Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only 2 : : #include <net/tcp.h> 3 : : 4 : : /* The bandwidth estimator estimates the rate at which the network 5 : : * can currently deliver outbound data packets for this flow. At a high 6 : : * level, it operates by taking a delivery rate sample for each ACK. 7 : : * 8 : : * A rate sample records the rate at which the network delivered packets 9 : : * for this flow, calculated over the time interval between the transmission 10 : : * of a data packet and the acknowledgment of that packet. 11 : : * 12 : : * Specifically, over the interval between each transmit and corresponding ACK, 13 : : * the estimator generates a delivery rate sample. Typically it uses the rate 14 : : * at which packets were acknowledged. However, the approach of using only the 15 : : * acknowledgment rate faces a challenge under the prevalent ACK decimation or 16 : : * compression: packets can temporarily appear to be delivered much quicker 17 : : * than the bottleneck rate. Since it is physically impossible to do that in a 18 : : * sustained fashion, when the estimator notices that the ACK rate is faster 19 : : * than the transmit rate, it uses the latter: 20 : : * 21 : : * send_rate = #pkts_delivered/(last_snd_time - first_snd_time) 22 : : * ack_rate = #pkts_delivered/(last_ack_time - first_ack_time) 23 : : * bw = min(send_rate, ack_rate) 24 : : * 25 : : * Notice the estimator essentially estimates the goodput, not always the 26 : : * network bottleneck link rate when the sending or receiving is limited by 27 : : * other factors like applications or receiver window limits. The estimator 28 : : * deliberately avoids using the inter-packet spacing approach because that 29 : : * approach requires a large number of samples and sophisticated filtering. 30 : : * 31 : : * TCP flows can often be application-limited in request/response workloads. 32 : : * The estimator marks a bandwidth sample as application-limited if there 33 : : * was some moment during the sampled window of packets when there was no data 34 : : * ready to send in the write queue. 35 : : */ 36 : : 37 : : /* Snapshot the current delivery information in the skb, to generate 38 : : * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered(). 39 : : */ 40 : 0 : void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb) 41 : : { 42 [ # # ]: 0 : struct tcp_sock *tp = tcp_sk(sk); 43 : : 44 : : /* In general we need to start delivery rate samples from the 45 : : * time we received the most recent ACK, to ensure we include 46 : : * the full time the network needs to deliver all in-flight 47 : : * packets. If there are no packets in flight yet, then we 48 : : * know that any ACKs after now indicate that the network was 49 : : * able to deliver those packets completely in the sampling 50 : : * interval between now and the next ACK. 51 : : * 52 : : * Note that we use packets_out instead of tcp_packets_in_flight(tp) 53 : : * because the latter is a guess based on RTO and loss-marking 54 : : * heuristics. We don't want spurious RTOs or loss markings to cause 55 : : * a spuriously small time interval, causing a spuriously high 56 : : * bandwidth estimate. 57 : : */ 58 [ # # ]: 0 : if (!tp->packets_out) { 59 : 0 : u64 tstamp_us = tcp_skb_timestamp_us(skb); 60 : : 61 : 0 : tp->first_tx_mstamp = tstamp_us; 62 : 0 : tp->delivered_mstamp = tstamp_us; 63 : : } 64 : : 65 : 0 : TCP_SKB_CB(skb)->tx.first_tx_mstamp = tp->first_tx_mstamp; 66 : 0 : TCP_SKB_CB(skb)->tx.delivered_mstamp = tp->delivered_mstamp; 67 : 0 : TCP_SKB_CB(skb)->tx.delivered = tp->delivered; 68 : 0 : TCP_SKB_CB(skb)->tx.is_app_limited = tp->app_limited ? 1 : 0; 69 : 0 : } 70 : : 71 : : /* When an skb is sacked or acked, we fill in the rate sample with the (prior) 72 : : * delivery information when the skb was last transmitted. 73 : : * 74 : : * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is 75 : : * called multiple times. We favor the information from the most recently 76 : : * sent skb, i.e., the skb with the highest prior_delivered count. 77 : : */ 78 : 0 : void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 79 : : struct rate_sample *rs) 80 : : { 81 [ # # ]: 0 : struct tcp_sock *tp = tcp_sk(sk); 82 : 0 : struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 83 : : 84 [ # # ]: 0 : if (!scb->tx.delivered_mstamp) 85 : : return; 86 : : 87 [ # # # # ]: 0 : if (!rs->prior_delivered || 88 [ # # ]: 0 : after(scb->tx.delivered, rs->prior_delivered)) { 89 : 0 : rs->prior_delivered = scb->tx.delivered; 90 : 0 : rs->prior_mstamp = scb->tx.delivered_mstamp; 91 : 0 : rs->is_app_limited = scb->tx.is_app_limited; 92 : 0 : rs->is_retrans = scb->sacked & TCPCB_RETRANS; 93 : : 94 : : /* Record send time of most recently ACKed packet: */ 95 : 0 : tp->first_tx_mstamp = tcp_skb_timestamp_us(skb); 96 : : /* Find the duration of the "send phase" of this window: */ 97 : 0 : rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp, 98 : : scb->tx.first_tx_mstamp); 99 : : 100 : : } 101 : : /* Mark off the skb delivered once it's sacked to avoid being 102 : : * used again when it's cumulatively acked. For acked packets 103 : : * we don't need to reset since it'll be freed soon. 104 : : */ 105 [ # # ]: 0 : if (scb->sacked & TCPCB_SACKED_ACKED) 106 : 0 : scb->tx.delivered_mstamp = 0; 107 : : } 108 : : 109 : : /* Update the connection delivery information and generate a rate sample. */ 110 : 0 : void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 111 : : bool is_sack_reneg, struct rate_sample *rs) 112 : : { 113 [ # # ]: 0 : struct tcp_sock *tp = tcp_sk(sk); 114 : 0 : u32 snd_us, ack_us; 115 : : 116 : : /* Clear app limited if bubble is acked and gone. */ 117 [ # # # # ]: 0 : if (tp->app_limited && after(tp->delivered, tp->app_limited)) 118 : 0 : tp->app_limited = 0; 119 : : 120 : : /* TODO: there are multiple places throughout tcp_ack() to get 121 : : * current time. Refactor the code using a new "tcp_acktag_state" 122 : : * to carry current time, flags, stats like "tcp_sacktag_state". 123 : : */ 124 [ # # ]: 0 : if (delivered) 125 : 0 : tp->delivered_mstamp = tp->tcp_mstamp; 126 : : 127 : 0 : rs->acked_sacked = delivered; /* freshly ACKed or SACKed */ 128 : 0 : rs->losses = lost; /* freshly marked lost */ 129 : : /* Return an invalid sample if no timing information is available or 130 : : * in recovery from loss with SACK reneging. Rate samples taken during 131 : : * a SACK reneging event may overestimate bw by including packets that 132 : : * were SACKed before the reneg. 133 : : */ 134 [ # # # # ]: 0 : if (!rs->prior_mstamp || is_sack_reneg) { 135 : 0 : rs->delivered = -1; 136 : 0 : rs->interval_us = -1; 137 : 0 : return; 138 : : } 139 : 0 : rs->delivered = tp->delivered - rs->prior_delivered; 140 : : 141 : : /* Model sending data and receiving ACKs as separate pipeline phases 142 : : * for a window. Usually the ACK phase is longer, but with ACK 143 : : * compression the send phase can be longer. To be safe we use the 144 : : * longer phase. 145 : : */ 146 : 0 : snd_us = rs->interval_us; /* send phase */ 147 [ # # ]: 0 : ack_us = tcp_stamp_us_delta(tp->tcp_mstamp, 148 : : rs->prior_mstamp); /* ack phase */ 149 : 0 : rs->interval_us = max(snd_us, ack_us); 150 : : 151 : : /* Record both segment send and ack receive intervals */ 152 : 0 : rs->snd_interval_us = snd_us; 153 : 0 : rs->rcv_interval_us = ack_us; 154 : : 155 : : /* Normally we expect interval_us >= min-rtt. 156 : : * Note that rate may still be over-estimated when a spuriously 157 : : * retransmistted skb was first (s)acked because "interval_us" 158 : : * is under-estimated (up to an RTT). However continuously 159 : : * measuring the delivery rate during loss recovery is crucial 160 : : * for connections suffer heavy or prolonged losses. 161 : : */ 162 [ # # ]: 0 : if (unlikely(rs->interval_us < tcp_min_rtt(tp))) { 163 : 0 : if (!rs->is_retrans) 164 : : pr_debug("tcp rate: %ld %d %u %u %u\n", 165 : : rs->interval_us, rs->delivered, 166 : : inet_csk(sk)->icsk_ca_state, 167 : : tp->rx_opt.sack_ok, tcp_min_rtt(tp)); 168 : 0 : rs->interval_us = -1; 169 : 0 : return; 170 : : } 171 : : 172 : : /* Record the last non-app-limited or the highest app-limited bw */ 173 [ # # ]: 0 : if (!rs->is_app_limited || 174 : 0 : ((u64)rs->delivered * tp->rate_interval_us >= 175 [ # # ]: 0 : (u64)tp->rate_delivered * rs->interval_us)) { 176 : 0 : tp->rate_delivered = rs->delivered; 177 : 0 : tp->rate_interval_us = rs->interval_us; 178 : 0 : tp->rate_app_limited = rs->is_app_limited; 179 : : } 180 : : } 181 : : 182 : : /* If a gap is detected between sends, mark the socket application-limited. */ 183 : 0 : void tcp_rate_check_app_limited(struct sock *sk) 184 : : { 185 [ # # ]: 0 : struct tcp_sock *tp = tcp_sk(sk); 186 : : 187 : 0 : if (/* We have less than one packet to send. */ 188 [ # # # # ]: 0 : tp->write_seq - tp->snd_nxt < tp->mss_cache && 189 : : /* Nothing in sending host's qdisc queues or NIC tx queue. */ 190 : 0 : sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) && 191 : : /* We are not limited by CWND. */ 192 [ # # # # ]: 0 : tcp_packets_in_flight(tp) < tp->snd_cwnd && 193 : : /* All lost packets have been retransmitted. */ 194 : : tp->lost_out <= tp->retrans_out) 195 : 0 : tp->app_limited = 196 : 0 : (tp->delivered + tcp_packets_in_flight(tp)) ? : 1; 197 : 0 : } 198 : : EXPORT_SYMBOL_GPL(tcp_rate_check_app_limited);