Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only
2 : : /*
3 : : * menu.c - the menu idle governor
4 : : *
5 : : * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6 : : * Copyright (C) 2009 Intel Corporation
7 : : * Author:
8 : : * Arjan van de Ven <arjan@linux.intel.com>
9 : : */
10 : :
11 : : #include <linux/kernel.h>
12 : : #include <linux/cpuidle.h>
13 : : #include <linux/time.h>
14 : : #include <linux/ktime.h>
15 : : #include <linux/hrtimer.h>
16 : : #include <linux/tick.h>
17 : : #include <linux/sched.h>
18 : : #include <linux/sched/loadavg.h>
19 : : #include <linux/sched/stat.h>
20 : : #include <linux/math64.h>
21 : :
22 : : #define BUCKETS 12
23 : : #define INTERVAL_SHIFT 3
24 : : #define INTERVALS (1UL << INTERVAL_SHIFT)
25 : : #define RESOLUTION 1024
26 : : #define DECAY 8
27 : : #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28 : :
29 : : /*
30 : : * Concepts and ideas behind the menu governor
31 : : *
32 : : * For the menu governor, there are 3 decision factors for picking a C
33 : : * state:
34 : : * 1) Energy break even point
35 : : * 2) Performance impact
36 : : * 3) Latency tolerance (from pmqos infrastructure)
37 : : * These these three factors are treated independently.
38 : : *
39 : : * Energy break even point
40 : : * -----------------------
41 : : * C state entry and exit have an energy cost, and a certain amount of time in
42 : : * the C state is required to actually break even on this cost. CPUIDLE
43 : : * provides us this duration in the "target_residency" field. So all that we
44 : : * need is a good prediction of how long we'll be idle. Like the traditional
45 : : * menu governor, we start with the actual known "next timer event" time.
46 : : *
47 : : * Since there are other source of wakeups (interrupts for example) than
48 : : * the next timer event, this estimation is rather optimistic. To get a
49 : : * more realistic estimate, a correction factor is applied to the estimate,
50 : : * that is based on historic behavior. For example, if in the past the actual
51 : : * duration always was 50% of the next timer tick, the correction factor will
52 : : * be 0.5.
53 : : *
54 : : * menu uses a running average for this correction factor, however it uses a
55 : : * set of factors, not just a single factor. This stems from the realization
56 : : * that the ratio is dependent on the order of magnitude of the expected
57 : : * duration; if we expect 500 milliseconds of idle time the likelihood of
58 : : * getting an interrupt very early is much higher than if we expect 50 micro
59 : : * seconds of idle time. A second independent factor that has big impact on
60 : : * the actual factor is if there is (disk) IO outstanding or not.
61 : : * (as a special twist, we consider every sleep longer than 50 milliseconds
62 : : * as perfect; there are no power gains for sleeping longer than this)
63 : : *
64 : : * For these two reasons we keep an array of 12 independent factors, that gets
65 : : * indexed based on the magnitude of the expected duration as well as the
66 : : * "is IO outstanding" property.
67 : : *
68 : : * Repeatable-interval-detector
69 : : * ----------------------------
70 : : * There are some cases where "next timer" is a completely unusable predictor:
71 : : * Those cases where the interval is fixed, for example due to hardware
72 : : * interrupt mitigation, but also due to fixed transfer rate devices such as
73 : : * mice.
74 : : * For this, we use a different predictor: We track the duration of the last 8
75 : : * intervals and if the stand deviation of these 8 intervals is below a
76 : : * threshold value, we use the average of these intervals as prediction.
77 : : *
78 : : * Limiting Performance Impact
79 : : * ---------------------------
80 : : * C states, especially those with large exit latencies, can have a real
81 : : * noticeable impact on workloads, which is not acceptable for most sysadmins,
82 : : * and in addition, less performance has a power price of its own.
83 : : *
84 : : * As a general rule of thumb, menu assumes that the following heuristic
85 : : * holds:
86 : : * The busier the system, the less impact of C states is acceptable
87 : : *
88 : : * This rule-of-thumb is implemented using a performance-multiplier:
89 : : * If the exit latency times the performance multiplier is longer than
90 : : * the predicted duration, the C state is not considered a candidate
91 : : * for selection due to a too high performance impact. So the higher
92 : : * this multiplier is, the longer we need to be idle to pick a deep C
93 : : * state, and thus the less likely a busy CPU will hit such a deep
94 : : * C state.
95 : : *
96 : : * Two factors are used in determing this multiplier:
97 : : * a value of 10 is added for each point of "per cpu load average" we have.
98 : : * a value of 5 points is added for each process that is waiting for
99 : : * IO on this CPU.
100 : : * (these values are experimentally determined)
101 : : *
102 : : * The load average factor gives a longer term (few seconds) input to the
103 : : * decision, while the iowait value gives a cpu local instantanious input.
104 : : * The iowait factor may look low, but realize that this is also already
105 : : * represented in the system load average.
106 : : *
107 : : */
108 : :
109 : : struct menu_device {
110 : : int needs_update;
111 : : int tick_wakeup;
112 : :
113 : : u64 next_timer_ns;
114 : : unsigned int bucket;
115 : : unsigned int correction_factor[BUCKETS];
116 : : unsigned int intervals[INTERVALS];
117 : : int interval_ptr;
118 : : };
119 : :
120 : 0 : static inline int which_bucket(u64 duration_ns, unsigned long nr_iowaiters)
121 : : {
122 : 0 : int bucket = 0;
123 : :
124 : : /*
125 : : * We keep two groups of stats; one with no
126 : : * IO pending, one without.
127 : : * This allows us to calculate
128 : : * E(duration)|iowait
129 : : */
130 : 0 : if (nr_iowaiters)
131 : 0 : bucket = BUCKETS/2;
132 : :
133 [ # # ]: 0 : if (duration_ns < 10ULL * NSEC_PER_USEC)
134 : : return bucket;
135 [ # # ]: 0 : if (duration_ns < 100ULL * NSEC_PER_USEC)
136 : 0 : return bucket + 1;
137 [ # # ]: 0 : if (duration_ns < 1000ULL * NSEC_PER_USEC)
138 : 0 : return bucket + 2;
139 [ # # ]: 0 : if (duration_ns < 10000ULL * NSEC_PER_USEC)
140 : 0 : return bucket + 3;
141 [ # # ]: 0 : if (duration_ns < 100000ULL * NSEC_PER_USEC)
142 : 0 : return bucket + 4;
143 : 0 : return bucket + 5;
144 : : }
145 : :
146 : : /*
147 : : * Return a multiplier for the exit latency that is intended
148 : : * to take performance requirements into account.
149 : : * The more performance critical we estimate the system
150 : : * to be, the higher this multiplier, and thus the higher
151 : : * the barrier to go to an expensive C state.
152 : : */
153 : 0 : static inline int performance_multiplier(unsigned long nr_iowaiters)
154 : : {
155 : : /* for IO wait tasks (per cpu!) we add 10x each */
156 : 0 : return 1 + 10 * nr_iowaiters;
157 : : }
158 : :
159 : : static DEFINE_PER_CPU(struct menu_device, menu_devices);
160 : :
161 : : static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
162 : :
163 : : /*
164 : : * Try detecting repeating patterns by keeping track of the last 8
165 : : * intervals, and checking if the standard deviation of that set
166 : : * of points is below a threshold. If it is... then use the
167 : : * average of these 8 points as the estimated value.
168 : : */
169 : 0 : static unsigned int get_typical_interval(struct menu_device *data,
170 : : unsigned int predicted_us)
171 : : {
172 : 0 : int i, divisor;
173 : 0 : unsigned int min, max, thresh, avg;
174 : 0 : uint64_t sum, variance;
175 : :
176 : 0 : thresh = INT_MAX; /* Discard outliers above this value */
177 : :
178 : 0 : again:
179 : :
180 : : /* First calculate the average of past intervals */
181 : 0 : min = UINT_MAX;
182 : 0 : max = 0;
183 : 0 : sum = 0;
184 : 0 : divisor = 0;
185 [ # # ]: 0 : for (i = 0; i < INTERVALS; i++) {
186 : 0 : unsigned int value = data->intervals[i];
187 [ # # ]: 0 : if (value <= thresh) {
188 : 0 : sum += value;
189 : 0 : divisor++;
190 : 0 : if (value > max)
191 : : max = value;
192 : :
193 : 0 : if (value < min)
194 : : min = value;
195 : : }
196 : : }
197 : :
198 : : /*
199 : : * If the result of the computation is going to be discarded anyway,
200 : : * avoid the computation altogether.
201 : : */
202 [ # # ]: 0 : if (min >= predicted_us)
203 : : return UINT_MAX;
204 : :
205 [ # # ]: 0 : if (divisor == INTERVALS)
206 : 0 : avg = sum >> INTERVAL_SHIFT;
207 : : else
208 : 0 : avg = div_u64(sum, divisor);
209 : :
210 : : /* Then try to determine variance */
211 : 0 : variance = 0;
212 [ # # ]: 0 : for (i = 0; i < INTERVALS; i++) {
213 : 0 : unsigned int value = data->intervals[i];
214 [ # # ]: 0 : if (value <= thresh) {
215 : 0 : int64_t diff = (int64_t)value - avg;
216 : 0 : variance += diff * diff;
217 : : }
218 : : }
219 [ # # ]: 0 : if (divisor == INTERVALS)
220 : 0 : variance >>= INTERVAL_SHIFT;
221 : : else
222 : 0 : do_div(variance, divisor);
223 : :
224 : : /*
225 : : * The typical interval is obtained when standard deviation is
226 : : * small (stddev <= 20 us, variance <= 400 us^2) or standard
227 : : * deviation is small compared to the average interval (avg >
228 : : * 6*stddev, avg^2 > 36*variance). The average is smaller than
229 : : * UINT_MAX aka U32_MAX, so computing its square does not
230 : : * overflow a u64. We simply reject this candidate average if
231 : : * the standard deviation is greater than 715 s (which is
232 : : * rather unlikely).
233 : : *
234 : : * Use this result only if there is no timer to wake us up sooner.
235 : : */
236 [ # # ]: 0 : if (likely(variance <= U64_MAX/36)) {
237 [ # # # # ]: 0 : if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
238 [ # # ]: 0 : || variance <= 400) {
239 : 0 : return avg;
240 : : }
241 : : }
242 : :
243 : : /*
244 : : * If we have outliers to the upside in our distribution, discard
245 : : * those by setting the threshold to exclude these outliers, then
246 : : * calculate the average and standard deviation again. Once we get
247 : : * down to the bottom 3/4 of our samples, stop excluding samples.
248 : : *
249 : : * This can deal with workloads that have long pauses interspersed
250 : : * with sporadic activity with a bunch of short pauses.
251 : : */
252 [ # # ]: 0 : if ((divisor * 4) <= INTERVALS * 3)
253 : : return UINT_MAX;
254 : :
255 : 0 : thresh = max - 1;
256 : 0 : goto again;
257 : : }
258 : :
259 : : /**
260 : : * menu_select - selects the next idle state to enter
261 : : * @drv: cpuidle driver containing state data
262 : : * @dev: the CPU
263 : : * @stop_tick: indication on whether or not to stop the tick
264 : : */
265 : 0 : static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
266 : : bool *stop_tick)
267 : : {
268 : 0 : struct menu_device *data = this_cpu_ptr(&menu_devices);
269 : 0 : s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
270 : 0 : unsigned int predicted_us;
271 : 0 : u64 predicted_ns;
272 : 0 : u64 interactivity_req;
273 : 0 : unsigned long nr_iowaiters;
274 : 0 : ktime_t delta_next;
275 : 0 : int i, idx;
276 : :
277 [ # # ]: 0 : if (data->needs_update) {
278 : 0 : menu_update(drv, dev);
279 : 0 : data->needs_update = 0;
280 : : }
281 : :
282 : : /* determine the expected residency time, round up */
283 : 0 : data->next_timer_ns = tick_nohz_get_sleep_length(&delta_next);
284 : :
285 : 0 : nr_iowaiters = nr_iowait_cpu(dev->cpu);
286 [ # # ]: 0 : data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
287 : :
288 [ # # # # ]: 0 : if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
289 [ # # ]: 0 : ((data->next_timer_ns < drv->states[1].target_residency_ns ||
290 [ # # ]: 0 : latency_req < drv->states[1].exit_latency_ns) &&
291 [ # # ]: 0 : !dev->states_usage[0].disable)) {
292 : : /*
293 : : * In this case state[0] will be used no matter what, so return
294 : : * it right away and keep the tick running if state[0] is a
295 : : * polling one.
296 : : */
297 : 0 : *stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
298 : 0 : return 0;
299 : : }
300 : :
301 : : /* Round up the result for half microseconds. */
302 : 0 : predicted_us = div_u64(data->next_timer_ns *
303 : 0 : data->correction_factor[data->bucket] +
304 : : (RESOLUTION * DECAY * NSEC_PER_USEC) / 2,
305 : : RESOLUTION * DECAY * NSEC_PER_USEC);
306 : : /* Use the lowest expected idle interval to pick the idle state. */
307 : 0 : predicted_ns = (u64)min(predicted_us,
308 : : get_typical_interval(data, predicted_us)) *
309 : : NSEC_PER_USEC;
310 : :
311 [ # # ]: 0 : if (tick_nohz_tick_stopped()) {
312 : : /*
313 : : * If the tick is already stopped, the cost of possible short
314 : : * idle duration misprediction is much higher, because the CPU
315 : : * may be stuck in a shallow idle state for a long time as a
316 : : * result of it. In that case say we might mispredict and use
317 : : * the known time till the closest timer event for the idle
318 : : * state selection.
319 : : */
320 [ # # ]: 0 : if (predicted_ns < TICK_NSEC)
321 : 0 : predicted_ns = delta_next;
322 : : } else {
323 : : /*
324 : : * Use the performance multiplier and the user-configurable
325 : : * latency_req to determine the maximum exit latency.
326 : : */
327 [ # # ]: 0 : interactivity_req = div64_u64(predicted_ns,
328 : : performance_multiplier(nr_iowaiters));
329 [ # # ]: 0 : if (latency_req > interactivity_req)
330 : 0 : latency_req = interactivity_req;
331 : : }
332 : :
333 : : /*
334 : : * Find the idle state with the lowest power while satisfying
335 : : * our constraints.
336 : : */
337 : 0 : idx = -1;
338 [ # # ]: 0 : for (i = 0; i < drv->state_count; i++) {
339 : 0 : struct cpuidle_state *s = &drv->states[i];
340 : :
341 [ # # ]: 0 : if (dev->states_usage[i].disable)
342 : 0 : continue;
343 : :
344 [ # # ]: 0 : if (idx == -1)
345 : 0 : idx = i; /* first enabled state */
346 : :
347 [ # # ]: 0 : if (s->target_residency_ns > predicted_ns) {
348 : : /*
349 : : * Use a physical idle state, not busy polling, unless
350 : : * a timer is going to trigger soon enough.
351 : : */
352 [ # # ]: 0 : if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
353 [ # # ]: 0 : s->exit_latency_ns <= latency_req &&
354 [ # # ]: 0 : s->target_residency_ns <= data->next_timer_ns) {
355 : : predicted_ns = s->target_residency_ns;
356 : : idx = i;
357 : : break;
358 : : }
359 [ # # ]: 0 : if (predicted_ns < TICK_NSEC)
360 : : break;
361 : :
362 [ # # ]: 0 : if (!tick_nohz_tick_stopped()) {
363 : : /*
364 : : * If the state selected so far is shallow,
365 : : * waking up early won't hurt, so retain the
366 : : * tick in that case and let the governor run
367 : : * again in the next iteration of the loop.
368 : : */
369 : 0 : predicted_ns = drv->states[idx].target_residency_ns;
370 : 0 : break;
371 : : }
372 : :
373 : : /*
374 : : * If the state selected so far is shallow and this
375 : : * state's target residency matches the time till the
376 : : * closest timer event, select this one to avoid getting
377 : : * stuck in the shallow one for too long.
378 : : */
379 [ # # ]: 0 : if (drv->states[idx].target_residency_ns < TICK_NSEC &&
380 [ # # ]: 0 : s->target_residency_ns <= delta_next)
381 : 0 : idx = i;
382 : :
383 : 0 : return idx;
384 : : }
385 [ # # ]: 0 : if (s->exit_latency_ns > latency_req)
386 : : break;
387 : :
388 : : idx = i;
389 : : }
390 : :
391 [ # # ]: 0 : if (idx == -1)
392 : 0 : idx = 0; /* No states enabled. Must use 0. */
393 : :
394 : : /*
395 : : * Don't stop the tick if the selected state is a polling one or if the
396 : : * expected idle duration is shorter than the tick period length.
397 : : */
398 [ # # # # ]: 0 : if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
399 [ # # ]: 0 : predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
400 : 0 : *stop_tick = false;
401 : :
402 [ # # # # ]: 0 : if (idx > 0 && drv->states[idx].target_residency_ns > delta_next) {
403 : : /*
404 : : * The tick is not going to be stopped and the target
405 : : * residency of the state to be returned is not within
406 : : * the time until the next timer event including the
407 : : * tick, so try to correct that.
408 : : */
409 [ # # ]: 0 : for (i = idx - 1; i >= 0; i--) {
410 [ # # ]: 0 : if (dev->states_usage[i].disable)
411 : 0 : continue;
412 : :
413 : 0 : idx = i;
414 [ # # ]: 0 : if (drv->states[i].target_residency_ns <= delta_next)
415 : : break;
416 : : }
417 : : }
418 : : }
419 : :
420 : : return idx;
421 : : }
422 : :
423 : : /**
424 : : * menu_reflect - records that data structures need update
425 : : * @dev: the CPU
426 : : * @index: the index of actual entered state
427 : : *
428 : : * NOTE: it's important to be fast here because this operation will add to
429 : : * the overall exit latency.
430 : : */
431 : 0 : static void menu_reflect(struct cpuidle_device *dev, int index)
432 : : {
433 : 0 : struct menu_device *data = this_cpu_ptr(&menu_devices);
434 : :
435 : 0 : dev->last_state_idx = index;
436 : 0 : data->needs_update = 1;
437 : 0 : data->tick_wakeup = tick_nohz_idle_got_tick();
438 : 0 : }
439 : :
440 : : /**
441 : : * menu_update - attempts to guess what happened after entry
442 : : * @drv: cpuidle driver containing state data
443 : : * @dev: the CPU
444 : : */
445 : 0 : static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
446 : : {
447 : 0 : struct menu_device *data = this_cpu_ptr(&menu_devices);
448 : 0 : int last_idx = dev->last_state_idx;
449 : 0 : struct cpuidle_state *target = &drv->states[last_idx];
450 : 0 : u64 measured_ns;
451 : 0 : unsigned int new_factor;
452 : :
453 : : /*
454 : : * Try to figure out how much time passed between entry to low
455 : : * power state and occurrence of the wakeup event.
456 : : *
457 : : * If the entered idle state didn't support residency measurements,
458 : : * we use them anyway if they are short, and if long,
459 : : * truncate to the whole expected time.
460 : : *
461 : : * Any measured amount of time will include the exit latency.
462 : : * Since we are interested in when the wakeup begun, not when it
463 : : * was completed, we must subtract the exit latency. However, if
464 : : * the measured amount of time is less than the exit latency,
465 : : * assume the state was never reached and the exit latency is 0.
466 : : */
467 : :
468 [ # # # # ]: 0 : if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
469 : : /*
470 : : * The nohz code said that there wouldn't be any events within
471 : : * the tick boundary (if the tick was stopped), but the idle
472 : : * duration predictor had a differing opinion. Since the CPU
473 : : * was woken up by a tick (that wasn't stopped after all), the
474 : : * predictor was not quite right, so assume that the CPU could
475 : : * have been idle long (but not forever) to help the idle
476 : : * duration predictor do a better job next time.
477 : : */
478 : : measured_ns = 9 * MAX_INTERESTING / 10;
479 [ # # # # ]: 0 : } else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
480 : : dev->poll_time_limit) {
481 : : /*
482 : : * The CPU exited the "polling" state due to a time limit, so
483 : : * the idle duration prediction leading to the selection of that
484 : : * state was inaccurate. If a better prediction had been made,
485 : : * the CPU might have been woken up from idle by the next timer.
486 : : * Assume that to be the case.
487 : : */
488 : 0 : measured_ns = data->next_timer_ns;
489 : : } else {
490 : : /* measured value */
491 : 0 : measured_ns = dev->last_residency_ns;
492 : :
493 : : /* Deduct exit latency */
494 [ # # ]: 0 : if (measured_ns > 2 * target->exit_latency_ns)
495 : 0 : measured_ns -= target->exit_latency_ns;
496 : : else
497 : 0 : measured_ns /= 2;
498 : : }
499 : :
500 : : /* Make sure our coefficients do not exceed unity */
501 : 0 : if (measured_ns > data->next_timer_ns)
502 : : measured_ns = data->next_timer_ns;
503 : :
504 : : /* Update our correction ratio */
505 : 0 : new_factor = data->correction_factor[data->bucket];
506 : 0 : new_factor -= new_factor / DECAY;
507 : :
508 [ # # # # ]: 0 : if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
509 : 0 : new_factor += div64_u64(RESOLUTION * measured_ns,
510 : 0 : data->next_timer_ns);
511 : : else
512 : : /*
513 : : * we were idle so long that we count it as a perfect
514 : : * prediction
515 : : */
516 : 0 : new_factor += RESOLUTION;
517 : :
518 : : /*
519 : : * We don't want 0 as factor; we always want at least
520 : : * a tiny bit of estimated time. Fortunately, due to rounding,
521 : : * new_factor will stay nonzero regardless of measured_us values
522 : : * and the compiler can eliminate this test as long as DECAY > 1.
523 : : */
524 : 0 : if (DECAY == 1 && unlikely(new_factor == 0))
525 : : new_factor = 1;
526 : :
527 : 0 : data->correction_factor[data->bucket] = new_factor;
528 : :
529 : : /* update the repeating-pattern data */
530 [ # # ]: 0 : data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
531 [ # # ]: 0 : if (data->interval_ptr >= INTERVALS)
532 : 0 : data->interval_ptr = 0;
533 : 0 : }
534 : :
535 : : /**
536 : : * menu_enable_device - scans a CPU's states and does setup
537 : : * @drv: cpuidle driver
538 : : * @dev: the CPU
539 : : */
540 : 0 : static int menu_enable_device(struct cpuidle_driver *drv,
541 : : struct cpuidle_device *dev)
542 : : {
543 : 0 : struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
544 : 0 : int i;
545 : :
546 : 0 : memset(data, 0, sizeof(struct menu_device));
547 : :
548 : : /*
549 : : * if the correction factor is 0 (eg first time init or cpu hotplug
550 : : * etc), we actually want to start out with a unity factor.
551 : : */
552 [ # # ]: 0 : for(i = 0; i < BUCKETS; i++)
553 : 0 : data->correction_factor[i] = RESOLUTION * DECAY;
554 : :
555 : 0 : return 0;
556 : : }
557 : :
558 : : static struct cpuidle_governor menu_governor = {
559 : : .name = "menu",
560 : : .rating = 20,
561 : : .enable = menu_enable_device,
562 : : .select = menu_select,
563 : : .reflect = menu_reflect,
564 : : };
565 : :
566 : : /**
567 : : * init_menu - initializes the governor
568 : : */
569 : 11 : static int __init init_menu(void)
570 : : {
571 : 11 : return cpuidle_register_governor(&menu_governor);
572 : : }
573 : :
574 : : postcore_initcall(init_menu);
|