Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0
2 : : /*
3 : : * linux/mm/mlock.c
4 : : *
5 : : * (C) Copyright 1995 Linus Torvalds
6 : : * (C) Copyright 2002 Christoph Hellwig
7 : : */
8 : :
9 : : #include <linux/capability.h>
10 : : #include <linux/mman.h>
11 : : #include <linux/mm.h>
12 : : #include <linux/sched/user.h>
13 : : #include <linux/swap.h>
14 : : #include <linux/swapops.h>
15 : : #include <linux/pagemap.h>
16 : : #include <linux/pagevec.h>
17 : : #include <linux/mempolicy.h>
18 : : #include <linux/syscalls.h>
19 : : #include <linux/sched.h>
20 : : #include <linux/export.h>
21 : : #include <linux/rmap.h>
22 : : #include <linux/mmzone.h>
23 : : #include <linux/hugetlb.h>
24 : : #include <linux/memcontrol.h>
25 : : #include <linux/mm_inline.h>
26 : :
27 : : #include "internal.h"
28 : :
29 : 0 : bool can_do_mlock(void)
30 : : {
31 [ # # ]: 0 : if (rlimit(RLIMIT_MEMLOCK) != 0)
32 : : return true;
33 [ # # ]: 0 : if (capable(CAP_IPC_LOCK))
34 : 0 : return true;
35 : : return false;
36 : : }
37 : : EXPORT_SYMBOL(can_do_mlock);
38 : :
39 : : /*
40 : : * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 : : * in vmscan and, possibly, the fault path; and to support semi-accurate
42 : : * statistics.
43 : : *
44 : : * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 : : * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 : : * The unevictable list is an LRU sibling list to the [in]active lists.
47 : : * PageUnevictable is set to indicate the unevictable state.
48 : : *
49 : : * When lazy mlocking via vmscan, it is important to ensure that the
50 : : * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 : : * may have mlocked a page that is being munlocked. So lazy mlock must take
52 : : * the mmap_sem for read, and verify that the vma really is locked
53 : : * (see mm/rmap.c).
54 : : */
55 : :
56 : : /*
57 : : * LRU accounting for clear_page_mlock()
58 : : */
59 : 0 : void clear_page_mlock(struct page *page)
60 : : {
61 [ # # # # ]: 0 : if (!TestClearPageMlocked(page))
62 : : return;
63 : :
64 : 0 : mod_zone_page_state(page_zone(page), NR_MLOCK,
65 : : -hpage_nr_pages(page));
66 : 0 : count_vm_event(UNEVICTABLE_PGCLEARED);
67 : : /*
68 : : * The previous TestClearPageMlocked() corresponds to the smp_mb()
69 : : * in __pagevec_lru_add_fn().
70 : : *
71 : : * See __pagevec_lru_add_fn for more explanation.
72 : : */
73 [ # # ]: 0 : if (!isolate_lru_page(page)) {
74 : 0 : putback_lru_page(page);
75 : : } else {
76 : : /*
77 : : * We lost the race. the page already moved to evictable list.
78 : : */
79 [ # # # # ]: 0 : if (PageUnevictable(page))
80 : 0 : count_vm_event(UNEVICTABLE_PGSTRANDED);
81 : : }
82 : : }
83 : :
84 : : /*
85 : : * Mark page as mlocked if not already.
86 : : * If page on LRU, isolate and putback to move to unevictable list.
87 : : */
88 : 0 : void mlock_vma_page(struct page *page)
89 : : {
90 : : /* Serialize with page migration */
91 [ # # # # ]: 0 : BUG_ON(!PageLocked(page));
92 : :
93 : 0 : VM_BUG_ON_PAGE(PageTail(page), page);
94 : 0 : VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95 : :
96 [ # # # # ]: 0 : if (!TestSetPageMlocked(page)) {
97 : 0 : mod_zone_page_state(page_zone(page), NR_MLOCK,
98 : : hpage_nr_pages(page));
99 : 0 : count_vm_event(UNEVICTABLE_PGMLOCKED);
100 [ # # ]: 0 : if (!isolate_lru_page(page))
101 : 0 : putback_lru_page(page);
102 : : }
103 : 0 : }
104 : :
105 : : /*
106 : : * Isolate a page from LRU with optional get_page() pin.
107 : : * Assumes lru_lock already held and page already pinned.
108 : : */
109 : 0 : static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110 : : {
111 [ # # # # ]: 0 : if (PageLRU(page)) {
112 : 0 : struct lruvec *lruvec;
113 : :
114 [ # # ]: 0 : lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115 [ # # ]: 0 : if (getpage)
116 [ # # ]: 0 : get_page(page);
117 [ # # ]: 0 : ClearPageLRU(page);
118 [ # # ]: 0 : del_page_from_lru_list(page, lruvec, page_lru(page));
119 : 0 : return true;
120 : : }
121 : :
122 : : return false;
123 : : }
124 : :
125 : : /*
126 : : * Finish munlock after successful page isolation
127 : : *
128 : : * Page must be locked. This is a wrapper for try_to_munlock()
129 : : * and putback_lru_page() with munlock accounting.
130 : : */
131 : 0 : static void __munlock_isolated_page(struct page *page)
132 : : {
133 : : /*
134 : : * Optimization: if the page was mapped just once, that's our mapping
135 : : * and we don't need to check all the other vmas.
136 : : */
137 [ # # ]: 0 : if (page_mapcount(page) > 1)
138 : 0 : try_to_munlock(page);
139 : :
140 : : /* Did try_to_unlock() succeed or punt? */
141 [ # # # # ]: 0 : if (!PageMlocked(page))
142 : 0 : count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143 : :
144 : 0 : putback_lru_page(page);
145 : 0 : }
146 : :
147 : : /*
148 : : * Accounting for page isolation fail during munlock
149 : : *
150 : : * Performs accounting when page isolation fails in munlock. There is nothing
151 : : * else to do because it means some other task has already removed the page
152 : : * from the LRU. putback_lru_page() will take care of removing the page from
153 : : * the unevictable list, if necessary. vmscan [page_referenced()] will move
154 : : * the page back to the unevictable list if some other vma has it mlocked.
155 : : */
156 : 0 : static void __munlock_isolation_failed(struct page *page)
157 : : {
158 [ # # ]: 0 : if (PageUnevictable(page))
159 : 0 : __count_vm_event(UNEVICTABLE_PGSTRANDED);
160 : : else
161 : 0 : __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162 : 0 : }
163 : :
164 : : /**
165 : : * munlock_vma_page - munlock a vma page
166 : : * @page: page to be unlocked, either a normal page or THP page head
167 : : *
168 : : * returns the size of the page as a page mask (0 for normal page,
169 : : * HPAGE_PMD_NR - 1 for THP head page)
170 : : *
171 : : * called from munlock()/munmap() path with page supposedly on the LRU.
172 : : * When we munlock a page, because the vma where we found the page is being
173 : : * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174 : : * page locked so that we can leave it on the unevictable lru list and not
175 : : * bother vmscan with it. However, to walk the page's rmap list in
176 : : * try_to_munlock() we must isolate the page from the LRU. If some other
177 : : * task has removed the page from the LRU, we won't be able to do that.
178 : : * So we clear the PageMlocked as we might not get another chance. If we
179 : : * can't isolate the page, we leave it for putback_lru_page() and vmscan
180 : : * [page_referenced()/try_to_unmap()] to deal with.
181 : : */
182 : 0 : unsigned int munlock_vma_page(struct page *page)
183 : : {
184 : 0 : int nr_pages;
185 [ # # ]: 0 : pg_data_t *pgdat = page_pgdat(page);
186 : :
187 : : /* For try_to_munlock() and to serialize with page migration */
188 [ # # # # ]: 0 : BUG_ON(!PageLocked(page));
189 : :
190 : 0 : VM_BUG_ON_PAGE(PageTail(page), page);
191 : :
192 : : /*
193 : : * Serialize with any parallel __split_huge_page_refcount() which
194 : : * might otherwise copy PageMlocked to part of the tail pages before
195 : : * we clear it in the head page. It also stabilizes hpage_nr_pages().
196 : : */
197 : 0 : spin_lock_irq(&pgdat->lru_lock);
198 : :
199 [ # # # # ]: 0 : if (!TestClearPageMlocked(page)) {
200 : : /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201 : 0 : nr_pages = 1;
202 : 0 : goto unlock_out;
203 : : }
204 : :
205 : 0 : nr_pages = hpage_nr_pages(page);
206 : 0 : __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
207 : :
208 [ # # ]: 0 : if (__munlock_isolate_lru_page(page, true)) {
209 : 0 : spin_unlock_irq(&pgdat->lru_lock);
210 : 0 : __munlock_isolated_page(page);
211 : 0 : goto out;
212 : : }
213 : 0 : __munlock_isolation_failed(page);
214 : :
215 : 0 : unlock_out:
216 : 0 : spin_unlock_irq(&pgdat->lru_lock);
217 : :
218 : 0 : out:
219 : 0 : return nr_pages - 1;
220 : : }
221 : :
222 : : /*
223 : : * convert get_user_pages() return value to posix mlock() error
224 : : */
225 : 0 : static int __mlock_posix_error_return(long retval)
226 : : {
227 : 0 : if (retval == -EFAULT)
228 : : retval = -ENOMEM;
229 [ # # ]: 0 : else if (retval == -ENOMEM)
230 : 0 : retval = -EAGAIN;
231 : 0 : return retval;
232 : : }
233 : :
234 : : /*
235 : : * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 : : *
237 : : * The fast path is available only for evictable pages with single mapping.
238 : : * Then we can bypass the per-cpu pvec and get better performance.
239 : : * when mapcount > 1 we need try_to_munlock() which can fail.
240 : : * when !page_evictable(), we need the full redo logic of putback_lru_page to
241 : : * avoid leaving evictable page in unevictable list.
242 : : *
243 : : * In case of success, @page is added to @pvec and @pgrescued is incremented
244 : : * in case that the page was previously unevictable. @page is also unlocked.
245 : : */
246 : 0 : static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247 : : int *pgrescued)
248 : : {
249 : 0 : VM_BUG_ON_PAGE(PageLRU(page), page);
250 : 0 : VM_BUG_ON_PAGE(!PageLocked(page), page);
251 : :
252 [ # # # # ]: 0 : if (page_mapcount(page) <= 1 && page_evictable(page)) {
253 [ # # ]: 0 : pagevec_add(pvec, page);
254 [ # # # # ]: 0 : if (TestClearPageUnevictable(page))
255 : 0 : (*pgrescued)++;
256 : 0 : unlock_page(page);
257 : 0 : return true;
258 : : }
259 : :
260 : : return false;
261 : : }
262 : :
263 : : /*
264 : : * Putback multiple evictable pages to the LRU
265 : : *
266 : : * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267 : : * the pages might have meanwhile become unevictable but that is OK.
268 : : */
269 : 0 : static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270 : : {
271 [ # # ]: 0 : count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 : : /*
273 : : *__pagevec_lru_add() calls release_pages() so we don't call
274 : : * put_page() explicitly
275 : : */
276 : 0 : __pagevec_lru_add(pvec);
277 [ # # ]: 0 : count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278 : 0 : }
279 : :
280 : : /*
281 : : * Munlock a batch of pages from the same zone
282 : : *
283 : : * The work is split to two main phases. First phase clears the Mlocked flag
284 : : * and attempts to isolate the pages, all under a single zone lru lock.
285 : : * The second phase finishes the munlock only for pages where isolation
286 : : * succeeded.
287 : : *
288 : : * Note that the pagevec may be modified during the process.
289 : : */
290 : 0 : static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291 : : {
292 : 0 : int i;
293 : 0 : int nr = pagevec_count(pvec);
294 : 0 : int delta_munlocked = -nr;
295 : 0 : struct pagevec pvec_putback;
296 : 0 : int pgrescued = 0;
297 : :
298 : 0 : pagevec_init(&pvec_putback);
299 : :
300 : : /* Phase 1: page isolation */
301 : 0 : spin_lock_irq(&zone->zone_pgdat->lru_lock);
302 [ # # ]: 0 : for (i = 0; i < nr; i++) {
303 : 0 : struct page *page = pvec->pages[i];
304 : :
305 [ # # # # ]: 0 : if (TestClearPageMlocked(page)) {
306 : : /*
307 : : * We already have pin from follow_page_mask()
308 : : * so we can spare the get_page() here.
309 : : */
310 [ # # ]: 0 : if (__munlock_isolate_lru_page(page, false))
311 : 0 : continue;
312 : : else
313 : 0 : __munlock_isolation_failed(page);
314 : : } else {
315 : 0 : delta_munlocked++;
316 : : }
317 : :
318 : : /*
319 : : * We won't be munlocking this page in the next phase
320 : : * but we still need to release the follow_page_mask()
321 : : * pin. We cannot do it under lru_lock however. If it's
322 : : * the last pin, __page_cache_release() would deadlock.
323 : : */
324 : 0 : pagevec_add(&pvec_putback, pvec->pages[i]);
325 : 0 : pvec->pages[i] = NULL;
326 : : }
327 : 0 : __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328 : 0 : spin_unlock_irq(&zone->zone_pgdat->lru_lock);
329 : :
330 : : /* Now we can release pins of pages that we are not munlocking */
331 [ # # ]: 0 : pagevec_release(&pvec_putback);
332 : :
333 : : /* Phase 2: page munlock */
334 [ # # ]: 0 : for (i = 0; i < nr; i++) {
335 : 0 : struct page *page = pvec->pages[i];
336 : :
337 [ # # ]: 0 : if (page) {
338 : 0 : lock_page(page);
339 [ # # ]: 0 : if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 : : &pgrescued)) {
341 : : /*
342 : : * Slow path. We don't want to lose the last
343 : : * pin before unlock_page()
344 : : */
345 [ # # ]: 0 : get_page(page); /* for putback_lru_page() */
346 : 0 : __munlock_isolated_page(page);
347 : 0 : unlock_page(page);
348 : 0 : put_page(page); /* from follow_page_mask() */
349 : : }
350 : : }
351 : : }
352 : :
353 : : /*
354 : : * Phase 3: page putback for pages that qualified for the fast path
355 : : * This will also call put_page() to return pin from follow_page_mask()
356 : : */
357 [ # # ]: 0 : if (pagevec_count(&pvec_putback))
358 : 0 : __putback_lru_fast(&pvec_putback, pgrescued);
359 : 0 : }
360 : :
361 : : /*
362 : : * Fill up pagevec for __munlock_pagevec using pte walk
363 : : *
364 : : * The function expects that the struct page corresponding to @start address is
365 : : * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 : : *
367 : : * The rest of @pvec is filled by subsequent pages within the same pmd and same
368 : : * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369 : : * pages also get pinned.
370 : : *
371 : : * Returns the address of the next page that should be scanned. This equals
372 : : * @start + PAGE_SIZE when no page could be added by the pte walk.
373 : : */
374 : 0 : static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375 : : struct vm_area_struct *vma, struct zone *zone,
376 : : unsigned long start, unsigned long end)
377 : : {
378 : 0 : pte_t *pte;
379 : 0 : spinlock_t *ptl;
380 : :
381 : : /*
382 : : * Initialize pte walk starting at the already pinned page where we
383 : : * are sure that there is a pte, as it was pinned under the same
384 : : * mmap_sem write op.
385 : : */
386 : 0 : pte = get_locked_pte(vma->vm_mm, start, &ptl);
387 : : /* Make sure we do not cross the page table boundary */
388 [ # # ]: 0 : end = pgd_addr_end(start, end);
389 [ # # ]: 0 : end = p4d_addr_end(start, end);
390 [ # # ]: 0 : end = pud_addr_end(start, end);
391 [ # # ]: 0 : end = pmd_addr_end(start, end);
392 : :
393 : : /* The page next to the pinned page is the first we will try to get */
394 : 0 : start += PAGE_SIZE;
395 [ # # ]: 0 : while (start < end) {
396 : 0 : struct page *page = NULL;
397 : 0 : pte++;
398 [ # # ]: 0 : if (pte_present(*pte))
399 : 0 : page = vm_normal_page(vma, start, *pte);
400 : : /*
401 : : * Break if page could not be obtained or the page's node+zone does not
402 : : * match
403 : : */
404 [ # # # # ]: 0 : if (!page || page_zone(page) != zone)
405 : : break;
406 : :
407 : : /*
408 : : * Do not use pagevec for PTE-mapped THP,
409 : : * munlock_vma_pages_range() will handle them.
410 : : */
411 [ # # ]: 0 : if (PageTransCompound(page))
412 : : break;
413 : :
414 [ # # ]: 0 : get_page(page);
415 : : /*
416 : : * Increase the address that will be returned *before* the
417 : : * eventual break due to pvec becoming full by adding the page
418 : : */
419 : 0 : start += PAGE_SIZE;
420 [ # # ]: 0 : if (pagevec_add(pvec, page) == 0)
421 : : break;
422 : : }
423 : 0 : pte_unmap_unlock(pte, ptl);
424 : 0 : return start;
425 : : }
426 : :
427 : : /*
428 : : * munlock_vma_pages_range() - munlock all pages in the vma range.'
429 : : * @vma - vma containing range to be munlock()ed.
430 : : * @start - start address in @vma of the range
431 : : * @end - end of range in @vma.
432 : : *
433 : : * For mremap(), munmap() and exit().
434 : : *
435 : : * Called with @vma VM_LOCKED.
436 : : *
437 : : * Returns with VM_LOCKED cleared. Callers must be prepared to
438 : : * deal with this.
439 : : *
440 : : * We don't save and restore VM_LOCKED here because pages are
441 : : * still on lru. In unmap path, pages might be scanned by reclaim
442 : : * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443 : : * free them. This will result in freeing mlocked pages.
444 : : */
445 : 0 : void munlock_vma_pages_range(struct vm_area_struct *vma,
446 : : unsigned long start, unsigned long end)
447 : : {
448 : 0 : vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449 : :
450 [ # # ]: 0 : while (start < end) {
451 : 0 : struct page *page;
452 : 0 : unsigned int page_mask = 0;
453 : 0 : unsigned long page_increm;
454 : 0 : struct pagevec pvec;
455 : 0 : struct zone *zone;
456 : :
457 : 0 : pagevec_init(&pvec);
458 : : /*
459 : : * Although FOLL_DUMP is intended for get_dump_page(),
460 : : * it just so happens that its special treatment of the
461 : : * ZERO_PAGE (returning an error instead of doing get_page)
462 : : * suits munlock very well (and if somehow an abnormal page
463 : : * has sneaked into the range, we won't oops here: great).
464 : : */
465 : 0 : page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466 : :
467 [ # # # # ]: 0 : if (page && !IS_ERR(page)) {
468 : 0 : if (PageTransTail(page)) {
469 : : VM_BUG_ON_PAGE(PageMlocked(page), page);
470 : : put_page(page); /* follow_page_mask() */
471 : 0 : } else if (PageTransHuge(page)) {
472 : : lock_page(page);
473 : : /*
474 : : * Any THP page found by follow_page_mask() may
475 : : * have gotten split before reaching
476 : : * munlock_vma_page(), so we need to compute
477 : : * the page_mask here instead.
478 : : */
479 : : page_mask = munlock_vma_page(page);
480 : : unlock_page(page);
481 : : put_page(page); /* follow_page_mask() */
482 : : } else {
483 : : /*
484 : : * Non-huge pages are handled in batches via
485 : : * pagevec. The pin from follow_page_mask()
486 : : * prevents them from collapsing by THP.
487 : : */
488 : 0 : pagevec_add(&pvec, page);
489 : 0 : zone = page_zone(page);
490 : :
491 : : /*
492 : : * Try to fill the rest of pagevec using fast
493 : : * pte walk. This will also update start to
494 : : * the next page to process. Then munlock the
495 : : * pagevec.
496 : : */
497 : 0 : start = __munlock_pagevec_fill(&pvec, vma,
498 : : zone, start, end);
499 : 0 : __munlock_pagevec(&pvec, zone);
500 : 0 : goto next;
501 : : }
502 : : }
503 : 0 : page_increm = 1 + page_mask;
504 : 0 : start += page_increm * PAGE_SIZE;
505 : 0 : next:
506 : 0 : cond_resched();
507 : : }
508 : 0 : }
509 : :
510 : : /*
511 : : * mlock_fixup - handle mlock[all]/munlock[all] requests.
512 : : *
513 : : * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514 : : * munlock is a no-op. However, for some special vmas, we go ahead and
515 : : * populate the ptes.
516 : : *
517 : : * For vmas that pass the filters, merge/split as appropriate.
518 : : */
519 : 0 : static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520 : : unsigned long start, unsigned long end, vm_flags_t newflags)
521 : : {
522 : 0 : struct mm_struct *mm = vma->vm_mm;
523 : 0 : pgoff_t pgoff;
524 : 0 : int nr_pages;
525 : 0 : int ret = 0;
526 : 0 : int lock = !!(newflags & VM_LOCKED);
527 : 0 : vm_flags_t old_flags = vma->vm_flags;
528 : :
529 [ # # # # : 0 : if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
# # ]
530 [ # # ]: 0 : is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531 : : vma_is_dax(vma))
532 : : /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
533 : 0 : goto out;
534 : :
535 : 0 : pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
536 : 0 : *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
537 : : vma->vm_file, pgoff, vma_policy(vma),
538 : : vma->vm_userfaultfd_ctx);
539 [ # # ]: 0 : if (*prev) {
540 : 0 : vma = *prev;
541 : 0 : goto success;
542 : : }
543 : :
544 [ # # ]: 0 : if (start != vma->vm_start) {
545 : 0 : ret = split_vma(mm, vma, start, 1);
546 [ # # ]: 0 : if (ret)
547 : 0 : goto out;
548 : : }
549 : :
550 [ # # ]: 0 : if (end != vma->vm_end) {
551 : 0 : ret = split_vma(mm, vma, end, 0);
552 [ # # ]: 0 : if (ret)
553 : 0 : goto out;
554 : : }
555 : :
556 : 0 : success:
557 : : /*
558 : : * Keep track of amount of locked VM.
559 : : */
560 : 0 : nr_pages = (end - start) >> PAGE_SHIFT;
561 [ # # ]: 0 : if (!lock)
562 : 0 : nr_pages = -nr_pages;
563 [ # # ]: 0 : else if (old_flags & VM_LOCKED)
564 : 0 : nr_pages = 0;
565 : 0 : mm->locked_vm += nr_pages;
566 : :
567 : : /*
568 : : * vm_flags is protected by the mmap_sem held in write mode.
569 : : * It's okay if try_to_unmap_one unmaps a page just after we
570 : : * set VM_LOCKED, populate_vma_page_range will bring it back.
571 : : */
572 : :
573 [ # # ]: 0 : if (lock)
574 : 0 : vma->vm_flags = newflags;
575 : : else
576 : 0 : munlock_vma_pages_range(vma, start, end);
577 : :
578 : 0 : out:
579 : 0 : *prev = vma;
580 : 0 : return ret;
581 : : }
582 : :
583 : 0 : static int apply_vma_lock_flags(unsigned long start, size_t len,
584 : : vm_flags_t flags)
585 : : {
586 : 0 : unsigned long nstart, end, tmp;
587 : 0 : struct vm_area_struct * vma, * prev;
588 : 0 : int error;
589 : :
590 : 0 : VM_BUG_ON(offset_in_page(start));
591 : 0 : VM_BUG_ON(len != PAGE_ALIGN(len));
592 : 0 : end = start + len;
593 [ # # ]: 0 : if (end < start)
594 : : return -EINVAL;
595 [ # # ]: 0 : if (end == start)
596 : : return 0;
597 : 0 : vma = find_vma(current->mm, start);
598 [ # # # # ]: 0 : if (!vma || vma->vm_start > start)
599 : : return -ENOMEM;
600 : :
601 : 0 : prev = vma->vm_prev;
602 [ # # ]: 0 : if (start > vma->vm_start)
603 : 0 : prev = vma;
604 : :
605 : : for (nstart = start ; ; ) {
606 : 0 : vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
607 : :
608 : 0 : newflags |= flags;
609 : :
610 : : /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
611 : 0 : tmp = vma->vm_end;
612 : 0 : if (tmp > end)
613 : : tmp = end;
614 : 0 : error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
615 [ # # ]: 0 : if (error)
616 : : break;
617 : 0 : nstart = tmp;
618 : 0 : if (nstart < prev->vm_end)
619 : : nstart = prev->vm_end;
620 [ # # ]: 0 : if (nstart >= end)
621 : : break;
622 : :
623 : 0 : vma = prev->vm_next;
624 [ # # # # ]: 0 : if (!vma || vma->vm_start != nstart) {
625 : : error = -ENOMEM;
626 : : break;
627 : : }
628 : : }
629 : : return error;
630 : : }
631 : :
632 : : /*
633 : : * Go through vma areas and sum size of mlocked
634 : : * vma pages, as return value.
635 : : * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636 : : * is also counted.
637 : : * Return value: previously mlocked page counts
638 : : */
639 : 0 : static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
640 : : unsigned long start, size_t len)
641 : : {
642 : 0 : struct vm_area_struct *vma;
643 : 0 : unsigned long count = 0;
644 : :
645 [ # # ]: 0 : if (mm == NULL)
646 : 0 : mm = current->mm;
647 : :
648 : 0 : vma = find_vma(mm, start);
649 [ # # ]: 0 : if (vma == NULL)
650 : 0 : vma = mm->mmap;
651 : :
652 [ # # ]: 0 : for (; vma ; vma = vma->vm_next) {
653 [ # # ]: 0 : if (start >= vma->vm_end)
654 : 0 : continue;
655 [ # # ]: 0 : if (start + len <= vma->vm_start)
656 : : break;
657 [ # # ]: 0 : if (vma->vm_flags & VM_LOCKED) {
658 [ # # ]: 0 : if (start > vma->vm_start)
659 : 0 : count -= (start - vma->vm_start);
660 [ # # ]: 0 : if (start + len < vma->vm_end) {
661 : 0 : count += start + len - vma->vm_start;
662 : 0 : break;
663 : : }
664 : 0 : count += vma->vm_end - vma->vm_start;
665 : : }
666 : : }
667 : :
668 : 0 : return count >> PAGE_SHIFT;
669 : : }
670 : :
671 : 0 : static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
672 : : {
673 : 0 : unsigned long locked;
674 : 0 : unsigned long lock_limit;
675 : 0 : int error = -ENOMEM;
676 : :
677 : 0 : start = untagged_addr(start);
678 : :
679 [ # # ]: 0 : if (!can_do_mlock())
680 : : return -EPERM;
681 : :
682 : 0 : len = PAGE_ALIGN(len + (offset_in_page(start)));
683 : 0 : start &= PAGE_MASK;
684 : :
685 : 0 : lock_limit = rlimit(RLIMIT_MEMLOCK);
686 : 0 : lock_limit >>= PAGE_SHIFT;
687 : 0 : locked = len >> PAGE_SHIFT;
688 : :
689 [ # # ]: 0 : if (down_write_killable(¤t->mm->mmap_sem))
690 : : return -EINTR;
691 : :
692 [ # # ]: 0 : locked += current->mm->locked_vm;
693 [ # # # # ]: 0 : if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
694 : : /*
695 : : * It is possible that the regions requested intersect with
696 : : * previously mlocked areas, that part area in "mm->locked_vm"
697 : : * should not be counted to new mlock increment count. So check
698 : : * and adjust locked count if necessary.
699 : : */
700 : 0 : locked -= count_mm_mlocked_page_nr(current->mm,
701 : : start, len);
702 : : }
703 : :
704 : : /* check against resource limits */
705 [ # # # # ]: 0 : if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
706 : 0 : error = apply_vma_lock_flags(start, len, flags);
707 : :
708 : 0 : up_write(¤t->mm->mmap_sem);
709 [ # # ]: 0 : if (error)
710 : : return error;
711 : :
712 : 0 : error = __mm_populate(start, len, 0);
713 [ # # ]: 0 : if (error)
714 [ # # ]: 0 : return __mlock_posix_error_return(error);
715 : : return 0;
716 : : }
717 : :
718 : 0 : SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
719 : : {
720 : 0 : return do_mlock(start, len, VM_LOCKED);
721 : : }
722 : :
723 : 0 : SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
724 : : {
725 : 0 : vm_flags_t vm_flags = VM_LOCKED;
726 : :
727 [ # # # # ]: 0 : if (flags & ~MLOCK_ONFAULT)
728 : : return -EINVAL;
729 : :
730 [ # # # # ]: 0 : if (flags & MLOCK_ONFAULT)
731 : 0 : vm_flags |= VM_LOCKONFAULT;
732 : :
733 : 0 : return do_mlock(start, len, vm_flags);
734 : : }
735 : :
736 : 0 : SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
737 : : {
738 : 0 : int ret;
739 : :
740 : 0 : start = untagged_addr(start);
741 : :
742 : 0 : len = PAGE_ALIGN(len + (offset_in_page(start)));
743 : 0 : start &= PAGE_MASK;
744 : :
745 [ # # ]: 0 : if (down_write_killable(¤t->mm->mmap_sem))
746 : : return -EINTR;
747 : 0 : ret = apply_vma_lock_flags(start, len, 0);
748 : 0 : up_write(¤t->mm->mmap_sem);
749 : :
750 : 0 : return ret;
751 : : }
752 : :
753 : : /*
754 : : * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
755 : : * and translate into the appropriate modifications to mm->def_flags and/or the
756 : : * flags for all current VMAs.
757 : : *
758 : : * There are a couple of subtleties with this. If mlockall() is called multiple
759 : : * times with different flags, the values do not necessarily stack. If mlockall
760 : : * is called once including the MCL_FUTURE flag and then a second time without
761 : : * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
762 : : */
763 : 0 : static int apply_mlockall_flags(int flags)
764 : : {
765 : 0 : struct vm_area_struct * vma, * prev = NULL;
766 : 0 : vm_flags_t to_add = 0;
767 : :
768 [ # # ]: 0 : current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
769 [ # # ]: 0 : if (flags & MCL_FUTURE) {
770 [ # # ]: 0 : current->mm->def_flags |= VM_LOCKED;
771 : :
772 [ # # ]: 0 : if (flags & MCL_ONFAULT)
773 : 0 : current->mm->def_flags |= VM_LOCKONFAULT;
774 : :
775 [ # # ]: 0 : if (!(flags & MCL_CURRENT))
776 : 0 : goto out;
777 : : }
778 : :
779 [ # # ]: 0 : if (flags & MCL_CURRENT) {
780 : 0 : to_add |= VM_LOCKED;
781 [ # # ]: 0 : if (flags & MCL_ONFAULT)
782 : 0 : to_add |= VM_LOCKONFAULT;
783 : : }
784 : :
785 [ # # ]: 0 : for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
786 : 0 : vm_flags_t newflags;
787 : :
788 : 0 : newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
789 : 0 : newflags |= to_add;
790 : :
791 : : /* Ignore errors */
792 : 0 : mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
793 : 0 : cond_resched();
794 : : }
795 : 0 : out:
796 : 0 : return 0;
797 : : }
798 : :
799 : 0 : SYSCALL_DEFINE1(mlockall, int, flags)
800 : : {
801 : 0 : unsigned long lock_limit;
802 : 0 : int ret;
803 : :
804 [ # # # # : 0 : if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
# # ]
805 : : flags == MCL_ONFAULT)
806 : : return -EINVAL;
807 : :
808 [ # # ]: 0 : if (!can_do_mlock())
809 : : return -EPERM;
810 : :
811 : 0 : lock_limit = rlimit(RLIMIT_MEMLOCK);
812 : 0 : lock_limit >>= PAGE_SHIFT;
813 : :
814 [ # # ]: 0 : if (down_write_killable(¤t->mm->mmap_sem))
815 : : return -EINTR;
816 : :
817 : 0 : ret = -ENOMEM;
818 [ # # # # : 0 : if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
# # ]
819 : 0 : capable(CAP_IPC_LOCK))
820 : 0 : ret = apply_mlockall_flags(flags);
821 : 0 : up_write(¤t->mm->mmap_sem);
822 [ # # # # ]: 0 : if (!ret && (flags & MCL_CURRENT))
823 [ # # # # ]: 0 : mm_populate(0, TASK_SIZE);
824 : :
825 : 0 : return ret;
826 : : }
827 : :
828 : 0 : SYSCALL_DEFINE0(munlockall)
829 : : {
830 : 0 : int ret;
831 : :
832 [ # # ]: 0 : if (down_write_killable(¤t->mm->mmap_sem))
833 : : return -EINTR;
834 : 0 : ret = apply_mlockall_flags(0);
835 : 0 : up_write(¤t->mm->mmap_sem);
836 : 0 : return ret;
837 : : }
838 : :
839 : : /*
840 : : * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
841 : : * shm segments) get accounted against the user_struct instead.
842 : : */
843 : : static DEFINE_SPINLOCK(shmlock_user_lock);
844 : :
845 : 0 : int user_shm_lock(size_t size, struct user_struct *user)
846 : : {
847 : 0 : unsigned long lock_limit, locked;
848 : 0 : int allowed = 0;
849 : :
850 : 0 : locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 [ # # ]: 0 : lock_limit = rlimit(RLIMIT_MEMLOCK);
852 [ # # ]: 0 : if (lock_limit == RLIM_INFINITY)
853 : 0 : allowed = 1;
854 : 0 : lock_limit >>= PAGE_SHIFT;
855 : 0 : spin_lock(&shmlock_user_lock);
856 [ # # ]: 0 : if (!allowed &&
857 [ # # # # ]: 0 : locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
858 : 0 : goto out;
859 : 0 : get_uid(user);
860 : 0 : user->locked_shm += locked;
861 : 0 : allowed = 1;
862 : 0 : out:
863 : 0 : spin_unlock(&shmlock_user_lock);
864 : 0 : return allowed;
865 : : }
866 : :
867 : 0 : void user_shm_unlock(size_t size, struct user_struct *user)
868 : : {
869 : 0 : spin_lock(&shmlock_user_lock);
870 : 0 : user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
871 : 0 : spin_unlock(&shmlock_user_lock);
872 : 0 : free_uid(user);
873 : 0 : }
|