Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only
2 : : /*
3 : : * Copyright (C) 1991, 1992 Linus Torvalds
4 : : * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 : : * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 : : *
7 : : * Pentium III FXSR, SSE support
8 : : * Gareth Hughes <gareth@valinux.com>, May 2000
9 : : */
10 : :
11 : : /*
12 : : * Handle hardware traps and faults.
13 : : */
14 : : #include <linux/spinlock.h>
15 : : #include <linux/kprobes.h>
16 : : #include <linux/kdebug.h>
17 : : #include <linux/sched/debug.h>
18 : : #include <linux/nmi.h>
19 : : #include <linux/debugfs.h>
20 : : #include <linux/delay.h>
21 : : #include <linux/hardirq.h>
22 : : #include <linux/ratelimit.h>
23 : : #include <linux/slab.h>
24 : : #include <linux/export.h>
25 : : #include <linux/atomic.h>
26 : : #include <linux/sched/clock.h>
27 : :
28 : : #if defined(CONFIG_EDAC)
29 : : #include <linux/edac.h>
30 : : #endif
31 : :
32 : : #include <asm/cpu_entry_area.h>
33 : : #include <asm/traps.h>
34 : : #include <asm/mach_traps.h>
35 : : #include <asm/nmi.h>
36 : : #include <asm/x86_init.h>
37 : : #include <asm/reboot.h>
38 : : #include <asm/cache.h>
39 : : #include <asm/nospec-branch.h>
40 : :
41 : : #define CREATE_TRACE_POINTS
42 : : #include <trace/events/nmi.h>
43 : :
44 : : struct nmi_desc {
45 : : raw_spinlock_t lock;
46 : : struct list_head head;
47 : : };
48 : :
49 : : static struct nmi_desc nmi_desc[NMI_MAX] =
50 : : {
51 : : {
52 : : .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
53 : : .head = LIST_HEAD_INIT(nmi_desc[0].head),
54 : : },
55 : : {
56 : : .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
57 : : .head = LIST_HEAD_INIT(nmi_desc[1].head),
58 : : },
59 : : {
60 : : .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
61 : : .head = LIST_HEAD_INIT(nmi_desc[2].head),
62 : : },
63 : : {
64 : : .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
65 : : .head = LIST_HEAD_INIT(nmi_desc[3].head),
66 : : },
67 : :
68 : : };
69 : :
70 : : struct nmi_stats {
71 : : unsigned int normal;
72 : : unsigned int unknown;
73 : : unsigned int external;
74 : : unsigned int swallow;
75 : : };
76 : :
77 : : static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
78 : :
79 : : static int ignore_nmis __read_mostly;
80 : :
81 : : int unknown_nmi_panic;
82 : : /*
83 : : * Prevent NMI reason port (0x61) being accessed simultaneously, can
84 : : * only be used in NMI handler.
85 : : */
86 : : static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
87 : :
88 : 0 : static int __init setup_unknown_nmi_panic(char *str)
89 : : {
90 : 0 : unknown_nmi_panic = 1;
91 : 0 : return 1;
92 : : }
93 : : __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
94 : :
95 : : #define nmi_to_desc(type) (&nmi_desc[type])
96 : :
97 : : static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
98 : :
99 : 78 : static int __init nmi_warning_debugfs(void)
100 : : {
101 : 78 : debugfs_create_u64("nmi_longest_ns", 0644,
102 : : arch_debugfs_dir, &nmi_longest_ns);
103 : 78 : return 0;
104 : : }
105 : : fs_initcall(nmi_warning_debugfs);
106 : :
107 : 0 : static void nmi_check_duration(struct nmiaction *action, u64 duration)
108 : : {
109 [ # # ]: 0 : u64 whole_msecs = READ_ONCE(action->max_duration);
110 : 0 : int remainder_ns, decimal_msecs;
111 : :
112 [ # # # # ]: 0 : if (duration < nmi_longest_ns || duration < action->max_duration)
113 : : return;
114 : :
115 : 0 : action->max_duration = duration;
116 : :
117 : 0 : remainder_ns = do_div(whole_msecs, (1000 * 1000));
118 : 0 : decimal_msecs = remainder_ns / 1000;
119 : :
120 [ # # ]: 0 : printk_ratelimited(KERN_INFO
121 : : "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
122 : : action->handler, whole_msecs, decimal_msecs);
123 : : }
124 : :
125 : 0 : static int nmi_handle(unsigned int type, struct pt_regs *regs)
126 : : {
127 : 0 : struct nmi_desc *desc = nmi_to_desc(type);
128 : 0 : struct nmiaction *a;
129 : 0 : int handled=0;
130 : :
131 : 0 : rcu_read_lock();
132 : :
133 : : /*
134 : : * NMIs are edge-triggered, which means if you have enough
135 : : * of them concurrently, you can lose some because only one
136 : : * can be latched at any given time. Walk the whole list
137 : : * to handle those situations.
138 : : */
139 [ # # ]: 0 : list_for_each_entry_rcu(a, &desc->head, list) {
140 : 0 : int thishandled;
141 : 0 : u64 delta;
142 : :
143 : 0 : delta = sched_clock();
144 : 0 : thishandled = a->handler(type, regs);
145 : 0 : handled += thishandled;
146 : 0 : delta = sched_clock() - delta;
147 : 0 : trace_nmi_handler(a->handler, (int)delta, thishandled);
148 : :
149 : 0 : nmi_check_duration(a, delta);
150 : : }
151 : :
152 : 0 : rcu_read_unlock();
153 : :
154 : : /* return total number of NMI events handled */
155 : 0 : return handled;
156 : : }
157 : : NOKPROBE_SYMBOL(nmi_handle);
158 : :
159 : 156 : int __register_nmi_handler(unsigned int type, struct nmiaction *action)
160 : : {
161 : 156 : struct nmi_desc *desc = nmi_to_desc(type);
162 : 156 : unsigned long flags;
163 : :
164 [ + - ]: 156 : if (!action->handler)
165 : : return -EINVAL;
166 : :
167 : 156 : raw_spin_lock_irqsave(&desc->lock, flags);
168 : :
169 : : /*
170 : : * Indicate if there are multiple registrations on the
171 : : * internal NMI handler call chains (SERR and IO_CHECK).
172 : : */
173 [ - + - - : 156 : WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
- + ]
174 [ - + - - : 156 : WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
- + ]
175 : :
176 : : /*
177 : : * some handlers need to be executed first otherwise a fake
178 : : * event confuses some handlers (kdump uses this flag)
179 : : */
180 [ - + ]: 156 : if (action->flags & NMI_FLAG_FIRST)
181 : 0 : list_add_rcu(&action->list, &desc->head);
182 : : else
183 : 156 : list_add_tail_rcu(&action->list, &desc->head);
184 : :
185 : 156 : raw_spin_unlock_irqrestore(&desc->lock, flags);
186 : 156 : return 0;
187 : : }
188 : : EXPORT_SYMBOL(__register_nmi_handler);
189 : :
190 : 0 : void unregister_nmi_handler(unsigned int type, const char *name)
191 : : {
192 : 0 : struct nmi_desc *desc = nmi_to_desc(type);
193 : 0 : struct nmiaction *n;
194 : 0 : unsigned long flags;
195 : :
196 : 0 : raw_spin_lock_irqsave(&desc->lock, flags);
197 : :
198 [ # # ]: 0 : list_for_each_entry_rcu(n, &desc->head, list) {
199 : : /*
200 : : * the name passed in to describe the nmi handler
201 : : * is used as the lookup key
202 : : */
203 [ # # ]: 0 : if (!strcmp(n->name, name)) {
204 [ # # ]: 0 : WARN(in_nmi(),
205 : : "Trying to free NMI (%s) from NMI context!\n", n->name);
206 : 0 : list_del_rcu(&n->list);
207 : : break;
208 : : }
209 : : }
210 : :
211 : 0 : raw_spin_unlock_irqrestore(&desc->lock, flags);
212 : 0 : synchronize_rcu();
213 : 0 : }
214 : : EXPORT_SYMBOL_GPL(unregister_nmi_handler);
215 : :
216 : : static void
217 : 0 : pci_serr_error(unsigned char reason, struct pt_regs *regs)
218 : : {
219 : : /* check to see if anyone registered against these types of errors */
220 [ # # ]: 0 : if (nmi_handle(NMI_SERR, regs))
221 : : return;
222 : :
223 : 0 : pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
224 : : reason, smp_processor_id());
225 : :
226 [ # # ]: 0 : if (panic_on_unrecovered_nmi)
227 : 0 : nmi_panic(regs, "NMI: Not continuing");
228 : :
229 : 0 : pr_emerg("Dazed and confused, but trying to continue\n");
230 : :
231 : : /* Clear and disable the PCI SERR error line. */
232 : 0 : reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
233 : 0 : outb(reason, NMI_REASON_PORT);
234 : : }
235 : : NOKPROBE_SYMBOL(pci_serr_error);
236 : :
237 : : static void
238 : 0 : io_check_error(unsigned char reason, struct pt_regs *regs)
239 : : {
240 : 0 : unsigned long i;
241 : :
242 : : /* check to see if anyone registered against these types of errors */
243 [ # # ]: 0 : if (nmi_handle(NMI_IO_CHECK, regs))
244 : : return;
245 : :
246 : 0 : pr_emerg(
247 : : "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
248 : : reason, smp_processor_id());
249 : 0 : show_regs(regs);
250 : :
251 [ # # ]: 0 : if (panic_on_io_nmi) {
252 : 0 : nmi_panic(regs, "NMI IOCK error: Not continuing");
253 : :
254 : : /*
255 : : * If we end up here, it means we have received an NMI while
256 : : * processing panic(). Simply return without delaying and
257 : : * re-enabling NMIs.
258 : : */
259 : 0 : return;
260 : : }
261 : :
262 : : /* Re-enable the IOCK line, wait for a few seconds */
263 : 0 : reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264 : 0 : outb(reason, NMI_REASON_PORT);
265 : :
266 : 0 : i = 20000;
267 [ # # ]: 0 : while (--i) {
268 : 0 : touch_nmi_watchdog();
269 : 0 : udelay(100);
270 : : }
271 : :
272 : 0 : reason &= ~NMI_REASON_CLEAR_IOCHK;
273 : 0 : outb(reason, NMI_REASON_PORT);
274 : : }
275 : : NOKPROBE_SYMBOL(io_check_error);
276 : :
277 : : static void
278 : 0 : unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279 : : {
280 : 0 : int handled;
281 : :
282 : : /*
283 : : * Use 'false' as back-to-back NMIs are dealt with one level up.
284 : : * Of course this makes having multiple 'unknown' handlers useless
285 : : * as only the first one is ever run (unless it can actually determine
286 : : * if it caused the NMI)
287 : : */
288 : 0 : handled = nmi_handle(NMI_UNKNOWN, regs);
289 [ # # ]: 0 : if (handled) {
290 [ # # # # : 0 : __this_cpu_add(nmi_stats.unknown, handled);
# # # # ]
291 : 0 : return;
292 : : }
293 : :
294 : 0 : __this_cpu_add(nmi_stats.unknown, 1);
295 : :
296 : 0 : pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 : : reason, smp_processor_id());
298 : :
299 : 0 : pr_emerg("Do you have a strange power saving mode enabled?\n");
300 [ # # # # ]: 0 : if (unknown_nmi_panic || panic_on_unrecovered_nmi)
301 : 0 : nmi_panic(regs, "NMI: Not continuing");
302 : :
303 : 0 : pr_emerg("Dazed and confused, but trying to continue\n");
304 : : }
305 : : NOKPROBE_SYMBOL(unknown_nmi_error);
306 : :
307 : : static DEFINE_PER_CPU(bool, swallow_nmi);
308 : : static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
309 : :
310 : 0 : static void default_do_nmi(struct pt_regs *regs)
311 : : {
312 : 0 : unsigned char reason = 0;
313 : 0 : int handled;
314 : 0 : bool b2b = false;
315 : :
316 : : /*
317 : : * CPU-specific NMI must be processed before non-CPU-specific
318 : : * NMI, otherwise we may lose it, because the CPU-specific
319 : : * NMI can not be detected/processed on other CPUs.
320 : : */
321 : :
322 : : /*
323 : : * Back-to-back NMIs are interesting because they can either
324 : : * be two NMI or more than two NMIs (any thing over two is dropped
325 : : * due to NMI being edge-triggered). If this is the second half
326 : : * of the back-to-back NMI, assume we dropped things and process
327 : : * more handlers. Otherwise reset the 'swallow' NMI behaviour
328 : : */
329 [ # # ]: 0 : if (regs->ip == __this_cpu_read(last_nmi_rip))
330 : : b2b = true;
331 : : else
332 : 0 : __this_cpu_write(swallow_nmi, false);
333 : :
334 : 0 : __this_cpu_write(last_nmi_rip, regs->ip);
335 : :
336 : 0 : handled = nmi_handle(NMI_LOCAL, regs);
337 [ # # # # : 0 : __this_cpu_add(nmi_stats.normal, handled);
# # # # ]
338 [ # # ]: 0 : if (handled) {
339 : : /*
340 : : * There are cases when a NMI handler handles multiple
341 : : * events in the current NMI. One of these events may
342 : : * be queued for in the next NMI. Because the event is
343 : : * already handled, the next NMI will result in an unknown
344 : : * NMI. Instead lets flag this for a potential NMI to
345 : : * swallow.
346 : : */
347 [ # # ]: 0 : if (handled > 1)
348 : 0 : __this_cpu_write(swallow_nmi, true);
349 : 0 : return;
350 : : }
351 : :
352 : : /*
353 : : * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
354 : : *
355 : : * Another CPU may be processing panic routines while holding
356 : : * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
357 : : * and if so, call its callback directly. If there is no CPU preparing
358 : : * crash dump, we simply loop here.
359 : : */
360 [ # # ]: 0 : while (!raw_spin_trylock(&nmi_reason_lock)) {
361 : 0 : run_crash_ipi_callback(regs);
362 : 0 : cpu_relax();
363 : : }
364 : :
365 : 0 : reason = x86_platform.get_nmi_reason();
366 : :
367 [ # # ]: 0 : if (reason & NMI_REASON_MASK) {
368 [ # # ]: 0 : if (reason & NMI_REASON_SERR)
369 : 0 : pci_serr_error(reason, regs);
370 : 0 : else if (reason & NMI_REASON_IOCHK)
371 : 0 : io_check_error(reason, regs);
372 : : #ifdef CONFIG_X86_32
373 : : /*
374 : : * Reassert NMI in case it became active
375 : : * meanwhile as it's edge-triggered:
376 : : */
377 : : reassert_nmi();
378 : : #endif
379 : 0 : __this_cpu_add(nmi_stats.external, 1);
380 : 0 : raw_spin_unlock(&nmi_reason_lock);
381 : 0 : return;
382 : : }
383 : 0 : raw_spin_unlock(&nmi_reason_lock);
384 : :
385 : : /*
386 : : * Only one NMI can be latched at a time. To handle
387 : : * this we may process multiple nmi handlers at once to
388 : : * cover the case where an NMI is dropped. The downside
389 : : * to this approach is we may process an NMI prematurely,
390 : : * while its real NMI is sitting latched. This will cause
391 : : * an unknown NMI on the next run of the NMI processing.
392 : : *
393 : : * We tried to flag that condition above, by setting the
394 : : * swallow_nmi flag when we process more than one event.
395 : : * This condition is also only present on the second half
396 : : * of a back-to-back NMI, so we flag that condition too.
397 : : *
398 : : * If both are true, we assume we already processed this
399 : : * NMI previously and we swallow it. Otherwise we reset
400 : : * the logic.
401 : : *
402 : : * There are scenarios where we may accidentally swallow
403 : : * a 'real' unknown NMI. For example, while processing
404 : : * a perf NMI another perf NMI comes in along with a
405 : : * 'real' unknown NMI. These two NMIs get combined into
406 : : * one (as descibed above). When the next NMI gets
407 : : * processed, it will be flagged by perf as handled, but
408 : : * noone will know that there was a 'real' unknown NMI sent
409 : : * also. As a result it gets swallowed. Or if the first
410 : : * perf NMI returns two events handled then the second
411 : : * NMI will get eaten by the logic below, again losing a
412 : : * 'real' unknown NMI. But this is the best we can do
413 : : * for now.
414 : : */
415 [ # # # # ]: 0 : if (b2b && __this_cpu_read(swallow_nmi))
416 : 0 : __this_cpu_add(nmi_stats.swallow, 1);
417 : : else
418 : 0 : unknown_nmi_error(reason, regs);
419 : : }
420 : : NOKPROBE_SYMBOL(default_do_nmi);
421 : :
422 : : /*
423 : : * NMIs can page fault or hit breakpoints which will cause it to lose
424 : : * its NMI context with the CPU when the breakpoint or page fault does an IRET.
425 : : *
426 : : * As a result, NMIs can nest if NMIs get unmasked due an IRET during
427 : : * NMI processing. On x86_64, the asm glue protects us from nested NMIs
428 : : * if the outer NMI came from kernel mode, but we can still nest if the
429 : : * outer NMI came from user mode.
430 : : *
431 : : * To handle these nested NMIs, we have three states:
432 : : *
433 : : * 1) not running
434 : : * 2) executing
435 : : * 3) latched
436 : : *
437 : : * When no NMI is in progress, it is in the "not running" state.
438 : : * When an NMI comes in, it goes into the "executing" state.
439 : : * Normally, if another NMI is triggered, it does not interrupt
440 : : * the running NMI and the HW will simply latch it so that when
441 : : * the first NMI finishes, it will restart the second NMI.
442 : : * (Note, the latch is binary, thus multiple NMIs triggering,
443 : : * when one is running, are ignored. Only one NMI is restarted.)
444 : : *
445 : : * If an NMI executes an iret, another NMI can preempt it. We do not
446 : : * want to allow this new NMI to run, but we want to execute it when the
447 : : * first one finishes. We set the state to "latched", and the exit of
448 : : * the first NMI will perform a dec_return, if the result is zero
449 : : * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
450 : : * dec_return would have set the state to NMI_EXECUTING (what we want it
451 : : * to be when we are running). In this case, we simply jump back to
452 : : * rerun the NMI handler again, and restart the 'latched' NMI.
453 : : *
454 : : * No trap (breakpoint or page fault) should be hit before nmi_restart,
455 : : * thus there is no race between the first check of state for NOT_RUNNING
456 : : * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
457 : : * at this point.
458 : : *
459 : : * In case the NMI takes a page fault, we need to save off the CR2
460 : : * because the NMI could have preempted another page fault and corrupt
461 : : * the CR2 that is about to be read. As nested NMIs must be restarted
462 : : * and they can not take breakpoints or page faults, the update of the
463 : : * CR2 must be done before converting the nmi state back to NOT_RUNNING.
464 : : * Otherwise, there would be a race of another nested NMI coming in
465 : : * after setting state to NOT_RUNNING but before updating the nmi_cr2.
466 : : */
467 : : enum nmi_states {
468 : : NMI_NOT_RUNNING = 0,
469 : : NMI_EXECUTING,
470 : : NMI_LATCHED,
471 : : };
472 : : static DEFINE_PER_CPU(enum nmi_states, nmi_state);
473 : : static DEFINE_PER_CPU(unsigned long, nmi_cr2);
474 : :
475 : : #ifdef CONFIG_X86_64
476 : : /*
477 : : * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
478 : : * some care, the inner breakpoint will clobber the outer breakpoint's
479 : : * stack.
480 : : *
481 : : * If a breakpoint is being processed, and the debug stack is being
482 : : * used, if an NMI comes in and also hits a breakpoint, the stack
483 : : * pointer will be set to the same fixed address as the breakpoint that
484 : : * was interrupted, causing that stack to be corrupted. To handle this
485 : : * case, check if the stack that was interrupted is the debug stack, and
486 : : * if so, change the IDT so that new breakpoints will use the current
487 : : * stack and not switch to the fixed address. On return of the NMI,
488 : : * switch back to the original IDT.
489 : : */
490 : : static DEFINE_PER_CPU(int, update_debug_stack);
491 : :
492 : 0 : static bool notrace is_debug_stack(unsigned long addr)
493 : : {
494 [ # # ]: 0 : struct cea_exception_stacks *cs = __this_cpu_read(cea_exception_stacks);
495 : 0 : unsigned long top = CEA_ESTACK_TOP(cs, DB);
496 : 0 : unsigned long bot = CEA_ESTACK_BOT(cs, DB1);
497 : :
498 [ # # # # ]: 0 : if (__this_cpu_read(debug_stack_usage))
499 : : return true;
500 : : /*
501 : : * Note, this covers the guard page between DB and DB1 as well to
502 : : * avoid two checks. But by all means @addr can never point into
503 : : * the guard page.
504 : : */
505 : 0 : return addr >= bot && addr < top;
506 : : }
507 : : NOKPROBE_SYMBOL(is_debug_stack);
508 : : #endif
509 : :
510 : : dotraplinkage notrace void
511 : 0 : do_nmi(struct pt_regs *regs, long error_code)
512 : : {
513 [ # # ]: 0 : if (IS_ENABLED(CONFIG_SMP) && cpu_is_offline(smp_processor_id()))
514 : : return;
515 : :
516 [ # # ]: 0 : if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
517 : 0 : this_cpu_write(nmi_state, NMI_LATCHED);
518 : 0 : return;
519 : : }
520 : 0 : this_cpu_write(nmi_state, NMI_EXECUTING);
521 : 0 : this_cpu_write(nmi_cr2, read_cr2());
522 : 0 : nmi_restart:
523 : :
524 : : #ifdef CONFIG_X86_64
525 : : /*
526 : : * If we interrupted a breakpoint, it is possible that
527 : : * the nmi handler will have breakpoints too. We need to
528 : : * change the IDT such that breakpoints that happen here
529 : : * continue to use the NMI stack.
530 : : */
531 [ # # # # ]: 0 : if (unlikely(is_debug_stack(regs->sp))) {
532 : 0 : debug_stack_set_zero();
533 : 0 : this_cpu_write(update_debug_stack, 1);
534 : : }
535 : : #endif
536 : :
537 [ # # ]: 0 : nmi_enter();
538 : :
539 : 0 : inc_irq_stat(__nmi_count);
540 : :
541 [ # # ]: 0 : if (!ignore_nmis)
542 : 0 : default_do_nmi(regs);
543 : :
544 [ # # ]: 0 : nmi_exit();
545 : :
546 : : #ifdef CONFIG_X86_64
547 [ # # ]: 0 : if (unlikely(this_cpu_read(update_debug_stack))) {
548 : 0 : debug_stack_reset();
549 : 0 : this_cpu_write(update_debug_stack, 0);
550 : : }
551 : : #endif
552 : :
553 [ # # ]: 0 : if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
554 : 0 : write_cr2(this_cpu_read(nmi_cr2));
555 [ # # ]: 0 : if (this_cpu_dec_return(nmi_state))
556 : 0 : goto nmi_restart;
557 : :
558 [ # # ]: 0 : if (user_mode(regs))
559 [ # # ]: 0 : mds_user_clear_cpu_buffers();
560 : : }
561 : : NOKPROBE_SYMBOL(do_nmi);
562 : :
563 : 78 : void stop_nmi(void)
564 : : {
565 : 78 : ignore_nmis++;
566 : 78 : }
567 : :
568 : 78 : void restart_nmi(void)
569 : : {
570 : 78 : ignore_nmis--;
571 : 78 : }
572 : :
573 : : /* reset the back-to-back NMI logic */
574 : 28409 : void local_touch_nmi(void)
575 : : {
576 : 28409 : __this_cpu_write(last_nmi_rip, 0);
577 : 28409 : }
578 : : EXPORT_SYMBOL_GPL(local_touch_nmi);
|