Branch data Line data Source code
1 : : /*
2 : : * Copyright (c) 2009 Atheros Communications Inc.
3 : : *
4 : : * Permission to use, copy, modify, and/or distribute this software for any
5 : : * purpose with or without fee is hereby granted, provided that the above
6 : : * copyright notice and this permission notice appear in all copies.
7 : : *
8 : : * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 : : * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 : : * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 : : * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 : : * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 : : * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 : : * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 : : */
16 : :
17 : : #include <linux/export.h>
18 : : #include <asm/unaligned.h>
19 : :
20 : : #include "ath.h"
21 : : #include "reg.h"
22 : :
23 : : #define REG_READ (common->ops->read)
24 : : #define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
25 : :
26 : : /**
27 : : * ath_hw_set_bssid_mask - filter out bssids we listen
28 : : *
29 : : * @common: the ath_common struct for the device.
30 : : *
31 : : * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
32 : : * which bits of the interface's MAC address should be looked at when trying
33 : : * to decide which packets to ACK. In station mode and AP mode with a single
34 : : * BSS every bit matters since we lock to only one BSS. In AP mode with
35 : : * multiple BSSes (virtual interfaces) not every bit matters because hw must
36 : : * accept frames for all BSSes and so we tweak some bits of our mac address
37 : : * in order to have multiple BSSes.
38 : : *
39 : : * NOTE: This is a simple filter and does *not* filter out all
40 : : * relevant frames. Some frames that are not for us might get ACKed from us
41 : : * by PCU because they just match the mask.
42 : : *
43 : : * When handling multiple BSSes you can get the BSSID mask by computing the
44 : : * set of ~ ( MAC XOR BSSID ) for all bssids we handle.
45 : : *
46 : : * When you do this you are essentially computing the common bits of all your
47 : : * BSSes. Later it is assumed the hardware will "and" (&) the BSSID mask with
48 : : * the MAC address to obtain the relevant bits and compare the result with
49 : : * (frame's BSSID & mask) to see if they match.
50 : : *
51 : : * Simple example: on your card you have have two BSSes you have created with
52 : : * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
53 : : * There is another BSSID-03 but you are not part of it. For simplicity's sake,
54 : : * assuming only 4 bits for a mac address and for BSSIDs you can then have:
55 : : *
56 : : * \
57 : : * MAC: 0001 |
58 : : * BSSID-01: 0100 | --> Belongs to us
59 : : * BSSID-02: 1001 |
60 : : * /
61 : : * -------------------
62 : : * BSSID-03: 0110 | --> External
63 : : * -------------------
64 : : *
65 : : * Our bssid_mask would then be:
66 : : *
67 : : * On loop iteration for BSSID-01:
68 : : * ~(0001 ^ 0100) -> ~(0101)
69 : : * -> 1010
70 : : * bssid_mask = 1010
71 : : *
72 : : * On loop iteration for BSSID-02:
73 : : * bssid_mask &= ~(0001 ^ 1001)
74 : : * bssid_mask = (1010) & ~(0001 ^ 1001)
75 : : * bssid_mask = (1010) & ~(1000)
76 : : * bssid_mask = (1010) & (0111)
77 : : * bssid_mask = 0010
78 : : *
79 : : * A bssid_mask of 0010 means "only pay attention to the second least
80 : : * significant bit". This is because its the only bit common
81 : : * amongst the MAC and all BSSIDs we support. To findout what the real
82 : : * common bit is we can simply "&" the bssid_mask now with any BSSID we have
83 : : * or our MAC address (we assume the hardware uses the MAC address).
84 : : *
85 : : * Now, suppose there's an incoming frame for BSSID-03:
86 : : *
87 : : * IFRAME-01: 0110
88 : : *
89 : : * An easy eye-inspeciton of this already should tell you that this frame
90 : : * will not pass our check. This is because the bssid_mask tells the
91 : : * hardware to only look at the second least significant bit and the
92 : : * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
93 : : * as 1, which does not match 0.
94 : : *
95 : : * So with IFRAME-01 we *assume* the hardware will do:
96 : : *
97 : : * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
98 : : * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
99 : : * --> allow = (0010) == 0000 ? 1 : 0;
100 : : * --> allow = 0
101 : : *
102 : : * Lets now test a frame that should work:
103 : : *
104 : : * IFRAME-02: 0001 (we should allow)
105 : : *
106 : : * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
107 : : * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
108 : : * --> allow = (0000) == (0000)
109 : : * --> allow = 1
110 : : *
111 : : * Other examples:
112 : : *
113 : : * IFRAME-03: 0100 --> allowed
114 : : * IFRAME-04: 1001 --> allowed
115 : : * IFRAME-05: 1101 --> allowed but its not for us!!!
116 : : *
117 : : */
118 : 189 : void ath_hw_setbssidmask(struct ath_common *common)
119 : : {
120 : 189 : void *ah = common->ah;
121 : 189 : u32 id1;
122 : :
123 : 189 : REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
124 : 189 : id1 = REG_READ(ah, AR_STA_ID1) & ~AR_STA_ID1_SADH_MASK;
125 : 189 : id1 |= get_unaligned_le16(common->macaddr + 4);
126 : 189 : REG_WRITE(ah, AR_STA_ID1, id1);
127 : :
128 : 189 : REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(common->bssidmask));
129 : 189 : REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(common->bssidmask + 4));
130 : 189 : }
131 : : EXPORT_SYMBOL(ath_hw_setbssidmask);
132 : :
133 : :
134 : : /**
135 : : * ath_hw_cycle_counters_update - common function to update cycle counters
136 : : *
137 : : * @common: the ath_common struct for the device.
138 : : *
139 : : * This function is used to update all cycle counters in one place.
140 : : * It has to be called while holding common->cc_lock!
141 : : */
142 : 65 : void ath_hw_cycle_counters_update(struct ath_common *common)
143 : : {
144 : 65 : u32 cycles, busy, rx, tx;
145 : 65 : void *ah = common->ah;
146 : :
147 : : /* freeze */
148 : 65 : REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC);
149 : :
150 : : /* read */
151 : 65 : cycles = REG_READ(ah, AR_CCCNT);
152 : 65 : busy = REG_READ(ah, AR_RCCNT);
153 : 65 : rx = REG_READ(ah, AR_RFCNT);
154 : 65 : tx = REG_READ(ah, AR_TFCNT);
155 : :
156 : : /* clear */
157 : 65 : REG_WRITE(ah, AR_CCCNT, 0);
158 : 65 : REG_WRITE(ah, AR_RFCNT, 0);
159 : 65 : REG_WRITE(ah, AR_RCCNT, 0);
160 : 65 : REG_WRITE(ah, AR_TFCNT, 0);
161 : :
162 : : /* unfreeze */
163 : 65 : REG_WRITE(ah, AR_MIBC, 0);
164 : :
165 : : /* update all cycle counters here */
166 : 65 : common->cc_ani.cycles += cycles;
167 : 65 : common->cc_ani.rx_busy += busy;
168 : 65 : common->cc_ani.rx_frame += rx;
169 : 65 : common->cc_ani.tx_frame += tx;
170 : :
171 : 65 : common->cc_survey.cycles += cycles;
172 : 65 : common->cc_survey.rx_busy += busy;
173 : 65 : common->cc_survey.rx_frame += rx;
174 : 65 : common->cc_survey.tx_frame += tx;
175 : 65 : }
176 : : EXPORT_SYMBOL(ath_hw_cycle_counters_update);
177 : :
178 : 0 : int32_t ath_hw_get_listen_time(struct ath_common *common)
179 : : {
180 : 0 : struct ath_cycle_counters *cc = &common->cc_ani;
181 : 0 : int32_t listen_time;
182 : :
183 : 0 : listen_time = (cc->cycles - cc->rx_frame - cc->tx_frame) /
184 : 0 : (common->clockrate * 1000);
185 : :
186 : 0 : memset(cc, 0, sizeof(*cc));
187 : :
188 : 0 : return listen_time;
189 : : }
190 : : EXPORT_SYMBOL(ath_hw_get_listen_time);
|