupt handlers and machine-check exception handlers.
744 : : */
745 : : BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
746 : : #endif
747 : :
748 : 3894233 : info->start = start;
749 : 3894233 : info->end = end;
750 : 3894233 : info->mm = mm;
751 : 3894233 : info->stride_shift = stride_shift;
752 : 3894233 : info->freed_tables = freed_tables;
753 : 3894233 : info->new_tlb_gen = new_tlb_gen;
754 : :
755 : 3894233 : return info;
756 : : }
757 : :
758 : 3894233 : static inline void put_flush_tlb_info(void)
759 : : {
760 : : #ifdef CONFIG_DEBUG_VM
761 : : /* Complete reentrency prevention checks */
762 : : barrier();
763 : : this_cpu_dec(flush_tlb_info_idx);
764 : : #endif
765 : 3894233 : }
766 : :
767 : 3894130 : void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
768 : : unsigned long end, unsigned int stride_shift,
769 : : bool freed_tables)
770 : : {
771 : 3894130 : struct flush_tlb_info *info;
772 : 3894130 : u64 new_tlb_gen;
773 : 3894130 : int cpu;
774 : :
775 [ + + ]: 3894130 : cpu = get_cpu();
776 : :
777 : : /* Should we flush just the requested range? */
778 [ + + ]: 3894130 : if ((end == TLB_FLUSH_ALL) ||
779 [ + + ]: 3448219 : ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
780 : 592099 : start = 0;
781 : 592099 : end = TLB_FLUSH_ALL;
782 : : }
783 : :
784 : : /* This is also a barrier that synchronizes with switch_mm(). */
785 : 3894130 : new_tlb_gen = inc_mm_tlb_gen(mm);
786 : :
787 : 3894130 : info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
788 : : new_tlb_gen);
789 : :
790 [ + + ]: 3894130 : if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
791 : 3466636 : lockdep_assert_irqs_enabled();
792 : 3466636 : local_irq_disable();
793 : 3466636 : flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
794 : 3466636 : local_irq_enable();
795 : : }
796 : :
797 [ - + ]: 3894130 : if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
798 : 0 : flush_tlb_others(mm_cpumask(mm), info);
799 : :
800 : 3894130 : put_flush_tlb_info();
801 : 3894130 : put_cpu();
802 : 3894130 : }
803 : :
804 : :
805 : 1808 : static void do_flush_tlb_all(void *info)
806 : : {
807 : 1808 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
808 : 1808 : __flush_tlb_all();
809 : 1808 : }
810 : :
811 : 967 : void flush_tlb_all(void)
812 : : {
813 : 967 : count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
814 : 967 : on_each_cpu(do_flush_tlb_all, NULL, 1);
815 : 967 : }
816 : :
817 : 103 : static void do_kernel_range_flush(void *info)
818 : : {
819 : 103 : struct flush_tlb_info *f = info;
820 : 103 : unsigned long addr;
821 : :
822 : : /* flush range by one by one 'invlpg' */
823 [ + + ]: 833 : for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
824 : 730 : __flush_tlb_one_kernel(addr);
825 : 103 : }
826 : :
827 : 944 : void flush_tlb_kernel_range(unsigned long start, unsigned long end)
828 : : {
829 : : /* Balance as user space task's flush, a bit conservative */
830 [ + - ]: 944 : if (end == TLB_FLUSH_ALL ||
831 [ + + ]: 944 : (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
832 : 841 : on_each_cpu(do_flush_tlb_all, NULL, 1);
833 : : } else {
834 : 103 : struct flush_tlb_info *info;
835 : :
836 : 103 : preempt_disable();
837 : 103 : info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
838 : :
839 : 103 : on_each_cpu(do_kernel_range_flush, info, 1);
840 : :
841 : 103 : put_flush_tlb_info();
842 : 103 : preempt_enable();
843 : : }
844 : 944 : }
845 : :
846 : : /*
847 : : * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
848 : : * This means that the 'struct flush_tlb_info' that describes which mappings to
849 : : * flush is actually fixed. We therefore set a single fixed struct and use it in
850 : : * arch_tlbbatch_flush().
851 : : */
852 : : static const struct flush_tlb_info full_flush_tlb_info = {
853 : : .mm = NULL,
854 : : .start = 0,
855 : : .end = TLB_FLUSH_ALL,
856 : : };
857 : :
858 : 0 : void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
859 : : {
860 : 0 : int cpu = get_cpu();
861 : :
862 [ # # ]: 0 : if (cpumask_test_cpu(cpu, &batch->cpumask)) {
863 : 0 : lockdep_assert_irqs_enabled();
864 : 0 : local_irq_disable();
865 : 0 : flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
866 : 0 : local_irq_enable();
867 : : }
868 : :
869 [ # # ]: 0 : if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
870 : 0 : flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
871 : :
872 : 0 : cpumask_clear(&batch->cpumask);
873 : :
874 : 0 : put_cpu();
875 : 0 : }
876 : :
877 : 0 : static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
878 : : size_t count, loff_t *ppos)
879 : : {
880 : 0 : char buf[32];
881 : 0 : unsigned int len;
882 : :
883 : 0 : len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
884 : 0 : return simple_read_from_buffer(user_buf, count, ppos, buf, len);
885 : : }
886 : :
887 : 0 : static ssize_t tlbflush_write_file(struct file *file,
888 : : const char __user *user_buf, size_t count, loff_t *ppos)
889 : : {
890 : 0 : char buf[32];
891 : 0 : ssize_t len;
892 : 0 : int ceiling;
893 : :
894 : 0 : len = min(count, sizeof(buf) - 1);
895 [ # # ]: 0 : if (copy_from_user(buf, user_buf, len))
896 : : return -EFAULT;
897 : :
898 : 0 : buf[len] = '\0';
899 [ # # ]: 0 : if (kstrtoint(buf, 0, &ceiling))
900 : : return -EINVAL;
901 : :
902 [ # # ]: 0 : if (ceiling < 0)
903 : : return -EINVAL;
904 : :
905 : 0 : tlb_single_page_flush_ceiling = ceiling;
906 : 0 : return count;
907 : : }
908 : :
909 : : static const struct file_operations fops_tlbflush = {
910 : : .read = tlbflush_read_file,
911 : : .write = tlbflush_write_file,
912 : : .llseek = default_llseek,
913 : : };
914 : :
915 : 28 : static int __init create_tlb_single_page_flush_ceiling(void)
916 : : {
917 : 28 : debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
918 : : arch_debugfs_dir, NULL, &fops_tlbflush);
919 : 28 : return 0;
920 : : }
921 : : late_initcall(create_tlb_single_page_flush_ceiling);
|