Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only
2 : : /*
3 : : * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 : : *
5 : : * (C) Copyright 2014, 2015 Linaro Ltd.
6 : : * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 : : *
8 : : * CPPC describes a few methods for controlling CPU performance using
9 : : * information from a per CPU table called CPC. This table is described in
10 : : * the ACPI v5.0+ specification. The table consists of a list of
11 : : * registers which may be memory mapped or hardware registers and also may
12 : : * include some static integer values.
13 : : *
14 : : * CPU performance is on an abstract continuous scale as against a discretized
15 : : * P-state scale which is tied to CPU frequency only. In brief, the basic
16 : : * operation involves:
17 : : *
18 : : * - OS makes a CPU performance request. (Can provide min and max bounds)
19 : : *
20 : : * - Platform (such as BMC) is free to optimize request within requested bounds
21 : : * depending on power/thermal budgets etc.
22 : : *
23 : : * - Platform conveys its decision back to OS
24 : : *
25 : : * The communication between OS and platform occurs through another medium
26 : : * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 : : * mechanism which includes doorbell semantics to indicate register updates.
28 : : * See drivers/mailbox/pcc.c for details on PCC.
29 : : *
30 : : * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 : : * above specifications.
32 : : */
33 : :
34 : : #define pr_fmt(fmt) "ACPI CPPC: " fmt
35 : :
36 : : #include <linux/cpufreq.h>
37 : : #include <linux/delay.h>
38 : : #include <linux/iopoll.h>
39 : : #include <linux/ktime.h>
40 : : #include <linux/rwsem.h>
41 : : #include <linux/wait.h>
42 : :
43 : : #include <acpi/cppc_acpi.h>
44 : :
45 : : struct cppc_pcc_data {
46 : : struct mbox_chan *pcc_channel;
47 : : void __iomem *pcc_comm_addr;
48 : : bool pcc_channel_acquired;
49 : : unsigned int deadline_us;
50 : : unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51 : :
52 : : bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 : : bool platform_owns_pcc; /* Ownership of PCC subspace */
54 : : unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55 : :
56 : : /*
57 : : * Lock to provide controlled access to the PCC channel.
58 : : *
59 : : * For performance critical usecases(currently cppc_set_perf)
60 : : * We need to take read_lock and check if channel belongs to OSPM
61 : : * before reading or writing to PCC subspace
62 : : * We need to take write_lock before transferring the channel
63 : : * ownership to the platform via a Doorbell
64 : : * This allows us to batch a number of CPPC requests if they happen
65 : : * to originate in about the same time
66 : : *
67 : : * For non-performance critical usecases(init)
68 : : * Take write_lock for all purposes which gives exclusive access
69 : : */
70 : : struct rw_semaphore pcc_lock;
71 : :
72 : : /* Wait queue for CPUs whose requests were batched */
73 : : wait_queue_head_t pcc_write_wait_q;
74 : : ktime_t last_cmd_cmpl_time;
75 : : ktime_t last_mpar_reset;
76 : : int mpar_count;
77 : : int refcount;
78 : : };
79 : :
80 : : /* Array to represent the PCC channel per subspace ID */
81 : : static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 : : /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 : : static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84 : :
85 : : /*
86 : : * The cpc_desc structure contains the ACPI register details
87 : : * as described in the per CPU _CPC tables. The details
88 : : * include the type of register (e.g. PCC, System IO, FFH etc.)
89 : : * and destination addresses which lets us READ/WRITE CPU performance
90 : : * information using the appropriate I/O methods.
91 : : */
92 : : static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93 : :
94 : : /* pcc mapped address + header size + offset within PCC subspace */
95 : : #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 : : 0x8 + (offs))
97 : :
98 : : /* Check if a CPC register is in PCC */
99 : : #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 : : (cpc)->cpc_entry.reg.space_id == \
101 : : ACPI_ADR_SPACE_PLATFORM_COMM)
102 : :
103 : : /* Evalutes to True if reg is a NULL register descriptor */
104 : : #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 : : (reg)->address == 0 && \
106 : : (reg)->bit_width == 0 && \
107 : : (reg)->bit_offset == 0 && \
108 : : (reg)->access_width == 0)
109 : :
110 : : /* Evalutes to True if an optional cpc field is supported */
111 : : #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 : : !!(cpc)->cpc_entry.int_value : \
113 : : !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 : : /*
115 : : * Arbitrary Retries in case the remote processor is slow to respond
116 : : * to PCC commands. Keeping it high enough to cover emulators where
117 : : * the processors run painfully slow.
118 : : */
119 : : #define NUM_RETRIES 500ULL
120 : :
121 : : struct cppc_attr {
122 : : struct attribute attr;
123 : : ssize_t (*show)(struct kobject *kobj,
124 : : struct attribute *attr, char *buf);
125 : : ssize_t (*store)(struct kobject *kobj,
126 : : struct attribute *attr, const char *c, ssize_t count);
127 : : };
128 : :
129 : : #define define_one_cppc_ro(_name) \
130 : : static struct cppc_attr _name = \
131 : : __ATTR(_name, 0444, show_##_name, NULL)
132 : :
133 : : #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134 : :
135 : : #define show_cppc_data(access_fn, struct_name, member_name) \
136 : : static ssize_t show_##member_name(struct kobject *kobj, \
137 : : struct attribute *attr, char *buf) \
138 : : { \
139 : : struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 : : struct struct_name st_name = {0}; \
141 : : int ret; \
142 : : \
143 : : ret = access_fn(cpc_ptr->cpu_id, &st_name); \
144 : : if (ret) \
145 : : return ret; \
146 : : \
147 : : return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 : : (u64)st_name.member_name); \
149 : : } \
150 : : define_one_cppc_ro(member_name)
151 : :
152 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
157 [ # # ]: 0 : show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
158 : :
159 [ # # ]: 0 : show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160 [ # # ]: 0 : show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161 : :
162 : 0 : static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 : : struct attribute *attr, char *buf)
164 : : {
165 : 0 : struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 : 0 : struct cppc_perf_fb_ctrs fb_ctrs = {0};
167 : 0 : int ret;
168 : :
169 : 0 : ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170 [ # # ]: 0 : if (ret)
171 : 0 : return ret;
172 : :
173 : 0 : return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 : : fb_ctrs.reference, fb_ctrs.delivered);
175 : : }
176 : : define_one_cppc_ro(feedback_ctrs);
177 : :
178 : : static struct attribute *cppc_attrs[] = {
179 : : &feedback_ctrs.attr,
180 : : &reference_perf.attr,
181 : : &wraparound_time.attr,
182 : : &highest_perf.attr,
183 : : &lowest_perf.attr,
184 : : &lowest_nonlinear_perf.attr,
185 : : &nominal_perf.attr,
186 : : &nominal_freq.attr,
187 : : &lowest_freq.attr,
188 : : NULL
189 : : };
190 : :
191 : : static struct kobj_type cppc_ktype = {
192 : : .sysfs_ops = &kobj_sysfs_ops,
193 : : .default_attrs = cppc_attrs,
194 : : };
195 : :
196 : 0 : static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
197 : : {
198 : 0 : int ret, status;
199 : 0 : struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
200 : 0 : struct acpi_pcct_shared_memory __iomem *generic_comm_base =
201 : : pcc_ss_data->pcc_comm_addr;
202 : :
203 [ # # ]: 0 : if (!pcc_ss_data->platform_owns_pcc)
204 : : return 0;
205 : :
206 : : /*
207 : : * Poll PCC status register every 3us(delay_us) for maximum of
208 : : * deadline_us(timeout_us) until PCC command complete bit is set(cond)
209 : : */
210 [ # # # # : 0 : ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
# # ]
211 : : status & PCC_CMD_COMPLETE_MASK, 3,
212 : : pcc_ss_data->deadline_us);
213 : :
214 [ # # ]: 0 : if (likely(!ret)) {
215 : 0 : pcc_ss_data->platform_owns_pcc = false;
216 [ # # # # ]: 0 : if (chk_err_bit && (status & PCC_ERROR_MASK))
217 : 0 : ret = -EIO;
218 : : }
219 : :
220 [ # # ]: 0 : if (unlikely(ret))
221 : 0 : pr_err("PCC check channel failed for ss: %d. ret=%d\n",
222 : : pcc_ss_id, ret);
223 : :
224 : : return ret;
225 : : }
226 : :
227 : : /*
228 : : * This function transfers the ownership of the PCC to the platform
229 : : * So it must be called while holding write_lock(pcc_lock)
230 : : */
231 : 0 : static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
232 : : {
233 : 0 : int ret = -EIO, i;
234 : 0 : struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
235 : 0 : struct acpi_pcct_shared_memory *generic_comm_base =
236 : : (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
237 : 0 : unsigned int time_delta;
238 : :
239 : : /*
240 : : * For CMD_WRITE we know for a fact the caller should have checked
241 : : * the channel before writing to PCC space
242 : : */
243 [ # # ]: 0 : if (cmd == CMD_READ) {
244 : : /*
245 : : * If there are pending cpc_writes, then we stole the channel
246 : : * before write completion, so first send a WRITE command to
247 : : * platform
248 : : */
249 [ # # ]: 0 : if (pcc_ss_data->pending_pcc_write_cmd)
250 : 0 : send_pcc_cmd(pcc_ss_id, CMD_WRITE);
251 : :
252 : 0 : ret = check_pcc_chan(pcc_ss_id, false);
253 [ # # ]: 0 : if (ret)
254 : 0 : goto end;
255 : : } else /* CMD_WRITE */
256 : 0 : pcc_ss_data->pending_pcc_write_cmd = FALSE;
257 : :
258 : : /*
259 : : * Handle the Minimum Request Turnaround Time(MRTT)
260 : : * "The minimum amount of time that OSPM must wait after the completion
261 : : * of a command before issuing the next command, in microseconds"
262 : : */
263 [ # # ]: 0 : if (pcc_ss_data->pcc_mrtt) {
264 : 0 : time_delta = ktime_us_delta(ktime_get(),
265 : : pcc_ss_data->last_cmd_cmpl_time);
266 [ # # ]: 0 : if (pcc_ss_data->pcc_mrtt > time_delta)
267 [ # # # # ]: 0 : udelay(pcc_ss_data->pcc_mrtt - time_delta);
268 : : }
269 : :
270 : : /*
271 : : * Handle the non-zero Maximum Periodic Access Rate(MPAR)
272 : : * "The maximum number of periodic requests that the subspace channel can
273 : : * support, reported in commands per minute. 0 indicates no limitation."
274 : : *
275 : : * This parameter should be ideally zero or large enough so that it can
276 : : * handle maximum number of requests that all the cores in the system can
277 : : * collectively generate. If it is not, we will follow the spec and just
278 : : * not send the request to the platform after hitting the MPAR limit in
279 : : * any 60s window
280 : : */
281 [ # # ]: 0 : if (pcc_ss_data->pcc_mpar) {
282 [ # # ]: 0 : if (pcc_ss_data->mpar_count == 0) {
283 : 0 : time_delta = ktime_ms_delta(ktime_get(),
284 : : pcc_ss_data->last_mpar_reset);
285 [ # # # # ]: 0 : if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
286 : 0 : pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
287 : : pcc_ss_id);
288 : 0 : ret = -EIO;
289 : 0 : goto end;
290 : : }
291 : 0 : pcc_ss_data->last_mpar_reset = ktime_get();
292 : 0 : pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
293 : : }
294 : 0 : pcc_ss_data->mpar_count--;
295 : : }
296 : :
297 : : /* Write to the shared comm region. */
298 : 0 : writew_relaxed(cmd, &generic_comm_base->command);
299 : :
300 : : /* Flip CMD COMPLETE bit */
301 : 0 : writew_relaxed(0, &generic_comm_base->status);
302 : :
303 : 0 : pcc_ss_data->platform_owns_pcc = true;
304 : :
305 : : /* Ring doorbell */
306 : 0 : ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
307 [ # # ]: 0 : if (ret < 0) {
308 : 0 : pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
309 : : pcc_ss_id, cmd, ret);
310 : 0 : goto end;
311 : : }
312 : :
313 : : /* wait for completion and check for PCC errro bit */
314 : 0 : ret = check_pcc_chan(pcc_ss_id, true);
315 : :
316 [ # # ]: 0 : if (pcc_ss_data->pcc_mrtt)
317 : 0 : pcc_ss_data->last_cmd_cmpl_time = ktime_get();
318 : :
319 [ # # ]: 0 : if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
320 : 0 : mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
321 : : else
322 : 0 : mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
323 : :
324 : 0 : end:
325 [ # # ]: 0 : if (cmd == CMD_WRITE) {
326 [ # # ]: 0 : if (unlikely(ret)) {
327 [ # # ]: 0 : for_each_possible_cpu(i) {
328 : 0 : struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329 [ # # ]: 0 : if (!desc)
330 : 0 : continue;
331 : :
332 [ # # ]: 0 : if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
333 : 0 : desc->write_cmd_status = ret;
334 : : }
335 : : }
336 : 0 : pcc_ss_data->pcc_write_cnt++;
337 : 0 : wake_up_all(&pcc_ss_data->pcc_write_wait_q);
338 : : }
339 : :
340 : 0 : return ret;
341 : : }
342 : :
343 : 0 : static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344 : : {
345 : 0 : if (ret < 0)
346 : : pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347 : : *(u16 *)msg, ret);
348 : : else
349 : : pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350 : : *(u16 *)msg, ret);
351 : 0 : }
352 : :
353 : : struct mbox_client cppc_mbox_cl = {
354 : : .tx_done = cppc_chan_tx_done,
355 : : .knows_txdone = true,
356 : : };
357 : :
358 : 0 : static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359 : : {
360 : 0 : int result = -EFAULT;
361 : 0 : acpi_status status = AE_OK;
362 : 0 : struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363 : 0 : struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364 : 0 : struct acpi_buffer state = {0, NULL};
365 : 0 : union acpi_object *psd = NULL;
366 : 0 : struct acpi_psd_package *pdomain;
367 : :
368 : 0 : status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
369 : : &buffer, ACPI_TYPE_PACKAGE);
370 [ # # ]: 0 : if (status == AE_NOT_FOUND) /* _PSD is optional */
371 : : return 0;
372 [ # # ]: 0 : if (ACPI_FAILURE(status))
373 : : return -ENODEV;
374 : :
375 : 0 : psd = buffer.pointer;
376 [ # # # # ]: 0 : if (!psd || psd->package.count != 1) {
377 : 0 : pr_debug("Invalid _PSD data\n");
378 : 0 : goto end;
379 : : }
380 : :
381 : 0 : pdomain = &(cpc_ptr->domain_info);
382 : :
383 : 0 : state.length = sizeof(struct acpi_psd_package);
384 : 0 : state.pointer = pdomain;
385 : :
386 : 0 : status = acpi_extract_package(&(psd->package.elements[0]),
387 : : &format, &state);
388 [ # # ]: 0 : if (ACPI_FAILURE(status)) {
389 : 0 : pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
390 : 0 : goto end;
391 : : }
392 : :
393 [ # # ]: 0 : if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
394 : 0 : pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
395 : 0 : goto end;
396 : : }
397 : :
398 [ # # ]: 0 : if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
399 : 0 : pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
400 : 0 : goto end;
401 : : }
402 : :
403 : 0 : if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
404 [ # # ]: 0 : pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
405 : : pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
406 : 0 : pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
407 : 0 : goto end;
408 : : }
409 : :
410 : : result = 0;
411 : 0 : end:
412 : 0 : kfree(buffer.pointer);
413 : 0 : return result;
414 : : }
415 : :
416 : : /**
417 : : * acpi_get_psd_map - Map the CPUs in a common freq domain.
418 : : * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
419 : : *
420 : : * Return: 0 for success or negative value for err.
421 : : */
422 : 0 : int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
423 : : {
424 : 0 : int count_target;
425 : 0 : int retval = 0;
426 : 0 : unsigned int i, j;
427 : 0 : cpumask_var_t covered_cpus;
428 : 0 : struct cppc_cpudata *pr, *match_pr;
429 : 0 : struct acpi_psd_package *pdomain;
430 : 0 : struct acpi_psd_package *match_pdomain;
431 : 0 : struct cpc_desc *cpc_ptr, *match_cpc_ptr;
432 : :
433 : 0 : if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
434 : : return -ENOMEM;
435 : :
436 : : /*
437 : : * Now that we have _PSD data from all CPUs, let's setup P-state
438 : : * domain info.
439 : : */
440 [ # # ]: 0 : for_each_possible_cpu(i) {
441 : 0 : pr = all_cpu_data[i];
442 [ # # ]: 0 : if (!pr)
443 : 0 : continue;
444 : :
445 [ # # ]: 0 : if (cpumask_test_cpu(i, covered_cpus))
446 : 0 : continue;
447 : :
448 : 0 : cpc_ptr = per_cpu(cpc_desc_ptr, i);
449 [ # # ]: 0 : if (!cpc_ptr) {
450 : 0 : retval = -EFAULT;
451 : 0 : goto err_ret;
452 : : }
453 : :
454 : 0 : pdomain = &(cpc_ptr->domain_info);
455 : 0 : cpumask_set_cpu(i, pr->shared_cpu_map);
456 : 0 : cpumask_set_cpu(i, covered_cpus);
457 [ # # ]: 0 : if (pdomain->num_processors <= 1)
458 : 0 : continue;
459 : :
460 : : /* Validate the Domain info */
461 : 0 : count_target = pdomain->num_processors;
462 [ # # ]: 0 : if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
463 : 0 : pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
464 [ # # ]: 0 : else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
465 : 0 : pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
466 [ # # ]: 0 : else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
467 : 0 : pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
468 : :
469 [ # # ]: 0 : for_each_possible_cpu(j) {
470 [ # # ]: 0 : if (i == j)
471 : 0 : continue;
472 : :
473 : 0 : match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
474 [ # # ]: 0 : if (!match_cpc_ptr) {
475 : 0 : retval = -EFAULT;
476 : 0 : goto err_ret;
477 : : }
478 : :
479 : 0 : match_pdomain = &(match_cpc_ptr->domain_info);
480 [ # # ]: 0 : if (match_pdomain->domain != pdomain->domain)
481 : 0 : continue;
482 : :
483 : : /* Here i and j are in the same domain */
484 [ # # ]: 0 : if (match_pdomain->num_processors != count_target) {
485 : 0 : retval = -EFAULT;
486 : 0 : goto err_ret;
487 : : }
488 : :
489 [ # # ]: 0 : if (pdomain->coord_type != match_pdomain->coord_type) {
490 : 0 : retval = -EFAULT;
491 : 0 : goto err_ret;
492 : : }
493 : :
494 : 0 : cpumask_set_cpu(j, covered_cpus);
495 : 0 : cpumask_set_cpu(j, pr->shared_cpu_map);
496 : : }
497 : :
498 [ # # ]: 0 : for_each_possible_cpu(j) {
499 [ # # ]: 0 : if (i == j)
500 : 0 : continue;
501 : :
502 : 0 : match_pr = all_cpu_data[j];
503 [ # # ]: 0 : if (!match_pr)
504 : 0 : continue;
505 : :
506 : 0 : match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
507 [ # # ]: 0 : if (!match_cpc_ptr) {
508 : 0 : retval = -EFAULT;
509 : 0 : goto err_ret;
510 : : }
511 : :
512 : 0 : match_pdomain = &(match_cpc_ptr->domain_info);
513 [ # # ]: 0 : if (match_pdomain->domain != pdomain->domain)
514 : 0 : continue;
515 : :
516 : 0 : match_pr->shared_type = pr->shared_type;
517 : 0 : cpumask_copy(match_pr->shared_cpu_map,
518 : : pr->shared_cpu_map);
519 : : }
520 : : }
521 : :
522 : 0 : err_ret:
523 [ # # ]: 0 : for_each_possible_cpu(i) {
524 : 0 : pr = all_cpu_data[i];
525 [ # # ]: 0 : if (!pr)
526 : 0 : continue;
527 : :
528 : : /* Assume no coordination on any error parsing domain info */
529 [ # # ]: 0 : if (retval) {
530 : 0 : cpumask_clear(pr->shared_cpu_map);
531 : 0 : cpumask_set_cpu(i, pr->shared_cpu_map);
532 : 0 : pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
533 : : }
534 : : }
535 : :
536 : 0 : free_cpumask_var(covered_cpus);
537 : 0 : return retval;
538 : : }
539 : : EXPORT_SYMBOL_GPL(acpi_get_psd_map);
540 : :
541 : 0 : static int register_pcc_channel(int pcc_ss_idx)
542 : : {
543 : 0 : struct acpi_pcct_hw_reduced *cppc_ss;
544 : 0 : u64 usecs_lat;
545 : :
546 [ # # ]: 0 : if (pcc_ss_idx >= 0) {
547 : 0 : pcc_data[pcc_ss_idx]->pcc_channel =
548 : 0 : pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
549 : :
550 [ # # ]: 0 : if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
551 : 0 : pr_err("Failed to find PCC channel for subspace %d\n",
552 : : pcc_ss_idx);
553 : 0 : return -ENODEV;
554 : : }
555 : :
556 : : /*
557 : : * The PCC mailbox controller driver should
558 : : * have parsed the PCCT (global table of all
559 : : * PCC channels) and stored pointers to the
560 : : * subspace communication region in con_priv.
561 : : */
562 : 0 : cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
563 : :
564 [ # # ]: 0 : if (!cppc_ss) {
565 : 0 : pr_err("No PCC subspace found for %d CPPC\n",
566 : : pcc_ss_idx);
567 : 0 : return -ENODEV;
568 : : }
569 : :
570 : : /*
571 : : * cppc_ss->latency is just a Nominal value. In reality
572 : : * the remote processor could be much slower to reply.
573 : : * So add an arbitrary amount of wait on top of Nominal.
574 : : */
575 : 0 : usecs_lat = NUM_RETRIES * cppc_ss->latency;
576 : 0 : pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
577 : 0 : pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
578 : 0 : pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
579 : 0 : pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
580 : :
581 : 0 : pcc_data[pcc_ss_idx]->pcc_comm_addr =
582 : 0 : acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
583 [ # # ]: 0 : if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
584 : 0 : pr_err("Failed to ioremap PCC comm region mem for %d\n",
585 : : pcc_ss_idx);
586 : 0 : return -ENOMEM;
587 : : }
588 : :
589 : : /* Set flag so that we don't come here for each CPU. */
590 : 0 : pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
591 : : }
592 : :
593 : : return 0;
594 : : }
595 : :
596 : : /**
597 : : * cpc_ffh_supported() - check if FFH reading supported
598 : : *
599 : : * Check if the architecture has support for functional fixed hardware
600 : : * read/write capability.
601 : : *
602 : : * Return: true for supported, false for not supported
603 : : */
604 : 0 : bool __weak cpc_ffh_supported(void)
605 : : {
606 : 0 : return false;
607 : : }
608 : :
609 : : /**
610 : : * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
611 : : *
612 : : * Check and allocate the cppc_pcc_data memory.
613 : : * In some processor configurations it is possible that same subspace
614 : : * is shared between multiple CPUs. This is seen especially in CPUs
615 : : * with hardware multi-threading support.
616 : : *
617 : : * Return: 0 for success, errno for failure
618 : : */
619 : 0 : int pcc_data_alloc(int pcc_ss_id)
620 : : {
621 [ # # ]: 0 : if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
622 : : return -EINVAL;
623 : :
624 [ # # ]: 0 : if (pcc_data[pcc_ss_id]) {
625 : 0 : pcc_data[pcc_ss_id]->refcount++;
626 : : } else {
627 : 0 : pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
628 : : GFP_KERNEL);
629 [ # # ]: 0 : if (!pcc_data[pcc_ss_id])
630 : : return -ENOMEM;
631 : 0 : pcc_data[pcc_ss_id]->refcount++;
632 : : }
633 : :
634 : : return 0;
635 : : }
636 : :
637 : : /* Check if CPPC revision + num_ent combination is supported */
638 : 0 : static bool is_cppc_supported(int revision, int num_ent)
639 : : {
640 : 0 : int expected_num_ent;
641 : :
642 : 0 : switch (revision) {
643 : : case CPPC_V2_REV:
644 : : expected_num_ent = CPPC_V2_NUM_ENT;
645 : : break;
646 : 0 : case CPPC_V3_REV:
647 : 0 : expected_num_ent = CPPC_V3_NUM_ENT;
648 : 0 : break;
649 : : default:
650 : : pr_debug("Firmware exports unsupported CPPC revision: %d\n",
651 : : revision);
652 : : return false;
653 : : }
654 : :
655 [ # # ]: 0 : if (expected_num_ent != num_ent) {
656 : : pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
657 : : num_ent, expected_num_ent, revision);
658 : : return false;
659 : : }
660 : :
661 : : return true;
662 : : }
663 : :
664 : : /*
665 : : * An example CPC table looks like the following.
666 : : *
667 : : * Name(_CPC, Package()
668 : : * {
669 : : * 17,
670 : : * NumEntries
671 : : * 1,
672 : : * // Revision
673 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
674 : : * // Highest Performance
675 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
676 : : * // Nominal Performance
677 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
678 : : * // Lowest Nonlinear Performance
679 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
680 : : * // Lowest Performance
681 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
682 : : * // Guaranteed Performance Register
683 : : * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
684 : : * // Desired Performance Register
685 : : * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
686 : : * ..
687 : : * ..
688 : : * ..
689 : : *
690 : : * }
691 : : * Each Register() encodes how to access that specific register.
692 : : * e.g. a sample PCC entry has the following encoding:
693 : : *
694 : : * Register (
695 : : * PCC,
696 : : * AddressSpaceKeyword
697 : : * 8,
698 : : * //RegisterBitWidth
699 : : * 8,
700 : : * //RegisterBitOffset
701 : : * 0x30,
702 : : * //RegisterAddress
703 : : * 9
704 : : * //AccessSize (subspace ID)
705 : : * 0
706 : : * )
707 : : * }
708 : : */
709 : :
710 : : /**
711 : : * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
712 : : * @pr: Ptr to acpi_processor containing this CPU's logical ID.
713 : : *
714 : : * Return: 0 for success or negative value for err.
715 : : */
716 : 30 : int acpi_cppc_processor_probe(struct acpi_processor *pr)
717 : : {
718 : 30 : struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
719 : 30 : union acpi_object *out_obj, *cpc_obj;
720 : 30 : struct cpc_desc *cpc_ptr;
721 : 30 : struct cpc_reg *gas_t;
722 : 30 : struct device *cpu_dev;
723 : 30 : acpi_handle handle = pr->handle;
724 : 30 : unsigned int num_ent, i, cpc_rev;
725 : 30 : int pcc_subspace_id = -1;
726 : 30 : acpi_status status;
727 : 30 : int ret = -EFAULT;
728 : :
729 : : /* Parse the ACPI _CPC table for this CPU. */
730 : 30 : status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
731 : : ACPI_TYPE_PACKAGE);
732 [ + - ]: 30 : if (ACPI_FAILURE(status)) {
733 : 30 : ret = -ENODEV;
734 : 30 : goto out_buf_free;
735 : : }
736 : :
737 : 0 : out_obj = (union acpi_object *) output.pointer;
738 : :
739 : 0 : cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
740 [ # # ]: 0 : if (!cpc_ptr) {
741 : 0 : ret = -ENOMEM;
742 : 0 : goto out_buf_free;
743 : : }
744 : :
745 : : /* First entry is NumEntries. */
746 : 0 : cpc_obj = &out_obj->package.elements[0];
747 [ # # ]: 0 : if (cpc_obj->type == ACPI_TYPE_INTEGER) {
748 : 0 : num_ent = cpc_obj->integer.value;
749 : : } else {
750 : 0 : pr_debug("Unexpected entry type(%d) for NumEntries\n",
751 : : cpc_obj->type);
752 : 0 : goto out_free;
753 : : }
754 : 0 : cpc_ptr->num_entries = num_ent;
755 : :
756 : : /* Second entry should be revision. */
757 : 0 : cpc_obj = &out_obj->package.elements[1];
758 [ # # ]: 0 : if (cpc_obj->type == ACPI_TYPE_INTEGER) {
759 : 0 : cpc_rev = cpc_obj->integer.value;
760 : : } else {
761 : 0 : pr_debug("Unexpected entry type(%d) for Revision\n",
762 : : cpc_obj->type);
763 : 0 : goto out_free;
764 : : }
765 : 0 : cpc_ptr->version = cpc_rev;
766 : :
767 [ # # # ]: 0 : if (!is_cppc_supported(cpc_rev, num_ent))
768 : 0 : goto out_free;
769 : :
770 : : /* Iterate through remaining entries in _CPC */
771 [ # # ]: 0 : for (i = 2; i < num_ent; i++) {
772 : 0 : cpc_obj = &out_obj->package.elements[i];
773 : :
774 [ # # ]: 0 : if (cpc_obj->type == ACPI_TYPE_INTEGER) {
775 : 0 : cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
776 : 0 : cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
777 [ # # ]: 0 : } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
778 : 0 : gas_t = (struct cpc_reg *)
779 : : cpc_obj->buffer.pointer;
780 : :
781 : : /*
782 : : * The PCC Subspace index is encoded inside
783 : : * the CPC table entries. The same PCC index
784 : : * will be used for all the PCC entries,
785 : : * so extract it only once.
786 : : */
787 [ # # ]: 0 : if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
788 [ # # ]: 0 : if (pcc_subspace_id < 0) {
789 : 0 : pcc_subspace_id = gas_t->access_width;
790 [ # # ]: 0 : if (pcc_data_alloc(pcc_subspace_id))
791 : 0 : goto out_free;
792 [ # # ]: 0 : } else if (pcc_subspace_id != gas_t->access_width) {
793 : 0 : pr_debug("Mismatched PCC ids.\n");
794 : 0 : goto out_free;
795 : : }
796 [ # # ]: 0 : } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
797 [ # # ]: 0 : if (gas_t->address) {
798 : 0 : void __iomem *addr;
799 : :
800 : 0 : addr = ioremap(gas_t->address, gas_t->bit_width/8);
801 [ # # ]: 0 : if (!addr)
802 : 0 : goto out_free;
803 : 0 : cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
804 : : }
805 : : } else {
806 [ # # # # ]: 0 : if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
807 : : /* Support only PCC ,SYS MEM and FFH type regs */
808 : 0 : pr_debug("Unsupported register type: %d\n", gas_t->space_id);
809 : 0 : goto out_free;
810 : : }
811 : : }
812 : :
813 : 0 : cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
814 : 0 : memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
815 : : } else {
816 : 0 : pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
817 : 0 : goto out_free;
818 : : }
819 : : }
820 : 0 : per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
821 : :
822 : : /*
823 : : * Initialize the remaining cpc_regs as unsupported.
824 : : * Example: In case FW exposes CPPC v2, the below loop will initialize
825 : : * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
826 : : */
827 [ # # ]: 0 : for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
828 : 0 : cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
829 : 0 : cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
830 : : }
831 : :
832 : :
833 : : /* Store CPU Logical ID */
834 : 0 : cpc_ptr->cpu_id = pr->id;
835 : :
836 : : /* Parse PSD data for this CPU */
837 : 0 : ret = acpi_get_psd(cpc_ptr, handle);
838 [ # # ]: 0 : if (ret)
839 : 0 : goto out_free;
840 : :
841 : : /* Register PCC channel once for all PCC subspace ID. */
842 [ # # # # ]: 0 : if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
843 : 0 : ret = register_pcc_channel(pcc_subspace_id);
844 [ # # ]: 0 : if (ret)
845 : 0 : goto out_free;
846 : :
847 : 0 : init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
848 : 0 : init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
849 : : }
850 : :
851 : : /* Everything looks okay */
852 : 0 : pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
853 : :
854 : : /* Add per logical CPU nodes for reading its feedback counters. */
855 : 0 : cpu_dev = get_cpu_device(pr->id);
856 [ # # ]: 0 : if (!cpu_dev) {
857 : 0 : ret = -EINVAL;
858 : 0 : goto out_free;
859 : : }
860 : :
861 : : /* Plug PSD data into this CPU's CPC descriptor. */
862 : 0 : per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
863 : :
864 : 0 : ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
865 : : "acpi_cppc");
866 [ # # ]: 0 : if (ret) {
867 : 0 : per_cpu(cpc_desc_ptr, pr->id) = NULL;
868 : 0 : goto out_free;
869 : : }
870 : :
871 : 0 : kfree(output.pointer);
872 : 0 : return 0;
873 : :
874 : 0 : out_free:
875 : : /* Free all the mapped sys mem areas for this CPU */
876 [ # # ]: 0 : for (i = 2; i < cpc_ptr->num_entries; i++) {
877 : 0 : void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
878 : :
879 [ # # ]: 0 : if (addr)
880 : 0 : iounmap(addr);
881 : : }
882 : 0 : kfree(cpc_ptr);
883 : :
884 : 30 : out_buf_free:
885 : 30 : kfree(output.pointer);
886 : 30 : return ret;
887 : : }
888 : : EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
889 : :
890 : : /**
891 : : * acpi_cppc_processor_exit - Cleanup CPC structs.
892 : : * @pr: Ptr to acpi_processor containing this CPU's logical ID.
893 : : *
894 : : * Return: Void
895 : : */
896 : 0 : void acpi_cppc_processor_exit(struct acpi_processor *pr)
897 : : {
898 : 0 : struct cpc_desc *cpc_ptr;
899 : 0 : unsigned int i;
900 : 0 : void __iomem *addr;
901 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
902 : :
903 [ # # # # ]: 0 : if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
904 [ # # ]: 0 : if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
905 : 0 : pcc_data[pcc_ss_id]->refcount--;
906 [ # # ]: 0 : if (!pcc_data[pcc_ss_id]->refcount) {
907 : 0 : pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
908 : 0 : kfree(pcc_data[pcc_ss_id]);
909 : 0 : pcc_data[pcc_ss_id] = NULL;
910 : : }
911 : : }
912 : : }
913 : :
914 : 0 : cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
915 [ # # ]: 0 : if (!cpc_ptr)
916 : : return;
917 : :
918 : : /* Free all the mapped sys mem areas for this CPU */
919 [ # # ]: 0 : for (i = 2; i < cpc_ptr->num_entries; i++) {
920 : 0 : addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
921 [ # # ]: 0 : if (addr)
922 : 0 : iounmap(addr);
923 : : }
924 : :
925 : 0 : kobject_put(&cpc_ptr->kobj);
926 : 0 : kfree(cpc_ptr);
927 : : }
928 : : EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
929 : :
930 : : /**
931 : : * cpc_read_ffh() - Read FFH register
932 : : * @cpunum: CPU number to read
933 : : * @reg: cppc register information
934 : : * @val: place holder for return value
935 : : *
936 : : * Read bit_width bits from a specified address and bit_offset
937 : : *
938 : : * Return: 0 for success and error code
939 : : */
940 : 0 : int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
941 : : {
942 : 0 : return -ENOTSUPP;
943 : : }
944 : :
945 : : /**
946 : : * cpc_write_ffh() - Write FFH register
947 : : * @cpunum: CPU number to write
948 : : * @reg: cppc register information
949 : : * @val: value to write
950 : : *
951 : : * Write value of bit_width bits to a specified address and bit_offset
952 : : *
953 : : * Return: 0 for success and error code
954 : : */
955 : 0 : int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
956 : : {
957 : 0 : return -ENOTSUPP;
958 : : }
959 : :
960 : : /*
961 : : * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
962 : : * as fast as possible. We have already mapped the PCC subspace during init, so
963 : : * we can directly write to it.
964 : : */
965 : :
966 : 0 : static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
967 : : {
968 : 0 : int ret_val = 0;
969 : 0 : void __iomem *vaddr = 0;
970 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
971 : 0 : struct cpc_reg *reg = ®_res->cpc_entry.reg;
972 : :
973 [ # # ]: 0 : if (reg_res->type == ACPI_TYPE_INTEGER) {
974 : 0 : *val = reg_res->cpc_entry.int_value;
975 : 0 : return ret_val;
976 : : }
977 : :
978 : 0 : *val = 0;
979 [ # # # # ]: 0 : if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
980 : 0 : vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
981 [ # # ]: 0 : else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
982 : 0 : vaddr = reg_res->sys_mem_vaddr;
983 [ # # ]: 0 : else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
984 : 0 : return cpc_read_ffh(cpu, reg, val);
985 : : else
986 : 0 : return acpi_os_read_memory((acpi_physical_address)reg->address,
987 : 0 : val, reg->bit_width);
988 : :
989 [ # # # # : 0 : switch (reg->bit_width) {
# ]
990 : : case 8:
991 : 0 : *val = readb_relaxed(vaddr);
992 : 0 : break;
993 : : case 16:
994 : 0 : *val = readw_relaxed(vaddr);
995 : 0 : break;
996 : : case 32:
997 : 0 : *val = readl_relaxed(vaddr);
998 : 0 : break;
999 : : case 64:
1000 : 0 : *val = readq_relaxed(vaddr);
1001 : 0 : break;
1002 : : default:
1003 : : pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1004 : : reg->bit_width, pcc_ss_id);
1005 : : ret_val = -EFAULT;
1006 : : }
1007 : :
1008 : : return ret_val;
1009 : : }
1010 : :
1011 : 0 : static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1012 : : {
1013 : 0 : int ret_val = 0;
1014 : 0 : void __iomem *vaddr = 0;
1015 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1016 : 0 : struct cpc_reg *reg = ®_res->cpc_entry.reg;
1017 : :
1018 [ # # # # ]: 0 : if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1019 : 0 : vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1020 [ # # ]: 0 : else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1021 : 0 : vaddr = reg_res->sys_mem_vaddr;
1022 [ # # ]: 0 : else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1023 : 0 : return cpc_write_ffh(cpu, reg, val);
1024 : : else
1025 : 0 : return acpi_os_write_memory((acpi_physical_address)reg->address,
1026 : 0 : val, reg->bit_width);
1027 : :
1028 [ # # # # : 0 : switch (reg->bit_width) {
# ]
1029 : 0 : case 8:
1030 : 0 : writeb_relaxed(val, vaddr);
1031 : : break;
1032 : 0 : case 16:
1033 : 0 : writew_relaxed(val, vaddr);
1034 : : break;
1035 : 0 : case 32:
1036 : 0 : writel_relaxed(val, vaddr);
1037 : : break;
1038 : : case 64:
1039 : 0 : writeq_relaxed(val, vaddr);
1040 : : break;
1041 : : default:
1042 : : pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1043 : : reg->bit_width, pcc_ss_id);
1044 : : ret_val = -EFAULT;
1045 : : break;
1046 : : }
1047 : :
1048 : : return ret_val;
1049 : : }
1050 : :
1051 : : /**
1052 : : * cppc_get_desired_perf - Get the value of desired performance register.
1053 : : * @cpunum: CPU from which to get desired performance.
1054 : : * @desired_perf: address of a variable to store the returned desired performance
1055 : : *
1056 : : * Return: 0 for success, -EIO otherwise.
1057 : : */
1058 : 0 : int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1059 : : {
1060 : 0 : struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1061 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1062 : 0 : struct cpc_register_resource *desired_reg;
1063 : 0 : struct cppc_pcc_data *pcc_ss_data = NULL;
1064 : :
1065 : 0 : desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1066 : :
1067 [ # # # # ]: 0 : if (CPC_IN_PCC(desired_reg)) {
1068 : 0 : int ret = 0;
1069 : :
1070 [ # # ]: 0 : if (pcc_ss_id < 0)
1071 : : return -EIO;
1072 : :
1073 : 0 : pcc_ss_data = pcc_data[pcc_ss_id];
1074 : :
1075 : 0 : down_write(&pcc_ss_data->pcc_lock);
1076 : :
1077 [ # # ]: 0 : if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1078 : 0 : cpc_read(cpunum, desired_reg, desired_perf);
1079 : : else
1080 : : ret = -EIO;
1081 : :
1082 : 0 : up_write(&pcc_ss_data->pcc_lock);
1083 : :
1084 : 0 : return ret;
1085 : : }
1086 : :
1087 : 0 : cpc_read(cpunum, desired_reg, desired_perf);
1088 : :
1089 : 0 : return 0;
1090 : : }
1091 : : EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1092 : :
1093 : : /**
1094 : : * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095 : : * @cpunum: CPU from which to get capabilities info.
1096 : : * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1097 : : *
1098 : : * Return: 0 for success with perf_caps populated else -ERRNO.
1099 : : */
1100 : 0 : int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1101 : : {
1102 : 0 : struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1103 : 0 : struct cpc_register_resource *highest_reg, *lowest_reg,
1104 : : *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1105 : : *low_freq_reg = NULL, *nom_freq_reg = NULL;
1106 : 0 : u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1107 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1108 : 0 : struct cppc_pcc_data *pcc_ss_data = NULL;
1109 : 0 : int ret = 0, regs_in_pcc = 0;
1110 : :
1111 [ # # ]: 0 : if (!cpc_desc) {
1112 : : pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1113 : : return -ENODEV;
1114 : : }
1115 : :
1116 : 0 : highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1117 : 0 : lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1118 : 0 : lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1119 : 0 : nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120 : 0 : low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1121 : 0 : nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1122 : 0 : guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1123 : :
1124 : : /* Are any of the regs PCC ?*/
1125 [ # # # # : 0 : if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
# # # # ]
1126 [ # # # # : 0 : CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
# # # # ]
1127 [ # # # # : 0 : CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
# # # # ]
1128 [ # # ]: 0 : if (pcc_ss_id < 0) {
1129 : : pr_debug("Invalid pcc_ss_id\n");
1130 : : return -ENODEV;
1131 : : }
1132 : 0 : pcc_ss_data = pcc_data[pcc_ss_id];
1133 : 0 : regs_in_pcc = 1;
1134 : 0 : down_write(&pcc_ss_data->pcc_lock);
1135 : : /* Ring doorbell once to update PCC subspace */
1136 [ # # ]: 0 : if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1137 : 0 : ret = -EIO;
1138 : 0 : goto out_err;
1139 : : }
1140 : : }
1141 : :
1142 : 0 : cpc_read(cpunum, highest_reg, &high);
1143 : 0 : perf_caps->highest_perf = high;
1144 : :
1145 : 0 : cpc_read(cpunum, lowest_reg, &low);
1146 : 0 : perf_caps->lowest_perf = low;
1147 : :
1148 : 0 : cpc_read(cpunum, nominal_reg, &nom);
1149 : 0 : perf_caps->nominal_perf = nom;
1150 : :
1151 [ # # ]: 0 : if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1152 [ # # # # : 0 : IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
# # ]
1153 : 0 : perf_caps->guaranteed_perf = 0;
1154 : : } else {
1155 : 0 : cpc_read(cpunum, guaranteed_reg, &guaranteed);
1156 : 0 : perf_caps->guaranteed_perf = guaranteed;
1157 : : }
1158 : :
1159 : 0 : cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1160 : 0 : perf_caps->lowest_nonlinear_perf = min_nonlinear;
1161 : :
1162 [ # # # # : 0 : if (!high || !low || !nom || !min_nonlinear)
# # # # ]
1163 : 0 : ret = -EFAULT;
1164 : :
1165 : : /* Read optional lowest and nominal frequencies if present */
1166 [ # # # # : 0 : if (CPC_SUPPORTED(low_freq_reg))
# # # # #
# ]
1167 : 0 : cpc_read(cpunum, low_freq_reg, &low_f);
1168 : :
1169 [ # # # # : 0 : if (CPC_SUPPORTED(nom_freq_reg))
# # # # #
# ]
1170 : 0 : cpc_read(cpunum, nom_freq_reg, &nom_f);
1171 : :
1172 : 0 : perf_caps->lowest_freq = low_f;
1173 : 0 : perf_caps->nominal_freq = nom_f;
1174 : :
1175 : :
1176 : 0 : out_err:
1177 [ # # ]: 0 : if (regs_in_pcc)
1178 : 0 : up_write(&pcc_ss_data->pcc_lock);
1179 : : return ret;
1180 : : }
1181 : : EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1182 : :
1183 : : /**
1184 : : * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185 : : * @cpunum: CPU from which to read counters.
1186 : : * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1187 : : *
1188 : : * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1189 : : */
1190 : 0 : int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1191 : : {
1192 : 0 : struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1193 : 0 : struct cpc_register_resource *delivered_reg, *reference_reg,
1194 : : *ref_perf_reg, *ctr_wrap_reg;
1195 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1196 : 0 : struct cppc_pcc_data *pcc_ss_data = NULL;
1197 : 0 : u64 delivered, reference, ref_perf, ctr_wrap_time;
1198 : 0 : int ret = 0, regs_in_pcc = 0;
1199 : :
1200 [ # # ]: 0 : if (!cpc_desc) {
1201 : : pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1202 : : return -ENODEV;
1203 : : }
1204 : :
1205 : 0 : delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1206 : 0 : reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1207 : 0 : ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1208 : 0 : ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1209 : :
1210 : : /*
1211 : : * If reference perf register is not supported then we should
1212 : : * use the nominal perf value
1213 : : */
1214 [ # # # # : 0 : if (!CPC_SUPPORTED(ref_perf_reg))
# # # # #
# ]
1215 : 0 : ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1216 : :
1217 : : /* Are any of the regs PCC ?*/
1218 [ # # # # : 0 : if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
# # # # ]
1219 [ # # # # : 0 : CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
# # # # ]
1220 [ # # ]: 0 : if (pcc_ss_id < 0) {
1221 : : pr_debug("Invalid pcc_ss_id\n");
1222 : : return -ENODEV;
1223 : : }
1224 : 0 : pcc_ss_data = pcc_data[pcc_ss_id];
1225 : 0 : down_write(&pcc_ss_data->pcc_lock);
1226 : 0 : regs_in_pcc = 1;
1227 : : /* Ring doorbell once to update PCC subspace */
1228 [ # # ]: 0 : if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1229 : 0 : ret = -EIO;
1230 : 0 : goto out_err;
1231 : : }
1232 : : }
1233 : :
1234 : 0 : cpc_read(cpunum, delivered_reg, &delivered);
1235 : 0 : cpc_read(cpunum, reference_reg, &reference);
1236 : 0 : cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237 : :
1238 : : /*
1239 : : * Per spec, if ctr_wrap_time optional register is unsupported, then the
1240 : : * performance counters are assumed to never wrap during the lifetime of
1241 : : * platform
1242 : : */
1243 : 0 : ctr_wrap_time = (u64)(~((u64)0));
1244 [ # # # # : 0 : if (CPC_SUPPORTED(ctr_wrap_reg))
# # # # #
# ]
1245 : 0 : cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1246 : :
1247 [ # # # # : 0 : if (!delivered || !reference || !ref_perf) {
# # ]
1248 : 0 : ret = -EFAULT;
1249 : 0 : goto out_err;
1250 : : }
1251 : :
1252 : 0 : perf_fb_ctrs->delivered = delivered;
1253 : 0 : perf_fb_ctrs->reference = reference;
1254 : 0 : perf_fb_ctrs->reference_perf = ref_perf;
1255 : 0 : perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1256 : 0 : out_err:
1257 [ # # ]: 0 : if (regs_in_pcc)
1258 : 0 : up_write(&pcc_ss_data->pcc_lock);
1259 : : return ret;
1260 : : }
1261 : : EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1262 : :
1263 : : /**
1264 : : * cppc_set_perf - Set a CPU's performance controls.
1265 : : * @cpu: CPU for which to set performance controls.
1266 : : * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1267 : : *
1268 : : * Return: 0 for success, -ERRNO otherwise.
1269 : : */
1270 : 0 : int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1271 : : {
1272 : 0 : struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1273 : 0 : struct cpc_register_resource *desired_reg;
1274 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1275 : 0 : struct cppc_pcc_data *pcc_ss_data = NULL;
1276 : 0 : int ret = 0;
1277 : :
1278 [ # # ]: 0 : if (!cpc_desc) {
1279 : : pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1280 : : return -ENODEV;
1281 : : }
1282 : :
1283 : 0 : desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1284 : :
1285 : : /*
1286 : : * This is Phase-I where we want to write to CPC registers
1287 : : * -> We want all CPUs to be able to execute this phase in parallel
1288 : : *
1289 : : * Since read_lock can be acquired by multiple CPUs simultaneously we
1290 : : * achieve that goal here
1291 : : */
1292 [ # # # # ]: 0 : if (CPC_IN_PCC(desired_reg)) {
1293 [ # # ]: 0 : if (pcc_ss_id < 0) {
1294 : : pr_debug("Invalid pcc_ss_id\n");
1295 : : return -ENODEV;
1296 : : }
1297 : 0 : pcc_ss_data = pcc_data[pcc_ss_id];
1298 : 0 : down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1299 [ # # ]: 0 : if (pcc_ss_data->platform_owns_pcc) {
1300 : 0 : ret = check_pcc_chan(pcc_ss_id, false);
1301 [ # # ]: 0 : if (ret) {
1302 : 0 : up_read(&pcc_ss_data->pcc_lock);
1303 : 0 : return ret;
1304 : : }
1305 : : }
1306 : : /*
1307 : : * Update the pending_write to make sure a PCC CMD_READ will not
1308 : : * arrive and steal the channel during the switch to write lock
1309 : : */
1310 : 0 : pcc_ss_data->pending_pcc_write_cmd = true;
1311 : 0 : cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1312 : 0 : cpc_desc->write_cmd_status = 0;
1313 : : }
1314 : :
1315 : : /*
1316 : : * Skip writing MIN/MAX until Linux knows how to come up with
1317 : : * useful values.
1318 : : */
1319 : 0 : cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1320 : :
1321 [ # # # # ]: 0 : if (CPC_IN_PCC(desired_reg))
1322 : 0 : up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1323 : : /*
1324 : : * This is Phase-II where we transfer the ownership of PCC to Platform
1325 : : *
1326 : : * Short Summary: Basically if we think of a group of cppc_set_perf
1327 : : * requests that happened in short overlapping interval. The last CPU to
1328 : : * come out of Phase-I will enter Phase-II and ring the doorbell.
1329 : : *
1330 : : * We have the following requirements for Phase-II:
1331 : : * 1. We want to execute Phase-II only when there are no CPUs
1332 : : * currently executing in Phase-I
1333 : : * 2. Once we start Phase-II we want to avoid all other CPUs from
1334 : : * entering Phase-I.
1335 : : * 3. We want only one CPU among all those who went through Phase-I
1336 : : * to run phase-II
1337 : : *
1338 : : * If write_trylock fails to get the lock and doesn't transfer the
1339 : : * PCC ownership to the platform, then one of the following will be TRUE
1340 : : * 1. There is at-least one CPU in Phase-I which will later execute
1341 : : * write_trylock, so the CPUs in Phase-I will be responsible for
1342 : : * executing the Phase-II.
1343 : : * 2. Some other CPU has beaten this CPU to successfully execute the
1344 : : * write_trylock and has already acquired the write_lock. We know for a
1345 : : * fact it (other CPU acquiring the write_lock) couldn't have happened
1346 : : * before this CPU's Phase-I as we held the read_lock.
1347 : : * 3. Some other CPU executing pcc CMD_READ has stolen the
1348 : : * down_write, in which case, send_pcc_cmd will check for pending
1349 : : * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1350 : : * So this CPU can be certain that its request will be delivered
1351 : : * So in all cases, this CPU knows that its request will be delivered
1352 : : * by another CPU and can return
1353 : : *
1354 : : * After getting the down_write we still need to check for
1355 : : * pending_pcc_write_cmd to take care of the following scenario
1356 : : * The thread running this code could be scheduled out between
1357 : : * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1358 : : * could have delivered the request to Platform by triggering the
1359 : : * doorbell and transferred the ownership of PCC to platform. So this
1360 : : * avoids triggering an unnecessary doorbell and more importantly before
1361 : : * triggering the doorbell it makes sure that the PCC channel ownership
1362 : : * is still with OSPM.
1363 : : * pending_pcc_write_cmd can also be cleared by a different CPU, if
1364 : : * there was a pcc CMD_READ waiting on down_write and it steals the lock
1365 : : * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1366 : : * case during a CMD_READ and if there are pending writes it delivers
1367 : : * the write command before servicing the read command
1368 : : */
1369 [ # # # # ]: 0 : if (CPC_IN_PCC(desired_reg)) {
1370 [ # # ]: 0 : if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1371 : : /* Update only if there are pending write commands */
1372 [ # # ]: 0 : if (pcc_ss_data->pending_pcc_write_cmd)
1373 : 0 : send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1374 : 0 : up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1375 : : } else
1376 : : /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1377 [ # # # # ]: 0 : wait_event(pcc_ss_data->pcc_write_wait_q,
1378 : : cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1379 : :
1380 : : /* send_pcc_cmd updates the status in case of failure */
1381 : 0 : ret = cpc_desc->write_cmd_status;
1382 : : }
1383 : : return ret;
1384 : : }
1385 : : EXPORT_SYMBOL_GPL(cppc_set_perf);
1386 : :
1387 : : /**
1388 : : * cppc_get_transition_latency - returns frequency transition latency in ns
1389 : : *
1390 : : * ACPI CPPC does not explicitly specifiy how a platform can specify the
1391 : : * transition latency for perfromance change requests. The closest we have
1392 : : * is the timing information from the PCCT tables which provides the info
1393 : : * on the number and frequency of PCC commands the platform can handle.
1394 : : */
1395 : 0 : unsigned int cppc_get_transition_latency(int cpu_num)
1396 : : {
1397 : : /*
1398 : : * Expected transition latency is based on the PCCT timing values
1399 : : * Below are definition from ACPI spec:
1400 : : * pcc_nominal- Expected latency to process a command, in microseconds
1401 : : * pcc_mpar - The maximum number of periodic requests that the subspace
1402 : : * channel can support, reported in commands per minute. 0
1403 : : * indicates no limitation.
1404 : : * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1405 : : * completion of a command before issuing the next command,
1406 : : * in microseconds.
1407 : : */
1408 : 0 : unsigned int latency_ns = 0;
1409 : 0 : struct cpc_desc *cpc_desc;
1410 : 0 : struct cpc_register_resource *desired_reg;
1411 : 0 : int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1412 : 0 : struct cppc_pcc_data *pcc_ss_data;
1413 : :
1414 : 0 : cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1415 [ # # ]: 0 : if (!cpc_desc)
1416 : : return CPUFREQ_ETERNAL;
1417 : :
1418 : 0 : desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1419 [ # # # # ]: 0 : if (!CPC_IN_PCC(desired_reg))
1420 : : return CPUFREQ_ETERNAL;
1421 : :
1422 [ # # ]: 0 : if (pcc_ss_id < 0)
1423 : : return CPUFREQ_ETERNAL;
1424 : :
1425 : 0 : pcc_ss_data = pcc_data[pcc_ss_id];
1426 [ # # ]: 0 : if (pcc_ss_data->pcc_mpar)
1427 : 0 : latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1428 : :
1429 : 0 : latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1430 : 0 : latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1431 : :
1432 : 0 : return latency_ns;
1433 : : }
1434 : : EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
|