Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0
2 : : /*
3 : : * Copyright (C) 1991, 1992 Linus Torvalds
4 : : * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 : : * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 : : * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 : : * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 : : * - July2000
9 : : * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 : : */
11 : :
12 : : /*
13 : : * This handles all read/write requests to block devices
14 : : */
15 : : #include <linux/kernel.h>
16 : : #include <linux/module.h>
17 : : #include <linux/backing-dev.h>
18 : : #include <linux/bio.h>
19 : : #include <linux/blkdev.h>
20 : : #include <linux/blk-mq.h>
21 : : #include <linux/highmem.h>
22 : : #include <linux/mm.h>
23 : : #include <linux/kernel_stat.h>
24 : : #include <linux/string.h>
25 : : #include <linux/init.h>
26 : : #include <linux/completion.h>
27 : : #include <linux/slab.h>
28 : : #include <linux/swap.h>
29 : : #include <linux/writeback.h>
30 : : #include <linux/task_io_accounting_ops.h>
31 : : #include <linux/fault-inject.h>
32 : : #include <linux/list_sort.h>
33 : : #include <linux/delay.h>
34 : : #include <linux/ratelimit.h>
35 : : #include <linux/pm_runtime.h>
36 : : #include <linux/blk-cgroup.h>
37 : : #include <linux/t10-pi.h>
38 : : #include <linux/debugfs.h>
39 : : #include <linux/bpf.h>
40 : : #include <linux/psi.h>
41 : :
42 : : #define CREATE_TRACE_POINTS
43 : : #include <trace/events/block.h>
44 : :
45 : : #include "blk.h"
46 : : #include "blk-mq.h"
47 : : #include "blk-mq-sched.h"
48 : : #include "blk-pm.h"
49 : : #include "blk-rq-qos.h"
50 : :
51 : : #ifdef CONFIG_DEBUG_FS
52 : : struct dentry *blk_debugfs_root;
53 : : #endif
54 : :
55 : : EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 : : EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 : : EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 : : EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 : : EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 : :
61 : : DEFINE_IDA(blk_queue_ida);
62 : :
63 : : /*
64 : : * For queue allocation
65 : : */
66 : : struct kmem_cache *blk_requestq_cachep;
67 : :
68 : : /*
69 : : * Controlling structure to kblockd
70 : : */
71 : : static struct workqueue_struct *kblockd_workqueue;
72 : :
73 : : /**
74 : : * blk_queue_flag_set - atomically set a queue flag
75 : : * @flag: flag to be set
76 : : * @q: request queue
77 : : */
78 : 2160 : void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 : : {
80 : 2160 : set_bit(flag, &q->queue_flags);
81 : 2160 : }
82 : : EXPORT_SYMBOL(blk_queue_flag_set);
83 : :
84 : : /**
85 : : * blk_queue_flag_clear - atomically clear a queue flag
86 : : * @flag: flag to be cleared
87 : : * @q: request queue
88 : : */
89 : 690 : void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 : : {
91 : 690 : clear_bit(flag, &q->queue_flags);
92 : 690 : }
93 : : EXPORT_SYMBOL(blk_queue_flag_clear);
94 : :
95 : : /**
96 : : * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 : : * @flag: flag to be set
98 : : * @q: request queue
99 : : *
100 : : * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 : : * the flag was already set.
102 : : */
103 : 0 : bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 : : {
105 : 0 : return test_and_set_bit(flag, &q->queue_flags);
106 : : }
107 : : EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108 : :
109 : 504 : void blk_rq_init(struct request_queue *q, struct request *rq)
110 : : {
111 : 504 : memset(rq, 0, sizeof(*rq));
112 : :
113 : 504 : INIT_LIST_HEAD(&rq->queuelist);
114 : 504 : rq->q = q;
115 : 504 : rq->__sector = (sector_t) -1;
116 : 504 : INIT_HLIST_NODE(&rq->hash);
117 : 504 : RB_CLEAR_NODE(&rq->rb_node);
118 : 504 : rq->tag = -1;
119 : 504 : rq->internal_tag = -1;
120 : 504 : rq->start_time_ns = ktime_get_ns();
121 : 504 : rq->part = NULL;
122 : 504 : refcount_set(&rq->ref, 1);
123 : 504 : }
124 : : EXPORT_SYMBOL(blk_rq_init);
125 : :
126 : : #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 : : static const char *const blk_op_name[] = {
128 : : REQ_OP_NAME(READ),
129 : : REQ_OP_NAME(WRITE),
130 : : REQ_OP_NAME(FLUSH),
131 : : REQ_OP_NAME(DISCARD),
132 : : REQ_OP_NAME(SECURE_ERASE),
133 : : REQ_OP_NAME(ZONE_RESET),
134 : : REQ_OP_NAME(ZONE_RESET_ALL),
135 : : REQ_OP_NAME(ZONE_OPEN),
136 : : REQ_OP_NAME(ZONE_CLOSE),
137 : : REQ_OP_NAME(ZONE_FINISH),
138 : : REQ_OP_NAME(WRITE_SAME),
139 : : REQ_OP_NAME(WRITE_ZEROES),
140 : : REQ_OP_NAME(SCSI_IN),
141 : : REQ_OP_NAME(SCSI_OUT),
142 : : REQ_OP_NAME(DRV_IN),
143 : : REQ_OP_NAME(DRV_OUT),
144 : : };
145 : : #undef REQ_OP_NAME
146 : :
147 : : /**
148 : : * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 : : * @op: REQ_OP_XXX.
150 : : *
151 : : * Description: Centralize block layer function to convert REQ_OP_XXX into
152 : : * string format. Useful in the debugging and tracing bio or request. For
153 : : * invalid REQ_OP_XXX it returns string "UNKNOWN".
154 : : */
155 : 0 : inline const char *blk_op_str(unsigned int op)
156 : : {
157 : 0 : const char *op_str = "UNKNOWN";
158 : :
159 [ # # # # : 0 : if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
# # ]
160 : 0 : op_str = blk_op_name[op];
161 : :
162 : 0 : return op_str;
163 : : }
164 : : EXPORT_SYMBOL_GPL(blk_op_str);
165 : :
166 : : static const struct {
167 : : int errno;
168 : : const char *name;
169 : : } blk_errors[] = {
170 : : [BLK_STS_OK] = { 0, "" },
171 : : [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 : : [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 : : [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 : : [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 : : [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 : : [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 : : [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 : : [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 : : [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
180 : : [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
181 : : [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
182 : :
183 : : /* device mapper special case, should not leak out: */
184 : : [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
185 : :
186 : : /* everything else not covered above: */
187 : : [BLK_STS_IOERR] = { -EIO, "I/O" },
188 : : };
189 : :
190 : 0 : blk_status_t errno_to_blk_status(int errno)
191 : : {
192 : 0 : int i;
193 : :
194 [ # # ]: 0 : for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 [ # # ]: 0 : if (blk_errors[i].errno == errno)
196 : 0 : return (__force blk_status_t)i;
197 : : }
198 : :
199 : : return BLK_STS_IOERR;
200 : : }
201 : : EXPORT_SYMBOL_GPL(errno_to_blk_status);
202 : :
203 : 58276 : int blk_status_to_errno(blk_status_t status)
204 : : {
205 : 58276 : int idx = (__force int)status;
206 : :
207 [ + - - + : 58276 : if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
+ - ]
208 : : return -EIO;
209 : 58276 : return blk_errors[idx].errno;
210 : : }
211 : : EXPORT_SYMBOL_GPL(blk_status_to_errno);
212 : :
213 : 0 : static void print_req_error(struct request *req, blk_status_t status,
214 : : const char *caller)
215 : : {
216 : 0 : int idx = (__force int)status;
217 : :
218 [ # # # # ]: 0 : if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 : : return;
220 : :
221 [ # # # # : 0 : printk_ratelimited(KERN_ERR
# # ]
222 : : "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 : : "phys_seg %u prio class %u\n",
224 : : caller, blk_errors[idx].name,
225 : : req->rq_disk ? req->rq_disk->disk_name : "?",
226 : : blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 : : req->cmd_flags & ~REQ_OP_MASK,
228 : : req->nr_phys_segments,
229 : : IOPRIO_PRIO_CLASS(req->ioprio));
230 : : }
231 : :
232 : 52013 : static void req_bio_endio(struct request *rq, struct bio *bio,
233 : : unsigned int nbytes, blk_status_t error)
234 : : {
235 [ - + ]: 52013 : if (error)
236 : 0 : bio->bi_status = error;
237 : :
238 [ + + ]: 52013 : if (unlikely(rq->rq_flags & RQF_QUIET))
239 : 3280 : bio_set_flag(bio, BIO_QUIET);
240 : :
241 : 52013 : bio_advance(bio, nbytes);
242 : :
243 : : /* don't actually finish bio if it's part of flush sequence */
244 [ + - + + ]: 52013 : if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 : 51731 : bio_endio(bio);
246 : 52013 : }
247 : :
248 : 0 : void blk_dump_rq_flags(struct request *rq, char *msg)
249 : : {
250 : 0 : printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 : 0 : rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 [ # # ]: 0 : (unsigned long long) rq->cmd_flags);
253 : :
254 [ # # ]: 0 : printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
255 : 0 : (unsigned long long)blk_rq_pos(rq),
256 : : blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 : 0 : printk(KERN_INFO " bio %p, biotail %p, len %u\n",
258 : : rq->bio, rq->biotail, blk_rq_bytes(rq));
259 : 0 : }
260 : : EXPORT_SYMBOL(blk_dump_rq_flags);
261 : :
262 : : /**
263 : : * blk_sync_queue - cancel any pending callbacks on a queue
264 : : * @q: the queue
265 : : *
266 : : * Description:
267 : : * The block layer may perform asynchronous callback activity
268 : : * on a queue, such as calling the unplug function after a timeout.
269 : : * A block device may call blk_sync_queue to ensure that any
270 : : * such activity is cancelled, thus allowing it to release resources
271 : : * that the callbacks might use. The caller must already have made sure
272 : : * that its ->make_request_fn will not re-add plugging prior to calling
273 : : * this function.
274 : : *
275 : : * This function does not cancel any asynchronous activity arising
276 : : * out of elevator or throttling code. That would require elevator_exit()
277 : : * and blkcg_exit_queue() to be called with queue lock initialized.
278 : : *
279 : : */
280 : 0 : void blk_sync_queue(struct request_queue *q)
281 : : {
282 : 0 : del_timer_sync(&q->timeout);
283 : 0 : cancel_work_sync(&q->timeout_work);
284 : 0 : }
285 : : EXPORT_SYMBOL(blk_sync_queue);
286 : :
287 : : /**
288 : : * blk_set_pm_only - increment pm_only counter
289 : : * @q: request queue pointer
290 : : */
291 : 0 : void blk_set_pm_only(struct request_queue *q)
292 : : {
293 : 0 : atomic_inc(&q->pm_only);
294 : 0 : }
295 : : EXPORT_SYMBOL_GPL(blk_set_pm_only);
296 : :
297 : 0 : void blk_clear_pm_only(struct request_queue *q)
298 : : {
299 : 0 : int pm_only;
300 : :
301 : 0 : pm_only = atomic_dec_return(&q->pm_only);
302 [ # # ]: 0 : WARN_ON_ONCE(pm_only < 0);
303 [ # # ]: 0 : if (pm_only == 0)
304 : 0 : wake_up_all(&q->mq_freeze_wq);
305 : 0 : }
306 : : EXPORT_SYMBOL_GPL(blk_clear_pm_only);
307 : :
308 : 0 : void blk_put_queue(struct request_queue *q)
309 : : {
310 : 0 : kobject_put(&q->kobj);
311 : 0 : }
312 : : EXPORT_SYMBOL(blk_put_queue);
313 : :
314 : 0 : void blk_set_queue_dying(struct request_queue *q)
315 : : {
316 : 0 : blk_queue_flag_set(QUEUE_FLAG_DYING, q);
317 : :
318 : : /*
319 : : * When queue DYING flag is set, we need to block new req
320 : : * entering queue, so we call blk_freeze_queue_start() to
321 : : * prevent I/O from crossing blk_queue_enter().
322 : : */
323 : 0 : blk_freeze_queue_start(q);
324 : :
325 [ # # ]: 0 : if (queue_is_mq(q))
326 : 0 : blk_mq_wake_waiters(q);
327 : :
328 : : /* Make blk_queue_enter() reexamine the DYING flag. */
329 : 0 : wake_up_all(&q->mq_freeze_wq);
330 : 0 : }
331 : : EXPORT_SYMBOL_GPL(blk_set_queue_dying);
332 : :
333 : : /**
334 : : * blk_cleanup_queue - shutdown a request queue
335 : : * @q: request queue to shutdown
336 : : *
337 : : * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338 : : * put it. All future requests will be failed immediately with -ENODEV.
339 : : */
340 : 0 : void blk_cleanup_queue(struct request_queue *q)
341 : : {
342 [ # # ]: 0 : WARN_ON_ONCE(blk_queue_registered(q));
343 : :
344 : : /* mark @q DYING, no new request or merges will be allowed afterwards */
345 : 0 : blk_set_queue_dying(q);
346 : :
347 : 0 : blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 : 0 : blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 : 0 : blk_queue_flag_set(QUEUE_FLAG_DYING, q);
350 : :
351 : : /*
352 : : * Drain all requests queued before DYING marking. Set DEAD flag to
353 : : * prevent that blk_mq_run_hw_queues() accesses the hardware queues
354 : : * after draining finished.
355 : : */
356 : 0 : blk_freeze_queue(q);
357 : :
358 : 0 : rq_qos_exit(q);
359 : :
360 : 0 : blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
361 : :
362 : : /* for synchronous bio-based driver finish in-flight integrity i/o */
363 : 0 : blk_flush_integrity();
364 : :
365 : : /* @q won't process any more request, flush async actions */
366 : 0 : del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 : 0 : blk_sync_queue(q);
368 : :
369 [ # # ]: 0 : if (queue_is_mq(q))
370 : 0 : blk_mq_exit_queue(q);
371 : :
372 : : /*
373 : : * In theory, request pool of sched_tags belongs to request queue.
374 : : * However, the current implementation requires tag_set for freeing
375 : : * requests, so free the pool now.
376 : : *
377 : : * Queue has become frozen, there can't be any in-queue requests, so
378 : : * it is safe to free requests now.
379 : : */
380 : 0 : mutex_lock(&q->sysfs_lock);
381 [ # # ]: 0 : if (q->elevator)
382 : 0 : blk_mq_sched_free_requests(q);
383 : 0 : mutex_unlock(&q->sysfs_lock);
384 : :
385 : 0 : percpu_ref_exit(&q->q_usage_counter);
386 : :
387 : : /* @q is and will stay empty, shutdown and put */
388 : 0 : blk_put_queue(q);
389 : 0 : }
390 : : EXPORT_SYMBOL(blk_cleanup_queue);
391 : :
392 : 30 : struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
393 : : {
394 : 30 : return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
395 : : }
396 : : EXPORT_SYMBOL(blk_alloc_queue);
397 : :
398 : : /**
399 : : * blk_queue_enter() - try to increase q->q_usage_counter
400 : : * @q: request queue pointer
401 : : * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
402 : : */
403 : 52241 : int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
404 : : {
405 : 52241 : const bool pm = flags & BLK_MQ_REQ_PREEMPT;
406 : :
407 : 52268 : while (true) {
408 : 52268 : bool success = false;
409 : :
410 : 52268 : rcu_read_lock();
411 [ + + ]: 52268 : if (percpu_ref_tryget_live(&q->q_usage_counter)) {
412 : : /*
413 : : * The code that increments the pm_only counter is
414 : : * responsible for ensuring that that counter is
415 : : * globally visible before the queue is unfrozen.
416 : : */
417 [ + + + - ]: 52241 : if (pm || !blk_queue_pm_only(q)) {
418 : 52241 : success = true;
419 : : } else {
420 : 0 : percpu_ref_put(&q->q_usage_counter);
421 : : }
422 : : }
423 : 52268 : rcu_read_unlock();
424 : :
425 : 27 : if (success)
426 : 52241 : return 0;
427 : :
428 [ + - ]: 27 : if (flags & BLK_MQ_REQ_NOWAIT)
429 : : return -EBUSY;
430 : :
431 : : /*
432 : : * read pair of barrier in blk_freeze_queue_start(),
433 : : * we need to order reading __PERCPU_REF_DEAD flag of
434 : : * .q_usage_counter and reading .mq_freeze_depth or
435 : : * queue dying flag, otherwise the following wait may
436 : : * never return if the two reads are reordered.
437 : : */
438 : 27 : smp_rmb();
439 : :
440 [ - + - - : 54 : wait_event(q->mq_freeze_wq,
- - - - +
- + + - +
- - - - +
- ]
441 : : (!q->mq_freeze_depth &&
442 : : (pm || (blk_pm_request_resume(q),
443 : : !blk_queue_pm_only(q)))) ||
444 : : blk_queue_dying(q));
445 [ + - ]: 27 : if (blk_queue_dying(q))
446 : : return -ENODEV;
447 : : }
448 : : }
449 : :
450 : 87327 : void blk_queue_exit(struct request_queue *q)
451 : : {
452 : 39146 : percpu_ref_put(&q->q_usage_counter);
453 : 39146 : }
454 : :
455 : 360 : static void blk_queue_usage_counter_release(struct percpu_ref *ref)
456 : : {
457 : 360 : struct request_queue *q =
458 : 360 : container_of(ref, struct request_queue, q_usage_counter);
459 : :
460 : 360 : wake_up_all(&q->mq_freeze_wq);
461 : 360 : }
462 : :
463 : 18 : static void blk_rq_timed_out_timer(struct timer_list *t)
464 : : {
465 : 18 : struct request_queue *q = from_timer(q, t, timeout);
466 : :
467 : 18 : kblockd_schedule_work(&q->timeout_work);
468 : 18 : }
469 : :
470 : 0 : static void blk_timeout_work(struct work_struct *work)
471 : : {
472 : 0 : }
473 : :
474 : : /**
475 : : * blk_alloc_queue_node - allocate a request queue
476 : : * @gfp_mask: memory allocation flags
477 : : * @node_id: NUMA node to allocate memory from
478 : : */
479 : 360 : struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
480 : : {
481 : 360 : struct request_queue *q;
482 : 360 : int ret;
483 : :
484 : 360 : q = kmem_cache_alloc_node(blk_requestq_cachep,
485 : : gfp_mask | __GFP_ZERO, node_id);
486 [ + - ]: 360 : if (!q)
487 : : return NULL;
488 : :
489 : 360 : q->last_merge = NULL;
490 : :
491 : 360 : q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
492 [ - + ]: 360 : if (q->id < 0)
493 : 0 : goto fail_q;
494 : :
495 : 360 : ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
496 [ - + ]: 360 : if (ret)
497 : 0 : goto fail_id;
498 : :
499 : 360 : q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
500 [ - + ]: 360 : if (!q->backing_dev_info)
501 : 0 : goto fail_split;
502 : :
503 : 360 : q->stats = blk_alloc_queue_stats();
504 [ - + ]: 360 : if (!q->stats)
505 : 0 : goto fail_stats;
506 : :
507 : 360 : q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
508 : 360 : q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
509 : 360 : q->backing_dev_info->name = "block";
510 : 360 : q->node = node_id;
511 : :
512 : 360 : timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
513 : : laptop_mode_timer_fn, 0);
514 : 360 : timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
515 : 360 : INIT_WORK(&q->timeout_work, blk_timeout_work);
516 : 360 : INIT_LIST_HEAD(&q->icq_list);
517 : : #ifdef CONFIG_BLK_CGROUP
518 : : INIT_LIST_HEAD(&q->blkg_list);
519 : : #endif
520 : :
521 : 360 : kobject_init(&q->kobj, &blk_queue_ktype);
522 : :
523 : : #ifdef CONFIG_BLK_DEV_IO_TRACE
524 : 360 : mutex_init(&q->blk_trace_mutex);
525 : : #endif
526 : 360 : mutex_init(&q->sysfs_lock);
527 : 360 : mutex_init(&q->sysfs_dir_lock);
528 : 360 : spin_lock_init(&q->queue_lock);
529 : :
530 : 360 : init_waitqueue_head(&q->mq_freeze_wq);
531 : 360 : mutex_init(&q->mq_freeze_lock);
532 : :
533 : : /*
534 : : * Init percpu_ref in atomic mode so that it's faster to shutdown.
535 : : * See blk_register_queue() for details.
536 : : */
537 [ - + ]: 360 : if (percpu_ref_init(&q->q_usage_counter,
538 : : blk_queue_usage_counter_release,
539 : : PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
540 : 0 : goto fail_bdi;
541 : :
542 : : if (blkcg_init_queue(q))
543 : : goto fail_ref;
544 : :
545 : : return q;
546 : :
547 : : fail_ref:
548 : : percpu_ref_exit(&q->q_usage_counter);
549 : : fail_bdi:
550 : 0 : blk_free_queue_stats(q->stats);
551 : 0 : fail_stats:
552 : 0 : bdi_put(q->backing_dev_info);
553 : 0 : fail_split:
554 : 0 : bioset_exit(&q->bio_split);
555 : 0 : fail_id:
556 : 0 : ida_simple_remove(&blk_queue_ida, q->id);
557 : 0 : fail_q:
558 : 0 : kmem_cache_free(blk_requestq_cachep, q);
559 : 0 : return NULL;
560 : : }
561 : : EXPORT_SYMBOL(blk_alloc_queue_node);
562 : :
563 : 450 : bool blk_get_queue(struct request_queue *q)
564 : : {
565 [ + - ]: 450 : if (likely(!blk_queue_dying(q))) {
566 : 450 : __blk_get_queue(q);
567 : 450 : return true;
568 : : }
569 : :
570 : : return false;
571 : : }
572 : : EXPORT_SYMBOL(blk_get_queue);
573 : :
574 : : /**
575 : : * blk_get_request - allocate a request
576 : : * @q: request queue to allocate a request for
577 : : * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
578 : : * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
579 : : */
580 : 4059 : struct request *blk_get_request(struct request_queue *q, unsigned int op,
581 : : blk_mq_req_flags_t flags)
582 : : {
583 : 4059 : struct request *req;
584 : :
585 [ - + ]: 4059 : WARN_ON_ONCE(op & REQ_NOWAIT);
586 [ - + ]: 4059 : WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
587 : :
588 : 4059 : req = blk_mq_alloc_request(q, op, flags);
589 [ + - + - ]: 4059 : if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
590 : 4059 : q->mq_ops->initialize_rq_fn(req);
591 : :
592 : 4059 : return req;
593 : : }
594 : : EXPORT_SYMBOL(blk_get_request);
595 : :
596 : 4418 : void blk_put_request(struct request *req)
597 : : {
598 : 4418 : blk_mq_free_request(req);
599 : 4418 : }
600 : : EXPORT_SYMBOL(blk_put_request);
601 : :
602 : 17351 : bool bio_attempt_back_merge(struct request *req, struct bio *bio,
603 : : unsigned int nr_segs)
604 : : {
605 : 17351 : const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
606 : :
607 [ + + ]: 17351 : if (!ll_back_merge_fn(req, bio, nr_segs))
608 : : return false;
609 : :
610 : 17341 : trace_block_bio_backmerge(req->q, req, bio);
611 [ - + ]: 17341 : rq_qos_merge(req->q, req, bio);
612 : :
613 [ + + ]: 17341 : if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
614 : 13240 : blk_rq_set_mixed_merge(req);
615 : :
616 : 17341 : req->biotail->bi_next = bio;
617 : 17341 : req->biotail = bio;
618 : 17341 : req->__data_len += bio->bi_iter.bi_size;
619 : :
620 : 17341 : blk_account_io_start(req, false);
621 : 17341 : return true;
622 : : }
623 : :
624 : 450 : bool bio_attempt_front_merge(struct request *req, struct bio *bio,
625 : : unsigned int nr_segs)
626 : : {
627 : 450 : const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
628 : :
629 [ + - ]: 450 : if (!ll_front_merge_fn(req, bio, nr_segs))
630 : : return false;
631 : :
632 : 450 : trace_block_bio_frontmerge(req->q, req, bio);
633 [ - + ]: 450 : rq_qos_merge(req->q, req, bio);
634 : :
635 [ + - ]: 450 : if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
636 : 450 : blk_rq_set_mixed_merge(req);
637 : :
638 : 450 : bio->bi_next = req->bio;
639 : 450 : req->bio = bio;
640 : :
641 : 450 : req->__sector = bio->bi_iter.bi_sector;
642 : 450 : req->__data_len += bio->bi_iter.bi_size;
643 : :
644 : 450 : blk_account_io_start(req, false);
645 : 450 : return true;
646 : : }
647 : :
648 : 0 : bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
649 : : struct bio *bio)
650 : : {
651 [ # # ]: 0 : unsigned short segments = blk_rq_nr_discard_segments(req);
652 : :
653 [ # # ]: 0 : if (segments >= queue_max_discard_segments(q))
654 : 0 : goto no_merge;
655 [ # # ]: 0 : if (blk_rq_sectors(req) + bio_sectors(bio) >
656 [ # # ]: 0 : blk_rq_get_max_sectors(req, blk_rq_pos(req)))
657 : 0 : goto no_merge;
658 : :
659 [ # # ]: 0 : rq_qos_merge(q, req, bio);
660 : :
661 : 0 : req->biotail->bi_next = bio;
662 : 0 : req->biotail = bio;
663 : 0 : req->__data_len += bio->bi_iter.bi_size;
664 : 0 : req->nr_phys_segments = segments + 1;
665 : :
666 : 0 : blk_account_io_start(req, false);
667 : 0 : return true;
668 : 0 : no_merge:
669 [ # # ]: 0 : req_set_nomerge(q, req);
670 : : return false;
671 : : }
672 : :
673 : : /**
674 : : * blk_attempt_plug_merge - try to merge with %current's plugged list
675 : : * @q: request_queue new bio is being queued at
676 : : * @bio: new bio being queued
677 : : * @nr_segs: number of segments in @bio
678 : : * @same_queue_rq: pointer to &struct request that gets filled in when
679 : : * another request associated with @q is found on the plug list
680 : : * (optional, may be %NULL)
681 : : *
682 : : * Determine whether @bio being queued on @q can be merged with a request
683 : : * on %current's plugged list. Returns %true if merge was successful,
684 : : * otherwise %false.
685 : : *
686 : : * Plugging coalesces IOs from the same issuer for the same purpose without
687 : : * going through @q->queue_lock. As such it's more of an issuing mechanism
688 : : * than scheduling, and the request, while may have elvpriv data, is not
689 : : * added on the elevator at this point. In addition, we don't have
690 : : * reliable access to the elevator outside queue lock. Only check basic
691 : : * merging parameters without querying the elevator.
692 : : *
693 : : * Caller must ensure !blk_queue_nomerges(q) beforehand.
694 : : */
695 : 47899 : bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
696 : : unsigned int nr_segs, struct request **same_queue_rq)
697 : : {
698 : 47899 : struct blk_plug *plug;
699 : 47899 : struct request *rq;
700 : 47899 : struct list_head *plug_list;
701 : :
702 [ - + ]: 47899 : plug = blk_mq_plug(q, bio);
703 [ + + ]: 47899 : if (!plug)
704 : : return false;
705 : :
706 : 44149 : plug_list = &plug->mq_list;
707 : :
708 [ + + ]: 44790 : list_for_each_entry_reverse(rq, plug_list, queuelist) {
709 : 18431 : bool merged = false;
710 : :
711 [ + - + - ]: 18431 : if (rq->q == q && same_queue_rq) {
712 : : /*
713 : : * Only blk-mq multiple hardware queues case checks the
714 : : * rq in the same queue, there should be only one such
715 : : * rq in a queue
716 : : **/
717 : 18431 : *same_queue_rq = rq;
718 : : }
719 : :
720 [ + - + + ]: 18431 : if (rq->q != q || !blk_rq_merge_ok(rq, bio))
721 : 1 : continue;
722 : :
723 [ + + - + ]: 18430 : switch (blk_try_merge(rq, bio)) {
724 : 17350 : case ELEVATOR_BACK_MERGE:
725 : 17350 : merged = bio_attempt_back_merge(rq, bio, nr_segs);
726 : 17350 : break;
727 : 450 : case ELEVATOR_FRONT_MERGE:
728 : 450 : merged = bio_attempt_front_merge(rq, bio, nr_segs);
729 : 450 : break;
730 : 0 : case ELEVATOR_DISCARD_MERGE:
731 : 0 : merged = bio_attempt_discard_merge(q, rq, bio);
732 : 0 : break;
733 : : default:
734 : : break;
735 : : }
736 : :
737 [ + + ]: 17800 : if (merged)
738 : : return true;
739 : : }
740 : :
741 : : return false;
742 : : }
743 : :
744 : 0 : static void handle_bad_sector(struct bio *bio, sector_t maxsector)
745 : : {
746 : 0 : char b[BDEVNAME_SIZE];
747 : :
748 : 0 : printk(KERN_INFO "attempt to access beyond end of device\n");
749 : 0 : printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
750 : : bio_devname(bio, b), bio->bi_opf,
751 : 0 : (unsigned long long)bio_end_sector(bio),
752 : : (long long)maxsector);
753 : 0 : }
754 : :
755 : : #ifdef CONFIG_FAIL_MAKE_REQUEST
756 : :
757 : : static DECLARE_FAULT_ATTR(fail_make_request);
758 : :
759 : : static int __init setup_fail_make_request(char *str)
760 : : {
761 : : return setup_fault_attr(&fail_make_request, str);
762 : : }
763 : : __setup("fail_make_request=", setup_fail_make_request);
764 : :
765 : : static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
766 : : {
767 : : return part->make_it_fail && should_fail(&fail_make_request, bytes);
768 : : }
769 : :
770 : : static int __init fail_make_request_debugfs(void)
771 : : {
772 : : struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
773 : : NULL, &fail_make_request);
774 : :
775 : : return PTR_ERR_OR_ZERO(dir);
776 : : }
777 : :
778 : : late_initcall(fail_make_request_debugfs);
779 : :
780 : : #else /* CONFIG_FAIL_MAKE_REQUEST */
781 : :
782 : 48181 : static inline bool should_fail_request(struct hd_struct *part,
783 : : unsigned int bytes)
784 : : {
785 : 48181 : return false;
786 : : }
787 : :
788 : : #endif /* CONFIG_FAIL_MAKE_REQUEST */
789 : :
790 : : static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
791 : : {
792 : : const int op = bio_op(bio);
793 : :
794 : : if (part->policy && op_is_write(op)) {
795 : : char b[BDEVNAME_SIZE];
796 : :
797 : : if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
798 : : return false;
799 : :
800 : : WARN_ONCE(1,
801 : : "generic_make_request: Trying to write "
802 : : "to read-only block-device %s (partno %d)\n",
803 : : bio_devname(bio, b), part->partno);
804 : : /* Older lvm-tools actually trigger this */
805 : : return false;
806 : : }
807 : :
808 : : return false;
809 : : }
810 : :
811 : 48181 : static noinline int should_fail_bio(struct bio *bio)
812 : : {
813 : 48181 : if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
814 : : return -EIO;
815 : 48181 : return 0;
816 : : }
817 : : ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
818 : :
819 : : /*
820 : : * Check whether this bio extends beyond the end of the device or partition.
821 : : * This may well happen - the kernel calls bread() without checking the size of
822 : : * the device, e.g., when mounting a file system.
823 : : */
824 : 48181 : static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
825 : : {
826 : 48181 : unsigned int nr_sectors = bio_sectors(bio);
827 : :
828 [ + - ]: 48181 : if (nr_sectors && maxsector &&
829 [ + - ]: 48181 : (nr_sectors > maxsector ||
830 [ - + ]: 48181 : bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
831 : 0 : handle_bad_sector(bio, maxsector);
832 : 0 : return -EIO;
833 : : }
834 : : return 0;
835 : : }
836 : :
837 : : /*
838 : : * Remap block n of partition p to block n+start(p) of the disk.
839 : : */
840 : 0 : static inline int blk_partition_remap(struct bio *bio)
841 : : {
842 : 0 : struct hd_struct *p;
843 : 0 : int ret = -EIO;
844 : :
845 : 0 : rcu_read_lock();
846 : 0 : p = __disk_get_part(bio->bi_disk, bio->bi_partno);
847 [ # # ]: 0 : if (unlikely(!p))
848 : 0 : goto out;
849 : 0 : if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
850 : : goto out;
851 [ # # ]: 0 : if (unlikely(bio_check_ro(bio, p)))
852 : 0 : goto out;
853 : :
854 [ # # ]: 0 : if (bio_sectors(bio)) {
855 [ # # ]: 0 : if (bio_check_eod(bio, part_nr_sects_read(p)))
856 : 0 : goto out;
857 : 0 : bio->bi_iter.bi_sector += p->start_sect;
858 : 0 : trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 : 0 : bio->bi_iter.bi_sector - p->start_sect);
860 : : }
861 : 0 : bio->bi_partno = 0;
862 : 0 : ret = 0;
863 : 0 : out:
864 : 0 : rcu_read_unlock();
865 : 0 : return ret;
866 : : }
867 : :
868 : : static noinline_for_stack bool
869 : 48181 : generic_make_request_checks(struct bio *bio)
870 : : {
871 : 48181 : struct request_queue *q;
872 : 48181 : int nr_sectors = bio_sectors(bio);
873 : 48181 : blk_status_t status = BLK_STS_IOERR;
874 : 48181 : char b[BDEVNAME_SIZE];
875 : :
876 : 48181 : might_sleep();
877 : :
878 : 48181 : q = bio->bi_disk->queue;
879 [ - + ]: 48181 : if (unlikely(!q)) {
880 : 0 : printk(KERN_ERR
881 : : "generic_make_request: Trying to access "
882 : : "nonexistent block-device %s (%Lu)\n",
883 : 0 : bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
884 : 0 : goto end_io;
885 : : }
886 : :
887 : : /*
888 : : * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
889 : : * with BLK_STS_AGAIN status in order to catch -EAGAIN and
890 : : * to give a chance to the caller to repeat request gracefully.
891 : : */
892 [ - + - - ]: 48181 : if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
893 : 0 : status = BLK_STS_AGAIN;
894 : 0 : goto end_io;
895 : : }
896 : :
897 [ - + ]: 48181 : if (should_fail_bio(bio))
898 : 0 : goto end_io;
899 : :
900 [ - + ]: 48181 : if (bio->bi_partno) {
901 [ # # ]: 0 : if (unlikely(blk_partition_remap(bio)))
902 : 0 : goto end_io;
903 : : } else {
904 [ - + ]: 48181 : if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
905 : 0 : goto end_io;
906 [ - + ]: 48181 : if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
907 : 0 : goto end_io;
908 : : }
909 : :
910 : : /*
911 : : * Filter flush bio's early so that make_request based
912 : : * drivers without flush support don't have to worry
913 : : * about them.
914 : : */
915 [ + + - + ]: 48463 : if (op_is_flush(bio->bi_opf) &&
916 : 282 : !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
917 : 0 : bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
918 [ # # ]: 0 : if (!nr_sectors) {
919 : 0 : status = BLK_STS_OK;
920 : 0 : goto end_io;
921 : : }
922 : : }
923 : :
924 [ + - ]: 48181 : if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
925 : 48181 : bio->bi_opf &= ~REQ_HIPRI;
926 : :
927 [ - - - - : 48181 : switch (bio_op(bio)) {
- - + ]
928 : 0 : case REQ_OP_DISCARD:
929 [ # # ]: 0 : if (!blk_queue_discard(q))
930 : 0 : goto not_supported;
931 : : break;
932 : 0 : case REQ_OP_SECURE_ERASE:
933 [ # # ]: 0 : if (!blk_queue_secure_erase(q))
934 : 0 : goto not_supported;
935 : : break;
936 : 0 : case REQ_OP_WRITE_SAME:
937 [ # # ]: 0 : if (!q->limits.max_write_same_sectors)
938 : 0 : goto not_supported;
939 : : break;
940 : : case REQ_OP_ZONE_RESET:
941 : : case REQ_OP_ZONE_OPEN:
942 : : case REQ_OP_ZONE_CLOSE:
943 : : case REQ_OP_ZONE_FINISH:
944 [ # # ]: 0 : if (!blk_queue_is_zoned(q))
945 : 0 : goto not_supported;
946 : : break;
947 : : case REQ_OP_ZONE_RESET_ALL:
948 [ # # # # ]: 0 : if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
949 : 0 : goto not_supported;
950 : : break;
951 : 0 : case REQ_OP_WRITE_ZEROES:
952 [ # # ]: 0 : if (!q->limits.max_write_zeroes_sectors)
953 : 0 : goto not_supported;
954 : : break;
955 : : default:
956 : : break;
957 : : }
958 : :
959 : : /*
960 : : * Various block parts want %current->io_context and lazy ioc
961 : : * allocation ends up trading a lot of pain for a small amount of
962 : : * memory. Just allocate it upfront. This may fail and block
963 : : * layer knows how to live with it.
964 : : */
965 : 48181 : create_io_context(GFP_ATOMIC, q->node);
966 : :
967 [ + + ]: 48181 : if (!blkcg_bio_issue_check(q, bio))
968 : : return false;
969 : :
970 [ + + ]: 48181 : if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
971 : 48180 : trace_block_bio_queue(q, bio);
972 : : /* Now that enqueuing has been traced, we need to trace
973 : : * completion as well.
974 : : */
975 : 48180 : bio_set_flag(bio, BIO_TRACE_COMPLETION);
976 : : }
977 : : return true;
978 : :
979 : : not_supported:
980 : : status = BLK_STS_NOTSUPP;
981 : 0 : end_io:
982 : 0 : bio->bi_status = status;
983 : 0 : bio_endio(bio);
984 : 0 : return false;
985 : : }
986 : :
987 : : /**
988 : : * generic_make_request - hand a buffer to its device driver for I/O
989 : : * @bio: The bio describing the location in memory and on the device.
990 : : *
991 : : * generic_make_request() is used to make I/O requests of block
992 : : * devices. It is passed a &struct bio, which describes the I/O that needs
993 : : * to be done.
994 : : *
995 : : * generic_make_request() does not return any status. The
996 : : * success/failure status of the request, along with notification of
997 : : * completion, is delivered asynchronously through the bio->bi_end_io
998 : : * function described (one day) else where.
999 : : *
1000 : : * The caller of generic_make_request must make sure that bi_io_vec
1001 : : * are set to describe the memory buffer, and that bi_dev and bi_sector are
1002 : : * set to describe the device address, and the
1003 : : * bi_end_io and optionally bi_private are set to describe how
1004 : : * completion notification should be signaled.
1005 : : *
1006 : : * generic_make_request and the drivers it calls may use bi_next if this
1007 : : * bio happens to be merged with someone else, and may resubmit the bio to
1008 : : * a lower device by calling into generic_make_request recursively, which
1009 : : * means the bio should NOT be touched after the call to ->make_request_fn.
1010 : : */
1011 : 48181 : blk_qc_t generic_make_request(struct bio *bio)
1012 : : {
1013 : : /*
1014 : : * bio_list_on_stack[0] contains bios submitted by the current
1015 : : * make_request_fn.
1016 : : * bio_list_on_stack[1] contains bios that were submitted before
1017 : : * the current make_request_fn, but that haven't been processed
1018 : : * yet.
1019 : : */
1020 : 48181 : struct bio_list bio_list_on_stack[2];
1021 : 48181 : blk_qc_t ret = BLK_QC_T_NONE;
1022 : :
1023 [ - + ]: 48181 : if (!generic_make_request_checks(bio))
1024 : 0 : goto out;
1025 : :
1026 : : /*
1027 : : * We only want one ->make_request_fn to be active at a time, else
1028 : : * stack usage with stacked devices could be a problem. So use
1029 : : * current->bio_list to keep a list of requests submited by a
1030 : : * make_request_fn function. current->bio_list is also used as a
1031 : : * flag to say if generic_make_request is currently active in this
1032 : : * task or not. If it is NULL, then no make_request is active. If
1033 : : * it is non-NULL, then a make_request is active, and new requests
1034 : : * should be added at the tail
1035 : : */
1036 [ + + ]: 48181 : if (current->bio_list) {
1037 [ - + ]: 1 : bio_list_add(¤t->bio_list[0], bio);
1038 : 1 : goto out;
1039 : : }
1040 : :
1041 : : /* following loop may be a bit non-obvious, and so deserves some
1042 : : * explanation.
1043 : : * Before entering the loop, bio->bi_next is NULL (as all callers
1044 : : * ensure that) so we have a list with a single bio.
1045 : : * We pretend that we have just taken it off a longer list, so
1046 : : * we assign bio_list to a pointer to the bio_list_on_stack,
1047 : : * thus initialising the bio_list of new bios to be
1048 : : * added. ->make_request() may indeed add some more bios
1049 : : * through a recursive call to generic_make_request. If it
1050 : : * did, we find a non-NULL value in bio_list and re-enter the loop
1051 : : * from the top. In this case we really did just take the bio
1052 : : * of the top of the list (no pretending) and so remove it from
1053 : : * bio_list, and call into ->make_request() again.
1054 : : */
1055 [ - + ]: 48180 : BUG_ON(bio->bi_next);
1056 : 48180 : bio_list_init(&bio_list_on_stack[0]);
1057 : 48180 : current->bio_list = bio_list_on_stack;
1058 : 48181 : do {
1059 : 48181 : struct request_queue *q = bio->bi_disk->queue;
1060 : 48181 : blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1061 : 48181 : BLK_MQ_REQ_NOWAIT : 0;
1062 : :
1063 [ + - ]: 48181 : if (likely(blk_queue_enter(q, flags) == 0)) {
1064 : 48181 : struct bio_list lower, same;
1065 : :
1066 : : /* Create a fresh bio_list for all subordinate requests */
1067 : 48181 : bio_list_on_stack[1] = bio_list_on_stack[0];
1068 : 48181 : bio_list_init(&bio_list_on_stack[0]);
1069 : 48181 : ret = q->make_request_fn(q, bio);
1070 : :
1071 : 48181 : blk_queue_exit(q);
1072 : :
1073 : : /* sort new bios into those for a lower level
1074 : : * and those for the same level
1075 : : */
1076 : 48181 : bio_list_init(&lower);
1077 : 48181 : bio_list_init(&same);
1078 [ + + + + ]: 48183 : while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1079 [ + - ]: 1 : if (q == bio->bi_disk->queue)
1080 [ - + ]: 1 : bio_list_add(&same, bio);
1081 : : else
1082 [ # # ]: 0 : bio_list_add(&lower, bio);
1083 : : /* now assemble so we handle the lowest level first */
1084 [ - + ]: 48181 : bio_list_merge(&bio_list_on_stack[0], &lower);
1085 [ + + ]: 48181 : bio_list_merge(&bio_list_on_stack[0], &same);
1086 [ - + ]: 48181 : bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1087 : : } else {
1088 [ # # # # ]: 0 : if (unlikely(!blk_queue_dying(q) &&
1089 : : (bio->bi_opf & REQ_NOWAIT)))
1090 : 0 : bio_wouldblock_error(bio);
1091 : : else
1092 : 0 : bio_io_error(bio);
1093 : : }
1094 [ + + ]: 48181 : bio = bio_list_pop(&bio_list_on_stack[0]);
1095 [ + + ]: 48181 : } while (bio);
1096 : 48180 : current->bio_list = NULL; /* deactivate */
1097 : :
1098 : 48181 : out:
1099 : 48181 : return ret;
1100 : : }
1101 : : EXPORT_SYMBOL(generic_make_request);
1102 : :
1103 : : /**
1104 : : * direct_make_request - hand a buffer directly to its device driver for I/O
1105 : : * @bio: The bio describing the location in memory and on the device.
1106 : : *
1107 : : * This function behaves like generic_make_request(), but does not protect
1108 : : * against recursion. Must only be used if the called driver is known
1109 : : * to not call generic_make_request (or direct_make_request) again from
1110 : : * its make_request function. (Calling direct_make_request again from
1111 : : * a workqueue is perfectly fine as that doesn't recurse).
1112 : : */
1113 : 0 : blk_qc_t direct_make_request(struct bio *bio)
1114 : : {
1115 : 0 : struct request_queue *q = bio->bi_disk->queue;
1116 : 0 : bool nowait = bio->bi_opf & REQ_NOWAIT;
1117 : 0 : blk_qc_t ret;
1118 : :
1119 [ # # ]: 0 : if (!generic_make_request_checks(bio))
1120 : : return BLK_QC_T_NONE;
1121 : :
1122 [ # # ]: 0 : if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1123 [ # # # # ]: 0 : if (nowait && !blk_queue_dying(q))
1124 : 0 : bio->bi_status = BLK_STS_AGAIN;
1125 : : else
1126 : 0 : bio->bi_status = BLK_STS_IOERR;
1127 : 0 : bio_endio(bio);
1128 : 0 : return BLK_QC_T_NONE;
1129 : : }
1130 : :
1131 : 0 : ret = q->make_request_fn(q, bio);
1132 : 0 : blk_queue_exit(q);
1133 : 0 : return ret;
1134 : : }
1135 : : EXPORT_SYMBOL_GPL(direct_make_request);
1136 : :
1137 : : /**
1138 : : * submit_bio - submit a bio to the block device layer for I/O
1139 : : * @bio: The &struct bio which describes the I/O
1140 : : *
1141 : : * submit_bio() is very similar in purpose to generic_make_request(), and
1142 : : * uses that function to do most of the work. Both are fairly rough
1143 : : * interfaces; @bio must be presetup and ready for I/O.
1144 : : *
1145 : : */
1146 : 48180 : blk_qc_t submit_bio(struct bio *bio)
1147 : : {
1148 : 48180 : bool workingset_read = false;
1149 : 48180 : unsigned long pflags;
1150 : 48180 : blk_qc_t ret;
1151 : :
1152 [ + - ]: 48180 : if (blkcg_punt_bio_submit(bio))
1153 : : return BLK_QC_T_NONE;
1154 : :
1155 : : /*
1156 : : * If it's a regular read/write or a barrier with data attached,
1157 : : * go through the normal accounting stuff before submission.
1158 : : */
1159 [ + - ]: 48180 : if (bio_has_data(bio)) {
1160 : 48180 : unsigned int count;
1161 : :
1162 [ - + ]: 48180 : if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1163 [ # # ]: 0 : count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1164 : : else
1165 : 48180 : count = bio_sectors(bio);
1166 : :
1167 [ + + ]: 48180 : if (op_is_write(bio_op(bio))) {
1168 [ - + ]: 4885 : count_vm_events(PGPGOUT, count);
1169 : : } else {
1170 [ - + ]: 43295 : if (bio_flagged(bio, BIO_WORKINGSET))
1171 : : workingset_read = true;
1172 [ - + ]: 43295 : task_io_account_read(bio->bi_iter.bi_size);
1173 [ - + ]: 43295 : count_vm_events(PGPGIN, count);
1174 : : }
1175 : :
1176 [ - + ]: 48180 : if (unlikely(block_dump)) {
1177 : 0 : char b[BDEVNAME_SIZE];
1178 [ # # ]: 0 : printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1179 : 0 : current->comm, task_pid_nr(current),
1180 : 0 : op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1181 [ # # ]: 0 : (unsigned long long)bio->bi_iter.bi_sector,
1182 : : bio_devname(bio, b), count);
1183 : : }
1184 : : }
1185 : :
1186 : : /*
1187 : : * If we're reading data that is part of the userspace
1188 : : * workingset, count submission time as memory stall. When the
1189 : : * device is congested, or the submitting cgroup IO-throttled,
1190 : : * submission can be a significant part of overall IO time.
1191 : : */
1192 : 48180 : if (workingset_read)
1193 : : psi_memstall_enter(&pflags);
1194 : :
1195 : 48180 : ret = generic_make_request(bio);
1196 : :
1197 : 48180 : if (workingset_read)
1198 : : psi_memstall_leave(&pflags);
1199 : :
1200 : 48180 : return ret;
1201 : : }
1202 : : EXPORT_SYMBOL(submit_bio);
1203 : :
1204 : : /**
1205 : : * blk_cloned_rq_check_limits - Helper function to check a cloned request
1206 : : * for new the queue limits
1207 : : * @q: the queue
1208 : : * @rq: the request being checked
1209 : : *
1210 : : * Description:
1211 : : * @rq may have been made based on weaker limitations of upper-level queues
1212 : : * in request stacking drivers, and it may violate the limitation of @q.
1213 : : * Since the block layer and the underlying device driver trust @rq
1214 : : * after it is inserted to @q, it should be checked against @q before
1215 : : * the insertion using this generic function.
1216 : : *
1217 : : * Request stacking drivers like request-based dm may change the queue
1218 : : * limits when retrying requests on other queues. Those requests need
1219 : : * to be checked against the new queue limits again during dispatch.
1220 : : */
1221 : 0 : static int blk_cloned_rq_check_limits(struct request_queue *q,
1222 : : struct request *rq)
1223 : : {
1224 [ # # # # ]: 0 : if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1225 [ # # ]: 0 : printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1226 : : __func__, blk_rq_sectors(rq),
1227 : : blk_queue_get_max_sectors(q, req_op(rq)));
1228 : 0 : return -EIO;
1229 : : }
1230 : :
1231 : : /*
1232 : : * queue's settings related to segment counting like q->bounce_pfn
1233 : : * may differ from that of other stacking queues.
1234 : : * Recalculate it to check the request correctly on this queue's
1235 : : * limitation.
1236 : : */
1237 : 0 : rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1238 [ # # ]: 0 : if (rq->nr_phys_segments > queue_max_segments(q)) {
1239 : 0 : printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1240 : : __func__, rq->nr_phys_segments, queue_max_segments(q));
1241 : 0 : return -EIO;
1242 : : }
1243 : :
1244 : : return 0;
1245 : : }
1246 : :
1247 : : /**
1248 : : * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1249 : : * @q: the queue to submit the request
1250 : : * @rq: the request being queued
1251 : : */
1252 : 0 : blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1253 : : {
1254 [ # # ]: 0 : if (blk_cloned_rq_check_limits(q, rq))
1255 : : return BLK_STS_IOERR;
1256 : :
1257 : 0 : if (rq->rq_disk &&
1258 : : should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1259 : : return BLK_STS_IOERR;
1260 : :
1261 [ # # ]: 0 : if (blk_queue_io_stat(q))
1262 : 0 : blk_account_io_start(rq, true);
1263 : :
1264 : : /*
1265 : : * Since we have a scheduler attached on the top device,
1266 : : * bypass a potential scheduler on the bottom device for
1267 : : * insert.
1268 : : */
1269 : 0 : return blk_mq_request_issue_directly(rq, true);
1270 : : }
1271 : : EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1272 : :
1273 : : /**
1274 : : * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1275 : : * @rq: request to examine
1276 : : *
1277 : : * Description:
1278 : : * A request could be merge of IOs which require different failure
1279 : : * handling. This function determines the number of bytes which
1280 : : * can be failed from the beginning of the request without
1281 : : * crossing into area which need to be retried further.
1282 : : *
1283 : : * Return:
1284 : : * The number of bytes to fail.
1285 : : */
1286 : 0 : unsigned int blk_rq_err_bytes(const struct request *rq)
1287 : : {
1288 : 0 : unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1289 : 0 : unsigned int bytes = 0;
1290 : 0 : struct bio *bio;
1291 : :
1292 [ # # ]: 0 : if (!(rq->rq_flags & RQF_MIXED_MERGE))
1293 : 0 : return blk_rq_bytes(rq);
1294 : :
1295 : : /*
1296 : : * Currently the only 'mixing' which can happen is between
1297 : : * different fastfail types. We can safely fail portions
1298 : : * which have all the failfast bits that the first one has -
1299 : : * the ones which are at least as eager to fail as the first
1300 : : * one.
1301 : : */
1302 [ # # ]: 0 : for (bio = rq->bio; bio; bio = bio->bi_next) {
1303 [ # # ]: 0 : if ((bio->bi_opf & ff) != ff)
1304 : : break;
1305 : 0 : bytes += bio->bi_iter.bi_size;
1306 : : }
1307 : :
1308 : : /* this could lead to infinite loop */
1309 [ # # # # ]: 0 : BUG_ON(blk_rq_bytes(rq) && !bytes);
1310 : : return bytes;
1311 : : }
1312 : : EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1313 : :
1314 : 33862 : void blk_account_io_completion(struct request *req, unsigned int bytes)
1315 : : {
1316 [ + + + - : 64445 : if (req->part && blk_do_io_stat(req)) {
+ - ]
1317 [ + - ]: 30583 : const int sgrp = op_stat_group(req_op(req));
1318 : 30583 : struct hd_struct *part;
1319 : :
1320 [ - + ]: 30583 : part_stat_lock();
1321 : 30583 : part = req->part;
1322 [ - + - - ]: 30583 : part_stat_add(part, sectors[sgrp], bytes >> 9);
1323 : 30583 : part_stat_unlock();
1324 : : }
1325 : 33862 : }
1326 : :
1327 : 34876 : void blk_account_io_done(struct request *req, u64 now)
1328 : : {
1329 : : /*
1330 : : * Account IO completion. flush_rq isn't accounted as a
1331 : : * normal IO on queueing nor completion. Accounting the
1332 : : * containing request is enough.
1333 : : */
1334 [ + + + - : 65459 : if (req->part && blk_do_io_stat(req) &&
+ - ]
1335 [ + + ]: 30583 : !(req->rq_flags & RQF_FLUSH_SEQ)) {
1336 [ + - ]: 30301 : const int sgrp = op_stat_group(req_op(req));
1337 : 30301 : struct hd_struct *part;
1338 : :
1339 : 30301 : part_stat_lock();
1340 : 30301 : part = req->part;
1341 : :
1342 : 30301 : update_io_ticks(part, jiffies);
1343 [ - + - - ]: 30301 : part_stat_inc(part, ios[sgrp]);
1344 [ - + - - ]: 30301 : part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1345 [ - + - - ]: 30301 : part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1346 : 30301 : part_dec_in_flight(req->q, part, rq_data_dir(req));
1347 : :
1348 : 30301 : hd_struct_put(part);
1349 : 30301 : part_stat_unlock();
1350 : : }
1351 : 34876 : }
1352 : :
1353 : 52240 : void blk_account_io_start(struct request *rq, bool new_io)
1354 : : {
1355 : 52240 : struct hd_struct *part;
1356 [ + + ]: 52240 : int rw = rq_data_dir(rq);
1357 : :
1358 [ + + + + ]: 104480 : if (!blk_do_io_stat(rq))
1359 : : return;
1360 : :
1361 [ + + ]: 48451 : part_stat_lock();
1362 : :
1363 [ + + ]: 48451 : if (!new_io) {
1364 : 17791 : part = rq->part;
1365 [ - + - - ]: 17791 : part_stat_inc(part, merges[rw]);
1366 : : } else {
1367 : 30660 : part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1368 [ - + ]: 30660 : if (!hd_struct_try_get(part)) {
1369 : : /*
1370 : : * The partition is already being removed,
1371 : : * the request will be accounted on the disk only
1372 : : *
1373 : : * We take a reference on disk->part0 although that
1374 : : * partition will never be deleted, so we can treat
1375 : : * it as any other partition.
1376 : : */
1377 : 0 : part = &rq->rq_disk->part0;
1378 : 0 : hd_struct_get(part);
1379 : : }
1380 : 30660 : part_inc_in_flight(rq->q, part, rw);
1381 : 30660 : rq->part = part;
1382 : : }
1383 : :
1384 : 48451 : update_io_ticks(part, jiffies);
1385 : :
1386 : 48451 : part_stat_unlock();
1387 : : }
1388 : :
1389 : : /*
1390 : : * Steal bios from a request and add them to a bio list.
1391 : : * The request must not have been partially completed before.
1392 : : */
1393 : 0 : void blk_steal_bios(struct bio_list *list, struct request *rq)
1394 : : {
1395 [ # # ]: 0 : if (rq->bio) {
1396 [ # # ]: 0 : if (list->tail)
1397 : 0 : list->tail->bi_next = rq->bio;
1398 : : else
1399 : 0 : list->head = rq->bio;
1400 : 0 : list->tail = rq->biotail;
1401 : :
1402 : 0 : rq->bio = NULL;
1403 : 0 : rq->biotail = NULL;
1404 : : }
1405 : :
1406 : 0 : rq->__data_len = 0;
1407 : 0 : }
1408 : : EXPORT_SYMBOL_GPL(blk_steal_bios);
1409 : :
1410 : : /**
1411 : : * blk_update_request - Special helper function for request stacking drivers
1412 : : * @req: the request being processed
1413 : : * @error: block status code
1414 : : * @nr_bytes: number of bytes to complete @req
1415 : : *
1416 : : * Description:
1417 : : * Ends I/O on a number of bytes attached to @req, but doesn't complete
1418 : : * the request structure even if @req doesn't have leftover.
1419 : : * If @req has leftover, sets it up for the next range of segments.
1420 : : *
1421 : : * This special helper function is only for request stacking drivers
1422 : : * (e.g. request-based dm) so that they can handle partial completion.
1423 : : * Actual device drivers should use blk_mq_end_request instead.
1424 : : *
1425 : : * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1426 : : * %false return from this function.
1427 : : *
1428 : : * Note:
1429 : : * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1430 : : * blk_rq_bytes() and in blk_update_request().
1431 : : *
1432 : : * Return:
1433 : : * %false - this request doesn't have any more data
1434 : : * %true - this request has more data
1435 : : **/
1436 : 34876 : bool blk_update_request(struct request *req, blk_status_t error,
1437 : : unsigned int nr_bytes)
1438 : : {
1439 : 34876 : int total_bytes;
1440 : :
1441 [ - + ]: 69752 : trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1442 : :
1443 [ + + ]: 34876 : if (!req->bio)
1444 : : return false;
1445 : :
1446 : : #ifdef CONFIG_BLK_DEV_INTEGRITY
1447 : : if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1448 : : error == BLK_STS_OK)
1449 : : req->q->integrity.profile->complete_fn(req, nr_bytes);
1450 : : #endif
1451 : :
1452 [ - + - - : 33862 : if (unlikely(error && !blk_rq_is_passthrough(req) &&
- - ]
1453 : : !(req->rq_flags & RQF_QUIET)))
1454 : 0 : print_req_error(req, error, __func__);
1455 : :
1456 : 33862 : blk_account_io_completion(req, nr_bytes);
1457 : :
1458 : 33862 : total_bytes = 0;
1459 [ + - ]: 52012 : while (req->bio) {
1460 : 52012 : struct bio *bio = req->bio;
1461 : 52012 : unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1462 : :
1463 [ + - ]: 52012 : if (bio_bytes == bio->bi_iter.bi_size)
1464 : 52012 : req->bio = bio->bi_next;
1465 : :
1466 : : /* Completion has already been traced */
1467 : 52012 : bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1468 : 52012 : req_bio_endio(req, bio, bio_bytes, error);
1469 : :
1470 : 52012 : total_bytes += bio_bytes;
1471 : 52012 : nr_bytes -= bio_bytes;
1472 : :
1473 [ + + ]: 52012 : if (!nr_bytes)
1474 : : break;
1475 : : }
1476 : :
1477 : : /*
1478 : : * completely done
1479 : : */
1480 [ + - ]: 33862 : if (!req->bio) {
1481 : : /*
1482 : : * Reset counters so that the request stacking driver
1483 : : * can find how many bytes remain in the request
1484 : : * later.
1485 : : */
1486 : 33862 : req->__data_len = 0;
1487 : 33862 : return false;
1488 : : }
1489 : :
1490 : 0 : req->__data_len -= total_bytes;
1491 : :
1492 : : /* update sector only for requests with clear definition of sector */
1493 [ # # # # ]: 0 : if (!blk_rq_is_passthrough(req))
1494 : 0 : req->__sector += total_bytes >> 9;
1495 : :
1496 : : /* mixed attributes always follow the first bio */
1497 [ # # ]: 0 : if (req->rq_flags & RQF_MIXED_MERGE) {
1498 : 0 : req->cmd_flags &= ~REQ_FAILFAST_MASK;
1499 : 0 : req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1500 : : }
1501 : :
1502 [ # # ]: 0 : if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1503 : : /*
1504 : : * If total number of sectors is less than the first segment
1505 : : * size, something has gone terribly wrong.
1506 : : */
1507 [ # # ]: 0 : if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1508 : 0 : blk_dump_rq_flags(req, "request botched");
1509 [ # # ]: 0 : req->__data_len = blk_rq_cur_bytes(req);
1510 : : }
1511 : :
1512 : : /* recalculate the number of segments */
1513 : 0 : req->nr_phys_segments = blk_recalc_rq_segments(req);
1514 : : }
1515 : :
1516 : : return true;
1517 : : }
1518 : : EXPORT_SYMBOL_GPL(blk_update_request);
1519 : :
1520 : : #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1521 : : /**
1522 : : * rq_flush_dcache_pages - Helper function to flush all pages in a request
1523 : : * @rq: the request to be flushed
1524 : : *
1525 : : * Description:
1526 : : * Flush all pages in @rq.
1527 : : */
1528 : : void rq_flush_dcache_pages(struct request *rq)
1529 : : {
1530 : : struct req_iterator iter;
1531 : : struct bio_vec bvec;
1532 : :
1533 : : rq_for_each_segment(bvec, rq, iter)
1534 : : flush_dcache_page(bvec.bv_page);
1535 : : }
1536 : : EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1537 : : #endif
1538 : :
1539 : : /**
1540 : : * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1541 : : * @q : the queue of the device being checked
1542 : : *
1543 : : * Description:
1544 : : * Check if underlying low-level drivers of a device are busy.
1545 : : * If the drivers want to export their busy state, they must set own
1546 : : * exporting function using blk_queue_lld_busy() first.
1547 : : *
1548 : : * Basically, this function is used only by request stacking drivers
1549 : : * to stop dispatching requests to underlying devices when underlying
1550 : : * devices are busy. This behavior helps more I/O merging on the queue
1551 : : * of the request stacking driver and prevents I/O throughput regression
1552 : : * on burst I/O load.
1553 : : *
1554 : : * Return:
1555 : : * 0 - Not busy (The request stacking driver should dispatch request)
1556 : : * 1 - Busy (The request stacking driver should stop dispatching request)
1557 : : */
1558 : 0 : int blk_lld_busy(struct request_queue *q)
1559 : : {
1560 [ # # # # ]: 0 : if (queue_is_mq(q) && q->mq_ops->busy)
1561 : 0 : return q->mq_ops->busy(q);
1562 : :
1563 : : return 0;
1564 : : }
1565 : : EXPORT_SYMBOL_GPL(blk_lld_busy);
1566 : :
1567 : : /**
1568 : : * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1569 : : * @rq: the clone request to be cleaned up
1570 : : *
1571 : : * Description:
1572 : : * Free all bios in @rq for a cloned request.
1573 : : */
1574 : 0 : void blk_rq_unprep_clone(struct request *rq)
1575 : : {
1576 : 0 : struct bio *bio;
1577 : :
1578 [ # # # # ]: 0 : while ((bio = rq->bio) != NULL) {
1579 : 0 : rq->bio = bio->bi_next;
1580 : :
1581 : 0 : bio_put(bio);
1582 : : }
1583 : 0 : }
1584 : : EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1585 : :
1586 : : /*
1587 : : * Copy attributes of the original request to the clone request.
1588 : : * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1589 : : */
1590 : 0 : static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1591 : : {
1592 : 0 : dst->__sector = blk_rq_pos(src);
1593 [ # # ]: 0 : dst->__data_len = blk_rq_bytes(src);
1594 [ # # ]: 0 : if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1595 : 0 : dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1596 : 0 : dst->special_vec = src->special_vec;
1597 : : }
1598 : 0 : dst->nr_phys_segments = src->nr_phys_segments;
1599 : 0 : dst->ioprio = src->ioprio;
1600 : 0 : dst->extra_len = src->extra_len;
1601 : : }
1602 : :
1603 : : /**
1604 : : * blk_rq_prep_clone - Helper function to setup clone request
1605 : : * @rq: the request to be setup
1606 : : * @rq_src: original request to be cloned
1607 : : * @bs: bio_set that bios for clone are allocated from
1608 : : * @gfp_mask: memory allocation mask for bio
1609 : : * @bio_ctr: setup function to be called for each clone bio.
1610 : : * Returns %0 for success, non %0 for failure.
1611 : : * @data: private data to be passed to @bio_ctr
1612 : : *
1613 : : * Description:
1614 : : * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1615 : : * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1616 : : * are not copied, and copying such parts is the caller's responsibility.
1617 : : * Also, pages which the original bios are pointing to are not copied
1618 : : * and the cloned bios just point same pages.
1619 : : * So cloned bios must be completed before original bios, which means
1620 : : * the caller must complete @rq before @rq_src.
1621 : : */
1622 : 0 : int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1623 : : struct bio_set *bs, gfp_t gfp_mask,
1624 : : int (*bio_ctr)(struct bio *, struct bio *, void *),
1625 : : void *data)
1626 : : {
1627 : 0 : struct bio *bio, *bio_src;
1628 : :
1629 [ # # ]: 0 : if (!bs)
1630 : 0 : bs = &fs_bio_set;
1631 : :
1632 [ # # # # ]: 0 : __rq_for_each_bio(bio_src, rq_src) {
1633 : 0 : bio = bio_clone_fast(bio_src, gfp_mask, bs);
1634 [ # # ]: 0 : if (!bio)
1635 : 0 : goto free_and_out;
1636 : :
1637 [ # # # # ]: 0 : if (bio_ctr && bio_ctr(bio, bio_src, data))
1638 : 0 : goto free_and_out;
1639 : :
1640 [ # # ]: 0 : if (rq->bio) {
1641 : 0 : rq->biotail->bi_next = bio;
1642 : 0 : rq->biotail = bio;
1643 : : } else
1644 : 0 : rq->bio = rq->biotail = bio;
1645 : : }
1646 : :
1647 [ # # ]: 0 : __blk_rq_prep_clone(rq, rq_src);
1648 : :
1649 : 0 : return 0;
1650 : :
1651 : 0 : free_and_out:
1652 [ # # ]: 0 : if (bio)
1653 : 0 : bio_put(bio);
1654 : : blk_rq_unprep_clone(rq);
1655 : :
1656 : : return -ENOMEM;
1657 : : }
1658 : : EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1659 : :
1660 : 318 : int kblockd_schedule_work(struct work_struct *work)
1661 : : {
1662 : 318 : return queue_work(kblockd_workqueue, work);
1663 : : }
1664 : : EXPORT_SYMBOL(kblockd_schedule_work);
1665 : :
1666 : 8294 : int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1667 : : unsigned long delay)
1668 : : {
1669 : 8294 : return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1670 : : }
1671 : : EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1672 : :
1673 : : /**
1674 : : * blk_start_plug - initialize blk_plug and track it inside the task_struct
1675 : : * @plug: The &struct blk_plug that needs to be initialized
1676 : : *
1677 : : * Description:
1678 : : * blk_start_plug() indicates to the block layer an intent by the caller
1679 : : * to submit multiple I/O requests in a batch. The block layer may use
1680 : : * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1681 : : * is called. However, the block layer may choose to submit requests
1682 : : * before a call to blk_finish_plug() if the number of queued I/Os
1683 : : * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1684 : : * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1685 : : * the task schedules (see below).
1686 : : *
1687 : : * Tracking blk_plug inside the task_struct will help with auto-flushing the
1688 : : * pending I/O should the task end up blocking between blk_start_plug() and
1689 : : * blk_finish_plug(). This is important from a performance perspective, but
1690 : : * also ensures that we don't deadlock. For instance, if the task is blocking
1691 : : * for a memory allocation, memory reclaim could end up wanting to free a
1692 : : * page belonging to that request that is currently residing in our private
1693 : : * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1694 : : * this kind of deadlock.
1695 : : */
1696 : 25693 : void blk_start_plug(struct blk_plug *plug)
1697 : : {
1698 [ + - ]: 25693 : struct task_struct *tsk = current;
1699 : :
1700 : : /*
1701 : : * If this is a nested plug, don't actually assign it.
1702 : : */
1703 [ + - ]: 25693 : if (tsk->plug)
1704 : : return;
1705 : :
1706 : 25693 : INIT_LIST_HEAD(&plug->mq_list);
1707 : 25693 : INIT_LIST_HEAD(&plug->cb_list);
1708 : 25693 : plug->rq_count = 0;
1709 : 25693 : plug->multiple_queues = false;
1710 : :
1711 : : /*
1712 : : * Store ordering should not be needed here, since a potential
1713 : : * preempt will imply a full memory barrier
1714 : : */
1715 : 25693 : tsk->plug = plug;
1716 : : }
1717 : : EXPORT_SYMBOL(blk_start_plug);
1718 : :
1719 : 26227 : static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1720 : : {
1721 : 26227 : LIST_HEAD(callbacks);
1722 : :
1723 [ - + ]: 26227 : while (!list_empty(&plug->cb_list)) {
1724 [ # # ]: 0 : list_splice_init(&plug->cb_list, &callbacks);
1725 : :
1726 [ # # ]: 0 : while (!list_empty(&callbacks)) {
1727 : 0 : struct blk_plug_cb *cb = list_first_entry(&callbacks,
1728 : : struct blk_plug_cb,
1729 : : list);
1730 : 0 : list_del(&cb->list);
1731 : 0 : cb->callback(cb, from_schedule);
1732 : : }
1733 : : }
1734 : 26227 : }
1735 : :
1736 : 0 : struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1737 : : int size)
1738 : : {
1739 [ # # ]: 0 : struct blk_plug *plug = current->plug;
1740 : 0 : struct blk_plug_cb *cb;
1741 : :
1742 [ # # ]: 0 : if (!plug)
1743 : : return NULL;
1744 : :
1745 [ # # ]: 0 : list_for_each_entry(cb, &plug->cb_list, list)
1746 [ # # # # ]: 0 : if (cb->callback == unplug && cb->data == data)
1747 : 0 : return cb;
1748 : :
1749 : : /* Not currently on the callback list */
1750 [ # # ]: 0 : BUG_ON(size < sizeof(*cb));
1751 : 0 : cb = kzalloc(size, GFP_ATOMIC);
1752 [ # # ]: 0 : if (cb) {
1753 : 0 : cb->data = data;
1754 : 0 : cb->callback = unplug;
1755 : 0 : list_add(&cb->list, &plug->cb_list);
1756 : : }
1757 : : return cb;
1758 : : }
1759 : : EXPORT_SYMBOL(blk_check_plugged);
1760 : :
1761 : 26227 : void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1762 : : {
1763 : 26227 : flush_plug_callbacks(plug, from_schedule);
1764 : :
1765 [ + + ]: 26227 : if (!list_empty(&plug->mq_list))
1766 : 25879 : blk_mq_flush_plug_list(plug, from_schedule);
1767 : 26227 : }
1768 : :
1769 : : /**
1770 : : * blk_finish_plug - mark the end of a batch of submitted I/O
1771 : : * @plug: The &struct blk_plug passed to blk_start_plug()
1772 : : *
1773 : : * Description:
1774 : : * Indicate that a batch of I/O submissions is complete. This function
1775 : : * must be paired with an initial call to blk_start_plug(). The intent
1776 : : * is to allow the block layer to optimize I/O submission. See the
1777 : : * documentation for blk_start_plug() for more information.
1778 : : */
1779 : 25693 : void blk_finish_plug(struct blk_plug *plug)
1780 : : {
1781 [ + - ]: 25693 : if (plug != current->plug)
1782 : : return;
1783 : 25693 : blk_flush_plug_list(plug, false);
1784 : :
1785 : 25693 : current->plug = NULL;
1786 : : }
1787 : : EXPORT_SYMBOL(blk_finish_plug);
1788 : :
1789 : 30 : int __init blk_dev_init(void)
1790 : : {
1791 : 30 : BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1792 : 30 : BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1793 : : sizeof_field(struct request, cmd_flags));
1794 : 30 : BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 : : sizeof_field(struct bio, bi_opf));
1796 : :
1797 : : /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1798 : 30 : kblockd_workqueue = alloc_workqueue("kblockd",
1799 : : WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1800 [ - + ]: 30 : if (!kblockd_workqueue)
1801 : 0 : panic("Failed to create kblockd\n");
1802 : :
1803 : 30 : blk_requestq_cachep = kmem_cache_create("request_queue",
1804 : : sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1805 : :
1806 : : #ifdef CONFIG_DEBUG_FS
1807 : 30 : blk_debugfs_root = debugfs_create_dir("block", NULL);
1808 : : #endif
1809 : :
1810 : 30 : return 0;
1811 : : }
|