Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0 */
2 : : #ifndef _ASM_X86_TLBFLUSH_H
3 : : #define _ASM_X86_TLBFLUSH_H
4 : :
5 : : #include <linux/mm.h>
6 : : #include <linux/sched.h>
7 : :
8 : : #include <asm/processor.h>
9 : : #include <asm/cpufeature.h>
10 : : #include <asm/special_insns.h>
11 : : #include <asm/smp.h>
12 : : #include <asm/invpcid.h>
13 : : #include <asm/pti.h>
14 : : #include <asm/processor-flags.h>
15 : :
16 : : /*
17 : : * The x86 feature is called PCID (Process Context IDentifier). It is similar
18 : : * to what is traditionally called ASID on the RISC processors.
19 : : *
20 : : * We don't use the traditional ASID implementation, where each process/mm gets
21 : : * its own ASID and flush/restart when we run out of ASID space.
22 : : *
23 : : * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
24 : : * that came by on this CPU, allowing cheaper switch_mm between processes on
25 : : * this CPU.
26 : : *
27 : : * We end up with different spaces for different things. To avoid confusion we
28 : : * use different names for each of them:
29 : : *
30 : : * ASID - [0, TLB_NR_DYN_ASIDS-1]
31 : : * the canonical identifier for an mm
32 : : *
33 : : * kPCID - [1, TLB_NR_DYN_ASIDS]
34 : : * the value we write into the PCID part of CR3; corresponds to the
35 : : * ASID+1, because PCID 0 is special.
36 : : *
37 : : * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
38 : : * for KPTI each mm has two address spaces and thus needs two
39 : : * PCID values, but we can still do with a single ASID denomination
40 : : * for each mm. Corresponds to kPCID + 2048.
41 : : *
42 : : */
43 : :
44 : : /* There are 12 bits of space for ASIDS in CR3 */
45 : : #define CR3_HW_ASID_BITS 12
46 : :
47 : : /*
48 : : * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
49 : : * user/kernel switches
50 : : */
51 : : #ifdef CONFIG_PAGE_TABLE_ISOLATION
52 : : # define PTI_CONSUMED_PCID_BITS 1
53 : : #else
54 : : # define PTI_CONSUMED_PCID_BITS 0
55 : : #endif
56 : :
57 : : #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
58 : :
59 : : /*
60 : : * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
61 : : * for them being zero-based. Another -1 is because PCID 0 is reserved for
62 : : * use by non-PCID-aware users.
63 : : */
64 : : #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
65 : :
66 : : /*
67 : : * 6 because 6 should be plenty and struct tlb_state will fit in two cache
68 : : * lines.
69 : : */
70 : : #define TLB_NR_DYN_ASIDS 6
71 : :
72 : : /*
73 : : * Given @asid, compute kPCID
74 : : */
75 : 0 : static inline u16 kern_pcid(u16 asid)
76 : : {
77 : 0 : VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
78 : :
79 : : #ifdef CONFIG_PAGE_TABLE_ISOLATION
80 : : /*
81 : : * Make sure that the dynamic ASID space does not confict with the
82 : : * bit we are using to switch between user and kernel ASIDs.
83 : : */
84 : 0 : BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
85 : :
86 : : /*
87 : : * The ASID being passed in here should have respected the
88 : : * MAX_ASID_AVAILABLE and thus never have the switch bit set.
89 : : */
90 : 0 : VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
91 : : #endif
92 : : /*
93 : : * The dynamically-assigned ASIDs that get passed in are small
94 : : * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
95 : : * so do not bother to clear it.
96 : : *
97 : : * If PCID is on, ASID-aware code paths put the ASID+1 into the
98 : : * PCID bits. This serves two purposes. It prevents a nasty
99 : : * situation in which PCID-unaware code saves CR3, loads some other
100 : : * value (with PCID == 0), and then restores CR3, thus corrupting
101 : : * the TLB for ASID 0 if the saved ASID was nonzero. It also means
102 : : * that any bugs involving loading a PCID-enabled CR3 with
103 : : * CR4.PCIDE off will trigger deterministically.
104 : : */
105 : 0 : return asid + 1;
106 : : }
107 : :
108 : : /*
109 : : * Given @asid, compute uPCID
110 : : */
111 : 0 : static inline u16 user_pcid(u16 asid)
112 : : {
113 : 0 : u16 ret = kern_pcid(asid);
114 : : #ifdef CONFIG_PAGE_TABLE_ISOLATION
115 : 0 : ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
116 : : #endif
117 : 0 : return ret;
118 : : }
119 : :
120 : : struct pgd_t;
121 : 475447 : static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
122 : : {
123 [ - + - ]: 475447 : if (static_cpu_has(X86_FEATURE_PCID)) {
124 [ # # ]: 0 : return __sme_pa(pgd) | kern_pcid(asid);
125 : : } else {
126 : 475447 : VM_WARN_ON_ONCE(asid != 0);
127 [ + + ]: 950894 : return __sme_pa(pgd);
128 : : }
129 : : }
130 : :
131 : 0 : static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
132 : : {
133 : 0 : VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
134 : : /*
135 : : * Use boot_cpu_has() instead of this_cpu_has() as this function
136 : : * might be called during early boot. This should work even after
137 : : * boot because all CPU's the have same capabilities:
138 : : */
139 : 0 : VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
140 [ # # ]: 0 : return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
141 : : }
142 : :
143 : : #ifdef CONFIG_PARAVIRT
144 : : #include <asm/paravirt.h>
145 : : #else
146 : : #define __flush_tlb() __native_flush_tlb()
147 : : #define __flush_tlb_global() __native_flush_tlb_global()
148 : : #define __flush_tlb_one_user(addr) __native_flush_tlb_one_user(addr)
149 : : #endif
150 : :
151 : : struct tlb_context {
152 : : u64 ctx_id;
153 : : u64 tlb_gen;
154 : : };
155 : :
156 : : struct tlb_state {
157 : : /*
158 : : * cpu_tlbstate.loaded_mm should match CR3 whenever interrupts
159 : : * are on. This means that it may not match current->active_mm,
160 : : * which will contain the previous user mm when we're in lazy TLB
161 : : * mode even if we've already switched back to swapper_pg_dir.
162 : : *
163 : : * During switch_mm_irqs_off(), loaded_mm will be set to
164 : : * LOADED_MM_SWITCHING during the brief interrupts-off window
165 : : * when CR3 and loaded_mm would otherwise be inconsistent. This
166 : : * is for nmi_uaccess_okay()'s benefit.
167 : : */
168 : : struct mm_struct *loaded_mm;
169 : :
170 : : #define LOADED_MM_SWITCHING ((struct mm_struct *)1UL)
171 : :
172 : : /* Last user mm for optimizing IBPB */
173 : : union {
174 : : struct mm_struct *last_user_mm;
175 : : unsigned long last_user_mm_ibpb;
176 : : };
177 : :
178 : : u16 loaded_mm_asid;
179 : : u16 next_asid;
180 : :
181 : : /*
182 : : * We can be in one of several states:
183 : : *
184 : : * - Actively using an mm. Our CPU's bit will be set in
185 : : * mm_cpumask(loaded_mm) and is_lazy == false;
186 : : *
187 : : * - Not using a real mm. loaded_mm == &init_mm. Our CPU's bit
188 : : * will not be set in mm_cpumask(&init_mm) and is_lazy == false.
189 : : *
190 : : * - Lazily using a real mm. loaded_mm != &init_mm, our bit
191 : : * is set in mm_cpumask(loaded_mm), but is_lazy == true.
192 : : * We're heuristically guessing that the CR3 load we
193 : : * skipped more than makes up for the overhead added by
194 : : * lazy mode.
195 : : */
196 : : bool is_lazy;
197 : :
198 : : /*
199 : : * If set we changed the page tables in such a way that we
200 : : * needed an invalidation of all contexts (aka. PCIDs / ASIDs).
201 : : * This tells us to go invalidate all the non-loaded ctxs[]
202 : : * on the next context switch.
203 : : *
204 : : * The current ctx was kept up-to-date as it ran and does not
205 : : * need to be invalidated.
206 : : */
207 : : bool invalidate_other;
208 : :
209 : : /*
210 : : * Mask that contains TLB_NR_DYN_ASIDS+1 bits to indicate
211 : : * the corresponding user PCID needs a flush next time we
212 : : * switch to it; see SWITCH_TO_USER_CR3.
213 : : */
214 : : unsigned short user_pcid_flush_mask;
215 : :
216 : : /*
217 : : * Access to this CR4 shadow and to H/W CR4 is protected by
218 : : * disabling interrupts when modifying either one.
219 : : */
220 : : unsigned long cr4;
221 : :
222 : : /*
223 : : * This is a list of all contexts that might exist in the TLB.
224 : : * There is one per ASID that we use, and the ASID (what the
225 : : * CPU calls PCID) is the index into ctxts.
226 : : *
227 : : * For each context, ctx_id indicates which mm the TLB's user
228 : : * entries came from. As an invariant, the TLB will never
229 : : * contain entries that are out-of-date as when that mm reached
230 : : * the tlb_gen in the list.
231 : : *
232 : : * To be clear, this means that it's legal for the TLB code to
233 : : * flush the TLB without updating tlb_gen. This can happen
234 : : * (for now, at least) due to paravirt remote flushes.
235 : : *
236 : : * NB: context 0 is a bit special, since it's also used by
237 : : * various bits of init code. This is fine -- code that
238 : : * isn't aware of PCID will end up harmlessly flushing
239 : : * context 0.
240 : : */
241 : : struct tlb_context ctxs[TLB_NR_DYN_ASIDS];
242 : : };
243 : : DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate);
244 : :
245 : : /*
246 : : * Blindly accessing user memory from NMI context can be dangerous
247 : : * if we're in the middle of switching the current user task or
248 : : * switching the loaded mm. It can also be dangerous if we
249 : : * interrupted some kernel code that was temporarily using a
250 : : * different mm.
251 : : */
252 : 0 : static inline bool nmi_uaccess_okay(void)
253 : : {
254 : 0 : struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
255 [ # # ]: 0 : struct mm_struct *current_mm = current->mm;
256 : :
257 : 0 : VM_WARN_ON_ONCE(!loaded_mm);
258 : :
259 : : /*
260 : : * The condition we want to check is
261 : : * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
262 : : * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
263 : : * is supposed to be reasonably fast.
264 : : *
265 : : * Instead, we check the almost equivalent but somewhat conservative
266 : : * condition below, and we rely on the fact that switch_mm_irqs_off()
267 : : * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
268 : : */
269 [ # # ]: 0 : if (loaded_mm != current_mm)
270 : : return false;
271 : :
272 : : VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
273 : :
274 : : return true;
275 : : }
276 : :
277 : : #define nmi_uaccess_okay nmi_uaccess_okay
278 : :
279 : : /* Initialize cr4 shadow for this CPU. */
280 : 0 : static inline void cr4_init_shadow(void)
281 : : {
282 : 0 : this_cpu_write(cpu_tlbstate.cr4, __read_cr4());
283 : : }
284 : :
285 : 33 : static inline void __cr4_set(unsigned long cr4)
286 : : {
287 : 33 : lockdep_assert_irqs_disabled();
288 : 66 : this_cpu_write(cpu_tlbstate.cr4, cr4);
289 : 33 : __write_cr4(cr4);
290 : 33 : }
291 : :
292 : : /* Set in this cpu's CR4. */
293 : 55 : static inline void cr4_set_bits_irqsoff(unsigned long mask)
294 : : {
295 : 55 : unsigned long cr4;
296 : :
297 : 110 : cr4 = this_cpu_read(cpu_tlbstate.cr4);
298 [ + + ]: 55 : if ((cr4 | mask) != cr4)
299 : 33 : __cr4_set(cr4 | mask);
300 : : }
301 : :
302 : : /* Clear in this cpu's CR4. */
303 : 475458 : static inline void cr4_clear_bits_irqsoff(unsigned long mask)
304 : : {
305 : 475458 : unsigned long cr4;
306 : :
307 : 475480 : cr4 = this_cpu_read(cpu_tlbstate.cr4);
308 [ - + ]: 475458 : if ((cr4 & ~mask) != cr4)
309 : 0 : __cr4_set(cr4 & ~mask);
310 : : }
311 : :
312 : : /* Set in this cpu's CR4. */
313 : 55 : static inline void cr4_set_bits(unsigned long mask)
314 : : {
315 : 55 : unsigned long flags;
316 : :
317 : 55 : local_irq_save(flags);
318 : 55 : cr4_set_bits_irqsoff(mask);
319 : 55 : local_irq_restore(flags);
320 : 55 : }
321 : :
322 : : /* Clear in this cpu's CR4. */
323 : 22 : static inline void cr4_clear_bits(unsigned long mask)
324 : : {
325 : 22 : unsigned long flags;
326 : :
327 : 22 : local_irq_save(flags);
328 : 22 : cr4_clear_bits_irqsoff(mask);
329 : 22 : local_irq_restore(flags);
330 : 22 : }
331 : :
332 : 0 : static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
333 : : {
334 : 0 : unsigned long cr4;
335 : :
336 : 0 : cr4 = this_cpu_read(cpu_tlbstate.cr4);
337 : 0 : __cr4_set(cr4 ^ mask);
338 : 0 : }
339 : :
340 : : /* Read the CR4 shadow. */
341 : 0 : static inline unsigned long cr4_read_shadow(void)
342 : : {
343 [ # # ]: 0 : return this_cpu_read(cpu_tlbstate.cr4);
344 : : }
345 : :
346 : : /*
347 : : * Mark all other ASIDs as invalid, preserves the current.
348 : : */
349 : 0 : static inline void invalidate_other_asid(void)
350 : : {
351 : 0 : this_cpu_write(cpu_tlbstate.invalidate_other, true);
352 : 0 : }
353 : :
354 : : /*
355 : : * Save some of cr4 feature set we're using (e.g. Pentium 4MB
356 : : * enable and PPro Global page enable), so that any CPU's that boot
357 : : * up after us can get the correct flags. This should only be used
358 : : * during boot on the boot cpu.
359 : : */
360 : : extern unsigned long mmu_cr4_features;
361 : : extern u32 *trampoline_cr4_features;
362 : :
363 : 22 : static inline void cr4_set_bits_and_update_boot(unsigned long mask)
364 : : {
365 : 22 : mmu_cr4_features |= mask;
366 [ - + - + ]: 22 : if (trampoline_cr4_features)
367 : 0 : *trampoline_cr4_features = mmu_cr4_features;
368 : 22 : cr4_set_bits(mask);
369 : 11 : }
370 : :
371 : : extern void initialize_tlbstate_and_flush(void);
372 : :
373 : : /*
374 : : * Given an ASID, flush the corresponding user ASID. We can delay this
375 : : * until the next time we switch to it.
376 : : *
377 : : * See SWITCH_TO_USER_CR3.
378 : : */
379 : 589574 : static inline void invalidate_user_asid(u16 asid)
380 : : {
381 : : /* There is no user ASID if address space separation is off */
382 : 589574 : if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
383 : : return;
384 : :
385 : : /*
386 : : * We only have a single ASID if PCID is off and the CR3
387 : : * write will have flushed it.
388 : : */
389 [ - - + ]: 589574 : if (!cpu_feature_enabled(X86_FEATURE_PCID))
390 : : return;
391 : :
392 [ # # # ]: 0 : if (!static_cpu_has(X86_FEATURE_PTI))
393 : : return;
394 : :
395 : 0 : __set_bit(kern_pcid(asid),
396 : 0 : (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
397 : : }
398 : :
399 : : /*
400 : : * flush the entire current user mapping
401 : : */
402 : 114138 : static inline void __native_flush_tlb(void)
403 : : {
404 : : /*
405 : : * Preemption or interrupts must be disabled to protect the access
406 : : * to the per CPU variable and to prevent being preempted between
407 : : * read_cr3() and write_cr3().
408 : : */
409 : 114138 : WARN_ON_ONCE(preemptible());
410 : :
411 : 114138 : invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
412 : :
413 : : /* If current->mm == NULL then the read_cr3() "borrows" an mm */
414 : 114138 : native_write_cr3(__native_read_cr3());
415 : : }
416 : :
417 : : /*
418 : : * flush everything
419 : : */
420 : 646 : static inline void __native_flush_tlb_global(void)
421 : : {
422 : 646 : unsigned long cr4, flags;
423 : :
424 [ - + - ]: 646 : if (static_cpu_has(X86_FEATURE_INVPCID)) {
425 : : /*
426 : : * Using INVPCID is considerably faster than a pair of writes
427 : : * to CR4 sandwiched inside an IRQ flag save/restore.
428 : : *
429 : : * Note, this works with CR4.PCIDE=0 or 1.
430 : : */
431 : 0 : invpcid_flush_all();
432 : 0 : return;
433 : : }
434 : :
435 : : /*
436 : : * Read-modify-write to CR4 - protect it from preemption and
437 : : * from interrupts. (Use the raw variant because this code can
438 : : * be called from deep inside debugging code.)
439 : : */
440 : 646 : raw_local_irq_save(flags);
441 : :
442 : 646 : cr4 = this_cpu_read(cpu_tlbstate.cr4);
443 : : /* toggle PGE */
444 : 646 : native_write_cr4(cr4 ^ X86_CR4_PGE);
445 : : /* write old PGE again and flush TLBs */
446 : 646 : native_write_cr4(cr4);
447 : :
448 : 646 : raw_local_irq_restore(flags);
449 : : }
450 : :
451 : : /*
452 : : * flush one page in the user mapping
453 : : */
454 : 2029718 : static inline void __native_flush_tlb_one_user(unsigned long addr)
455 : : {
456 : 2029718 : u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
457 : :
458 : 2029718 : asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
459 : :
460 [ - - + ]: 2029718 : if (!static_cpu_has(X86_FEATURE_PTI))
461 : : return;
462 : :
463 : : /*
464 : : * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
465 : : * Just use invalidate_user_asid() in case we are called early.
466 : : */
467 [ # # ]: 0 : if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
468 : 0 : invalidate_user_asid(loaded_mm_asid);
469 : : else
470 : 0 : invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
471 : : }
472 : :
473 : : /*
474 : : * flush everything
475 : : */
476 : 646 : static inline void __flush_tlb_all(void)
477 : : {
478 : : /*
479 : : * This is to catch users with enabled preemption and the PGE feature
480 : : * and don't trigger the warning in __native_flush_tlb().
481 : : */
482 : 646 : VM_WARN_ON_ONCE(preemptible());
483 : :
484 [ + - ]: 646 : if (boot_cpu_has(X86_FEATURE_PGE)) {
485 : 646 : __flush_tlb_global();
486 : : } else {
487 : : /*
488 : : * !PGE -> !PCID (setup_pcid()), thus every flush is total.
489 : : */
490 : 0 : __flush_tlb();
491 : : }
492 : 646 : }
493 : :
494 : : /*
495 : : * flush one page in the kernel mapping
496 : : */
497 : 499423 : static inline void __flush_tlb_one_kernel(unsigned long addr)
498 : : {
499 : 499423 : count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
500 : :
501 : : /*
502 : : * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
503 : : * paravirt equivalent. Even with PCID, this is sufficient: we only
504 : : * use PCID if we also use global PTEs for the kernel mapping, and
505 : : * INVLPG flushes global translations across all address spaces.
506 : : *
507 : : * If PTI is on, then the kernel is mapped with non-global PTEs, and
508 : : * __flush_tlb_one_user() will flush the given address for the current
509 : : * kernel address space and for its usermode counterpart, but it does
510 : : * not flush it for other address spaces.
511 : : */
512 : 499423 : __flush_tlb_one_user(addr);
513 : :
514 [ - - + ]: 499423 : if (!static_cpu_has(X86_FEATURE_PTI))
515 : : return;
516 : :
517 : : /*
518 : : * See above. We need to propagate the flush to all other address
519 : : * spaces. In principle, we only need to propagate it to kernelmode
520 : : * address spaces, but the extra bookkeeping we would need is not
521 : : * worth it.
522 : : */
523 : 0 : invalidate_other_asid();
524 : : }
525 : :
526 : : #define TLB_FLUSH_ALL -1UL
527 : :
528 : : /*
529 : : * TLB flushing:
530 : : *
531 : : * - flush_tlb_all() flushes all processes TLBs
532 : : * - flush_tlb_mm(mm) flushes the specified mm context TLB's
533 : : * - flush_tlb_page(vma, vmaddr) flushes one page
534 : : * - flush_tlb_range(vma, start, end) flushes a range of pages
535 : : * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages
536 : : * - flush_tlb_others(cpumask, info) flushes TLBs on other cpus
537 : : *
538 : : * ..but the i386 has somewhat limited tlb flushing capabilities,
539 : : * and page-granular flushes are available only on i486 and up.
540 : : */
541 : : struct flush_tlb_info {
542 : : /*
543 : : * We support several kinds of flushes.
544 : : *
545 : : * - Fully flush a single mm. .mm will be set, .end will be
546 : : * TLB_FLUSH_ALL, and .new_tlb_gen will be the tlb_gen to
547 : : * which the IPI sender is trying to catch us up.
548 : : *
549 : : * - Partially flush a single mm. .mm will be set, .start and
550 : : * .end will indicate the range, and .new_tlb_gen will be set
551 : : * such that the changes between generation .new_tlb_gen-1 and
552 : : * .new_tlb_gen are entirely contained in the indicated range.
553 : : *
554 : : * - Fully flush all mms whose tlb_gens have been updated. .mm
555 : : * will be NULL, .end will be TLB_FLUSH_ALL, and .new_tlb_gen
556 : : * will be zero.
557 : : */
558 : : struct mm_struct *mm;
559 : : unsigned long start;
560 : : unsigned long end;
561 : : u64 new_tlb_gen;
562 : : unsigned int stride_shift;
563 : : bool freed_tables;
564 : : };
565 : :
566 : : #define local_flush_tlb() __flush_tlb()
567 : :
568 : : #define flush_tlb_mm(mm) \
569 : : flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL, true)
570 : :
571 : : #define flush_tlb_range(vma, start, end) \
572 : : flush_tlb_mm_range((vma)->vm_mm, start, end, \
573 : : ((vma)->vm_flags & VM_HUGETLB) \
574 : : ? huge_page_shift(hstate_vma(vma)) \
575 : : : PAGE_SHIFT, false)
576 : :
577 : : extern void flush_tlb_all(void);
578 : : extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
579 : : unsigned long end, unsigned int stride_shift,
580 : : bool freed_tables);
581 : : extern void flush_tlb_kernel_range(unsigned long start, unsigned long end);
582 : :
583 : 194072 : static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long a)
584 : : {
585 : 194072 : flush_tlb_mm_range(vma->vm_mm, a, a + PAGE_SIZE, PAGE_SHIFT, false);
586 : 194072 : }
587 : :
588 : : void native_flush_tlb_others(const struct cpumask *cpumask,
589 : : const struct flush_tlb_info *info);
590 : :
591 : 1520334 : static inline u64 inc_mm_tlb_gen(struct mm_struct *mm)
592 : : {
593 : : /*
594 : : * Bump the generation count. This also serves as a full barrier
595 : : * that synchronizes with switch_mm(): callers are required to order
596 : : * their read of mm_cpumask after their writes to the paging
597 : : * structures.
598 : : */
599 : 1520334 : return atomic64_inc_return(&mm->context.tlb_gen);
600 : : }
601 : :
602 : 0 : static inline void arch_tlbbatch_add_mm(struct arch_tlbflush_unmap_batch *batch,
603 : : struct mm_struct *mm)
604 : : {
605 : 0 : inc_mm_tlb_gen(mm);
606 : 0 : cpumask_or(&batch->cpumask, &batch->cpumask, mm_cpumask(mm));
607 : : }
608 : :
609 : : extern void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch);
610 : :
611 : : #ifndef CONFIG_PARAVIRT
612 : : #define flush_tlb_others(mask, info) \
613 : : native_flush_tlb_others(mask, info)
614 : :
615 : : #define paravirt_tlb_remove_table(tlb, page) \
616 : : tlb_remove_page(tlb, (void *)(page))
617 : : #endif
618 : :
619 : : #endif /* _ASM_X86_TLBFLUSH_H */
|