Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-only */
2 : : /*
3 : : * linux/percpu-defs.h - basic definitions for percpu areas
4 : : *
5 : : * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
6 : : *
7 : : * This file is separate from linux/percpu.h to avoid cyclic inclusion
8 : : * dependency from arch header files. Only to be included from
9 : : * asm/percpu.h.
10 : : *
11 : : * This file includes macros necessary to declare percpu sections and
12 : : * variables, and definitions of percpu accessors and operations. It
13 : : * should provide enough percpu features to arch header files even when
14 : : * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
15 : : */
16 : :
17 : : #ifndef _LINUX_PERCPU_DEFS_H
18 : : #define _LINUX_PERCPU_DEFS_H
19 : :
20 : : #ifdef CONFIG_SMP
21 : :
22 : : #ifdef MODULE
23 : : #define PER_CPU_SHARED_ALIGNED_SECTION ""
24 : : #define PER_CPU_ALIGNED_SECTION ""
25 : : #else
26 : : #define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
27 : : #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
28 : : #endif
29 : : #define PER_CPU_FIRST_SECTION "..first"
30 : :
31 : : #else
32 : :
33 : : #define PER_CPU_SHARED_ALIGNED_SECTION ""
34 : : #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
35 : : #define PER_CPU_FIRST_SECTION ""
36 : :
37 : : #endif
38 : :
39 : : /*
40 : : * Base implementations of per-CPU variable declarations and definitions, where
41 : : * the section in which the variable is to be placed is provided by the
42 : : * 'sec' argument. This may be used to affect the parameters governing the
43 : : * variable's storage.
44 : : *
45 : : * NOTE! The sections for the DECLARE and for the DEFINE must match, lest
46 : : * linkage errors occur due the compiler generating the wrong code to access
47 : : * that section.
48 : : */
49 : : #define __PCPU_ATTRS(sec) \
50 : : __percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \
51 : : PER_CPU_ATTRIBUTES
52 : :
53 : : #define __PCPU_DUMMY_ATTRS \
54 : : __attribute__((section(".discard"), unused))
55 : :
56 : : /*
57 : : * s390 and alpha modules require percpu variables to be defined as
58 : : * weak to force the compiler to generate GOT based external
59 : : * references for them. This is necessary because percpu sections
60 : : * will be located outside of the usually addressable area.
61 : : *
62 : : * This definition puts the following two extra restrictions when
63 : : * defining percpu variables.
64 : : *
65 : : * 1. The symbol must be globally unique, even the static ones.
66 : : * 2. Static percpu variables cannot be defined inside a function.
67 : : *
68 : : * Archs which need weak percpu definitions should define
69 : : * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
70 : : *
71 : : * To ensure that the generic code observes the above two
72 : : * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
73 : : * definition is used for all cases.
74 : : */
75 : : #if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
76 : : /*
77 : : * __pcpu_scope_* dummy variable is used to enforce scope. It
78 : : * receives the static modifier when it's used in front of
79 : : * DEFINE_PER_CPU() and will trigger build failure if
80 : : * DECLARE_PER_CPU() is used for the same variable.
81 : : *
82 : : * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
83 : : * such that hidden weak symbol collision, which will cause unrelated
84 : : * variables to share the same address, can be detected during build.
85 : : */
86 : : #define DECLARE_PER_CPU_SECTION(type, name, sec) \
87 : : extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
88 : : extern __PCPU_ATTRS(sec) __typeof__(type) name
89 : :
90 : : #define DEFINE_PER_CPU_SECTION(type, name, sec) \
91 : : __PCPU_DUMMY_ATTRS char __pcpu_scope_##name; \
92 : : extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
93 : : __PCPU_DUMMY_ATTRS char __pcpu_unique_##name; \
94 : : extern __PCPU_ATTRS(sec) __typeof__(type) name; \
95 : : __PCPU_ATTRS(sec) __weak __typeof__(type) name
96 : : #else
97 : : /*
98 : : * Normal declaration and definition macros.
99 : : */
100 : : #define DECLARE_PER_CPU_SECTION(type, name, sec) \
101 : : extern __PCPU_ATTRS(sec) __typeof__(type) name
102 : :
103 : : #define DEFINE_PER_CPU_SECTION(type, name, sec) \
104 : : __PCPU_ATTRS(sec) __typeof__(type) name
105 : : #endif
106 : :
107 : : /*
108 : : * Variant on the per-CPU variable declaration/definition theme used for
109 : : * ordinary per-CPU variables.
110 : : */
111 : : #define DECLARE_PER_CPU(type, name) \
112 : : DECLARE_PER_CPU_SECTION(type, name, "")
113 : :
114 : : #define DEFINE_PER_CPU(type, name) \
115 : : DEFINE_PER_CPU_SECTION(type, name, "")
116 : :
117 : : /*
118 : : * Declaration/definition used for per-CPU variables that must come first in
119 : : * the set of variables.
120 : : */
121 : : #define DECLARE_PER_CPU_FIRST(type, name) \
122 : : DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
123 : :
124 : : #define DEFINE_PER_CPU_FIRST(type, name) \
125 : : DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
126 : :
127 : : /*
128 : : * Declaration/definition used for per-CPU variables that must be cacheline
129 : : * aligned under SMP conditions so that, whilst a particular instance of the
130 : : * data corresponds to a particular CPU, inefficiencies due to direct access by
131 : : * other CPUs are reduced by preventing the data from unnecessarily spanning
132 : : * cachelines.
133 : : *
134 : : * An example of this would be statistical data, where each CPU's set of data
135 : : * is updated by that CPU alone, but the data from across all CPUs is collated
136 : : * by a CPU processing a read from a proc file.
137 : : */
138 : : #define DECLARE_PER_CPU_SHARED_ALIGNED(type, name) \
139 : : DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
140 : : ____cacheline_aligned_in_smp
141 : :
142 : : #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name) \
143 : : DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
144 : : ____cacheline_aligned_in_smp
145 : :
146 : : #define DECLARE_PER_CPU_ALIGNED(type, name) \
147 : : DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
148 : : ____cacheline_aligned
149 : :
150 : : #define DEFINE_PER_CPU_ALIGNED(type, name) \
151 : : DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION) \
152 : : ____cacheline_aligned
153 : :
154 : : /*
155 : : * Declaration/definition used for per-CPU variables that must be page aligned.
156 : : */
157 : : #define DECLARE_PER_CPU_PAGE_ALIGNED(type, name) \
158 : : DECLARE_PER_CPU_SECTION(type, name, "..page_aligned") \
159 : : __aligned(PAGE_SIZE)
160 : :
161 : : #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name) \
162 : : DEFINE_PER_CPU_SECTION(type, name, "..page_aligned") \
163 : : __aligned(PAGE_SIZE)
164 : :
165 : : /*
166 : : * Declaration/definition used for per-CPU variables that must be read mostly.
167 : : */
168 : : #define DECLARE_PER_CPU_READ_MOSTLY(type, name) \
169 : : DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
170 : :
171 : : #define DEFINE_PER_CPU_READ_MOSTLY(type, name) \
172 : : DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
173 : :
174 : : /*
175 : : * Declaration/definition used for per-CPU variables that should be accessed
176 : : * as decrypted when memory encryption is enabled in the guest.
177 : : */
178 : : #ifdef CONFIG_AMD_MEM_ENCRYPT
179 : : #define DECLARE_PER_CPU_DECRYPTED(type, name) \
180 : : DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
181 : :
182 : : #define DEFINE_PER_CPU_DECRYPTED(type, name) \
183 : : DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
184 : : #else
185 : : #define DEFINE_PER_CPU_DECRYPTED(type, name) DEFINE_PER_CPU(type, name)
186 : : #endif
187 : :
188 : : /*
189 : : * Intermodule exports for per-CPU variables. sparse forgets about
190 : : * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
191 : : * noop if __CHECKER__.
192 : : */
193 : : #ifndef __CHECKER__
194 : : #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
195 : : #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
196 : : #else
197 : : #define EXPORT_PER_CPU_SYMBOL(var)
198 : : #define EXPORT_PER_CPU_SYMBOL_GPL(var)
199 : : #endif
200 : :
201 : : /*
202 : : * Accessors and operations.
203 : : */
204 : : #ifndef __ASSEMBLY__
205 : :
206 : : /*
207 : : * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
208 : : * @ptr and is invoked once before a percpu area is accessed by all
209 : : * accessors and operations. This is performed in the generic part of
210 : : * percpu and arch overrides don't need to worry about it; however, if an
211 : : * arch wants to implement an arch-specific percpu accessor or operation,
212 : : * it may use __verify_pcpu_ptr() to verify the parameters.
213 : : *
214 : : * + 0 is required in order to convert the pointer type from a
215 : : * potential array type to a pointer to a single item of the array.
216 : : */
217 : : #define __verify_pcpu_ptr(ptr) \
218 : : do { \
219 : : const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
220 : : (void)__vpp_verify; \
221 : : } while (0)
222 : :
223 : : #ifdef CONFIG_SMP
224 : :
225 : : /*
226 : : * Add an offset to a pointer but keep the pointer as-is. Use RELOC_HIDE()
227 : : * to prevent the compiler from making incorrect assumptions about the
228 : : * pointer value. The weird cast keeps both GCC and sparse happy.
229 : : */
230 : : #define SHIFT_PERCPU_PTR(__p, __offset) \
231 : : RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
232 : :
233 : : #define per_cpu_ptr(ptr, cpu) \
234 : : ({ \
235 : : __verify_pcpu_ptr(ptr); \
236 : : SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \
237 : : })
238 : :
239 : : #define raw_cpu_ptr(ptr) \
240 : : ({ \
241 : : __verify_pcpu_ptr(ptr); \
242 : : arch_raw_cpu_ptr(ptr); \
243 : : })
244 : :
245 : : #ifdef CONFIG_DEBUG_PREEMPT
246 : : #define this_cpu_ptr(ptr) \
247 : : ({ \
248 : : __verify_pcpu_ptr(ptr); \
249 : : SHIFT_PERCPU_PTR(ptr, my_cpu_offset); \
250 : : })
251 : : #else
252 : : #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
253 : : #endif
254 : :
255 : : #else /* CONFIG_SMP */
256 : :
257 : : #define VERIFY_PERCPU_PTR(__p) \
258 : : ({ \
259 : : __verify_pcpu_ptr(__p); \
260 : : (typeof(*(__p)) __kernel __force *)(__p); \
261 : : })
262 : :
263 : : #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
264 : : #define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)
265 : : #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
266 : :
267 : : #endif /* CONFIG_SMP */
268 : :
269 : : #define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu))
270 : :
271 : : /*
272 : : * Must be an lvalue. Since @var must be a simple identifier,
273 : : * we force a syntax error here if it isn't.
274 : : */
275 : : #define get_cpu_var(var) \
276 : : (*({ \
277 : : preempt_disable(); \
278 : : this_cpu_ptr(&var); \
279 : : }))
280 : :
281 : : /*
282 : : * The weird & is necessary because sparse considers (void)(var) to be
283 : : * a direct dereference of percpu variable (var).
284 : : */
285 : : #define put_cpu_var(var) \
286 : : do { \
287 : : (void)&(var); \
288 : : preempt_enable(); \
289 : : } while (0)
290 : :
291 : : #define get_cpu_ptr(var) \
292 : : ({ \
293 : : preempt_disable(); \
294 : : this_cpu_ptr(var); \
295 : : })
296 : :
297 : : #define put_cpu_ptr(var) \
298 : : do { \
299 : : (void)(var); \
300 : : preempt_enable(); \
301 : : } while (0)
302 : :
303 : : /*
304 : : * Branching function to split up a function into a set of functions that
305 : : * are called for different scalar sizes of the objects handled.
306 : : */
307 : :
308 : : extern void __bad_size_call_parameter(void);
309 : :
310 : : #ifdef CONFIG_DEBUG_PREEMPT
311 : : extern void __this_cpu_preempt_check(const char *op);
312 : : #else
313 [ + + + + : 122432874 : static inline void __this_cpu_preempt_check(const char *op) { }
+ + + + +
+ + + + +
+ + + + +
+ + + - -
- - - - -
- - - -
- ]
314 : : #endif
315 : :
316 : : #define __pcpu_size_call_return(stem, variable) \
317 : : ({ \
318 : : typeof(variable) pscr_ret__; \
319 : : __verify_pcpu_ptr(&(variable)); \
320 : : switch(sizeof(variable)) { \
321 : : case 1: pscr_ret__ = stem##1(variable); break; \
322 : : case 2: pscr_ret__ = stem##2(variable); break; \
323 : : case 4: pscr_ret__ = stem##4(variable); break; \
324 : : case 8: pscr_ret__ = stem##8(variable); break; \
325 : : default: \
326 : : __bad_size_call_parameter(); break; \
327 : : } \
328 : : pscr_ret__; \
329 : : })
330 : :
331 : : #define __pcpu_size_call_return2(stem, variable, ...) \
332 : : ({ \
333 : : typeof(variable) pscr2_ret__; \
334 : : __verify_pcpu_ptr(&(variable)); \
335 : : switch(sizeof(variable)) { \
336 : : case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
337 : : case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
338 : : case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
339 : : case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
340 : : default: \
341 : : __bad_size_call_parameter(); break; \
342 : : } \
343 : : pscr2_ret__; \
344 : : })
345 : :
346 : : /*
347 : : * Special handling for cmpxchg_double. cmpxchg_double is passed two
348 : : * percpu variables. The first has to be aligned to a double word
349 : : * boundary and the second has to follow directly thereafter.
350 : : * We enforce this on all architectures even if they don't support
351 : : * a double cmpxchg instruction, since it's a cheap requirement, and it
352 : : * avoids breaking the requirement for architectures with the instruction.
353 : : */
354 : : #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
355 : : ({ \
356 : : bool pdcrb_ret__; \
357 : : __verify_pcpu_ptr(&(pcp1)); \
358 : : BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
359 : : VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1))); \
360 : : VM_BUG_ON((unsigned long)(&(pcp2)) != \
361 : : (unsigned long)(&(pcp1)) + sizeof(pcp1)); \
362 : : switch(sizeof(pcp1)) { \
363 : : case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
364 : : case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
365 : : case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
366 : : case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
367 : : default: \
368 : : __bad_size_call_parameter(); break; \
369 : : } \
370 : : pdcrb_ret__; \
371 : : })
372 : :
373 : : #define __pcpu_size_call(stem, variable, ...) \
374 : : do { \
375 : : __verify_pcpu_ptr(&(variable)); \
376 : : switch(sizeof(variable)) { \
377 : : case 1: stem##1(variable, __VA_ARGS__);break; \
378 : : case 2: stem##2(variable, __VA_ARGS__);break; \
379 : : case 4: stem##4(variable, __VA_ARGS__);break; \
380 : : case 8: stem##8(variable, __VA_ARGS__);break; \
381 : : default: \
382 : : __bad_size_call_parameter();break; \
383 : : } \
384 : : } while (0)
385 : :
386 : : /*
387 : : * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
388 : : *
389 : : * Optimized manipulation for memory allocated through the per cpu
390 : : * allocator or for addresses of per cpu variables.
391 : : *
392 : : * These operation guarantee exclusivity of access for other operations
393 : : * on the *same* processor. The assumption is that per cpu data is only
394 : : * accessed by a single processor instance (the current one).
395 : : *
396 : : * The arch code can provide optimized implementation by defining macros
397 : : * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
398 : : * cpu atomic operations for 2 byte sized RMW actions. If arch code does
399 : : * not provide operations for a scalar size then the fallback in the
400 : : * generic code will be used.
401 : : *
402 : : * cmpxchg_double replaces two adjacent scalars at once. The first two
403 : : * parameters are per cpu variables which have to be of the same size. A
404 : : * truth value is returned to indicate success or failure (since a double
405 : : * register result is difficult to handle). There is very limited hardware
406 : : * support for these operations, so only certain sizes may work.
407 : : */
408 : :
409 : : /*
410 : : * Operations for contexts where we do not want to do any checks for
411 : : * preemptions. Unless strictly necessary, always use [__]this_cpu_*()
412 : : * instead.
413 : : *
414 : : * If there is no other protection through preempt disable and/or disabling
415 : : * interupts then one of these RMW operations can show unexpected behavior
416 : : * because the execution thread was rescheduled on another processor or an
417 : : * interrupt occurred and the same percpu variable was modified from the
418 : : * interrupt context.
419 : : */
420 : : #define raw_cpu_read(pcp) __pcpu_size_call_return(raw_cpu_read_, pcp)
421 : : #define raw_cpu_write(pcp, val) __pcpu_size_call(raw_cpu_write_, pcp, val)
422 : : #define raw_cpu_add(pcp, val) __pcpu_size_call(raw_cpu_add_, pcp, val)
423 : : #define raw_cpu_and(pcp, val) __pcpu_size_call(raw_cpu_and_, pcp, val)
424 : : #define raw_cpu_or(pcp, val) __pcpu_size_call(raw_cpu_or_, pcp, val)
425 : : #define raw_cpu_add_return(pcp, val) __pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
426 : : #define raw_cpu_xchg(pcp, nval) __pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
427 : : #define raw_cpu_cmpxchg(pcp, oval, nval) \
428 : : __pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
429 : : #define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
430 : : __pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
431 : :
432 : : #define raw_cpu_sub(pcp, val) raw_cpu_add(pcp, -(val))
433 : : #define raw_cpu_inc(pcp) raw_cpu_add(pcp, 1)
434 : : #define raw_cpu_dec(pcp) raw_cpu_sub(pcp, 1)
435 : : #define raw_cpu_sub_return(pcp, val) raw_cpu_add_return(pcp, -(typeof(pcp))(val))
436 : : #define raw_cpu_inc_return(pcp) raw_cpu_add_return(pcp, 1)
437 : : #define raw_cpu_dec_return(pcp) raw_cpu_add_return(pcp, -1)
438 : :
439 : : /*
440 : : * Operations for contexts that are safe from preemption/interrupts. These
441 : : * operations verify that preemption is disabled.
442 : : */
443 : : #define __this_cpu_read(pcp) \
444 : : ({ \
445 : : __this_cpu_preempt_check("read"); \
446 : : raw_cpu_read(pcp); \
447 : : })
448 : :
449 : : #define __this_cpu_write(pcp, val) \
450 : : ({ \
451 : : __this_cpu_preempt_check("write"); \
452 : : raw_cpu_write(pcp, val); \
453 : : })
454 : :
455 : : #define __this_cpu_add(pcp, val) \
456 : : ({ \
457 : : __this_cpu_preempt_check("add"); \
458 : : raw_cpu_add(pcp, val); \
459 : : })
460 : :
461 : : #define __this_cpu_and(pcp, val) \
462 : : ({ \
463 : : __this_cpu_preempt_check("and"); \
464 : : raw_cpu_and(pcp, val); \
465 : : })
466 : :
467 : : #define __this_cpu_or(pcp, val) \
468 : : ({ \
469 : : __this_cpu_preempt_check("or"); \
470 : : raw_cpu_or(pcp, val); \
471 : : })
472 : :
473 : : #define __this_cpu_add_return(pcp, val) \
474 : : ({ \
475 : : __this_cpu_preempt_check("add_return"); \
476 : : raw_cpu_add_return(pcp, val); \
477 : : })
478 : :
479 : : #define __this_cpu_xchg(pcp, nval) \
480 : : ({ \
481 : : __this_cpu_preempt_check("xchg"); \
482 : : raw_cpu_xchg(pcp, nval); \
483 : : })
484 : :
485 : : #define __this_cpu_cmpxchg(pcp, oval, nval) \
486 : : ({ \
487 : : __this_cpu_preempt_check("cmpxchg"); \
488 : : raw_cpu_cmpxchg(pcp, oval, nval); \
489 : : })
490 : :
491 : : #define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
492 : : ({ __this_cpu_preempt_check("cmpxchg_double"); \
493 : : raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2); \
494 : : })
495 : :
496 : : #define __this_cpu_sub(pcp, val) __this_cpu_add(pcp, -(typeof(pcp))(val))
497 : : #define __this_cpu_inc(pcp) __this_cpu_add(pcp, 1)
498 : : #define __this_cpu_dec(pcp) __this_cpu_sub(pcp, 1)
499 : : #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
500 : : #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
501 : : #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
502 : :
503 : : /*
504 : : * Operations with implied preemption/interrupt protection. These
505 : : * operations can be used without worrying about preemption or interrupt.
506 : : */
507 : : #define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, pcp)
508 : : #define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, pcp, val)
509 : : #define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, pcp, val)
510 : : #define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, pcp, val)
511 : : #define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, pcp, val)
512 : : #define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
513 : : #define this_cpu_xchg(pcp, nval) __pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
514 : : #define this_cpu_cmpxchg(pcp, oval, nval) \
515 : : __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
516 : : #define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
517 : : __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
518 : :
519 : : #define this_cpu_sub(pcp, val) this_cpu_add(pcp, -(typeof(pcp))(val))
520 : : #define this_cpu_inc(pcp) this_cpu_add(pcp, 1)
521 : : #define this_cpu_dec(pcp) this_cpu_sub(pcp, 1)
522 : : #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
523 : : #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
524 : : #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
525 : :
526 : : #endif /* __ASSEMBLY__ */
527 : : #endif /* _LINUX_PERCPU_DEFS_H */
|