Branch data Line data Source code
1 : : /**************************************************************************
2 : : *
3 : : * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 : : * Copyright 2016 Intel Corporation
5 : : * All Rights Reserved.
6 : : *
7 : : * Permission is hereby granted, free of charge, to any person obtaining a
8 : : * copy of this software and associated documentation files (the
9 : : * "Software"), to deal in the Software without restriction, including
10 : : * without limitation the rights to use, copy, modify, merge, publish,
11 : : * distribute, sub license, and/or sell copies of the Software, and to
12 : : * permit persons to whom the Software is furnished to do so, subject to
13 : : * the following conditions:
14 : : *
15 : : * The above copyright notice and this permission notice (including the
16 : : * next paragraph) shall be included in all copies or substantial portions
17 : : * of the Software.
18 : : *
19 : : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 : : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 : : * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 : : * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 : : * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 : : * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 : : * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 : : *
27 : : *
28 : : **************************************************************************/
29 : :
30 : : /*
31 : : * Generic simple memory manager implementation. Intended to be used as a base
32 : : * class implementation for more advanced memory managers.
33 : : *
34 : : * Note that the algorithm used is quite simple and there might be substantial
35 : : * performance gains if a smarter free list is implemented. Currently it is
36 : : * just an unordered stack of free regions. This could easily be improved if
37 : : * an RB-tree is used instead. At least if we expect heavy fragmentation.
38 : : *
39 : : * Aligned allocations can also see improvement.
40 : : *
41 : : * Authors:
42 : : * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43 : : */
44 : :
45 : : #include <linux/export.h>
46 : : #include <linux/interval_tree_generic.h>
47 : : #include <linux/seq_file.h>
48 : : #include <linux/slab.h>
49 : : #include <linux/stacktrace.h>
50 : :
51 : : #include <drm/drm_mm.h>
52 : :
53 : : /**
54 : : * DOC: Overview
55 : : *
56 : : * drm_mm provides a simple range allocator. The drivers are free to use the
57 : : * resource allocator from the linux core if it suits them, the upside of drm_mm
58 : : * is that it's in the DRM core. Which means that it's easier to extend for
59 : : * some of the crazier special purpose needs of gpus.
60 : : *
61 : : * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
62 : : * Drivers are free to embed either of them into their own suitable
63 : : * datastructures. drm_mm itself will not do any memory allocations of its own,
64 : : * so if drivers choose not to embed nodes they need to still allocate them
65 : : * themselves.
66 : : *
67 : : * The range allocator also supports reservation of preallocated blocks. This is
68 : : * useful for taking over initial mode setting configurations from the firmware,
69 : : * where an object needs to be created which exactly matches the firmware's
70 : : * scanout target. As long as the range is still free it can be inserted anytime
71 : : * after the allocator is initialized, which helps with avoiding looped
72 : : * dependencies in the driver load sequence.
73 : : *
74 : : * drm_mm maintains a stack of most recently freed holes, which of all
75 : : * simplistic datastructures seems to be a fairly decent approach to clustering
76 : : * allocations and avoiding too much fragmentation. This means free space
77 : : * searches are O(num_holes). Given that all the fancy features drm_mm supports
78 : : * something better would be fairly complex and since gfx thrashing is a fairly
79 : : * steep cliff not a real concern. Removing a node again is O(1).
80 : : *
81 : : * drm_mm supports a few features: Alignment and range restrictions can be
82 : : * supplied. Furthermore every &drm_mm_node has a color value (which is just an
83 : : * opaque unsigned long) which in conjunction with a driver callback can be used
84 : : * to implement sophisticated placement restrictions. The i915 DRM driver uses
85 : : * this to implement guard pages between incompatible caching domains in the
86 : : * graphics TT.
87 : : *
88 : : * Two behaviors are supported for searching and allocating: bottom-up and
89 : : * top-down. The default is bottom-up. Top-down allocation can be used if the
90 : : * memory area has different restrictions, or just to reduce fragmentation.
91 : : *
92 : : * Finally iteration helpers to walk all nodes and all holes are provided as are
93 : : * some basic allocator dumpers for debugging.
94 : : *
95 : : * Note that this range allocator is not thread-safe, drivers need to protect
96 : : * modifications with their own locking. The idea behind this is that for a full
97 : : * memory manager additional data needs to be protected anyway, hence internal
98 : : * locking would be fully redundant.
99 : : */
100 : :
101 : : #ifdef CONFIG_DRM_DEBUG_MM
102 : : #include <linux/stackdepot.h>
103 : :
104 : : #define STACKDEPTH 32
105 : : #define BUFSZ 4096
106 : :
107 : : static noinline void save_stack(struct drm_mm_node *node)
108 : : {
109 : : unsigned long entries[STACKDEPTH];
110 : : unsigned int n;
111 : :
112 : : n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
113 : :
114 : : /* May be called under spinlock, so avoid sleeping */
115 : : node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
116 : : }
117 : :
118 : : static void show_leaks(struct drm_mm *mm)
119 : : {
120 : : struct drm_mm_node *node;
121 : : unsigned long *entries;
122 : : unsigned int nr_entries;
123 : : char *buf;
124 : :
125 : : buf = kmalloc(BUFSZ, GFP_KERNEL);
126 : : if (!buf)
127 : : return;
128 : :
129 : : list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
130 : : if (!node->stack) {
131 : : DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
132 : : node->start, node->size);
133 : : continue;
134 : : }
135 : :
136 : : nr_entries = stack_depot_fetch(node->stack, &entries);
137 : : stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
138 : : DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
139 : : node->start, node->size, buf);
140 : : }
141 : :
142 : : kfree(buf);
143 : : }
144 : :
145 : : #undef STACKDEPTH
146 : : #undef BUFSZ
147 : : #else
148 : 0 : static void save_stack(struct drm_mm_node *node) { }
149 : : static void show_leaks(struct drm_mm *mm) { }
150 : : #endif
151 : :
152 : : #define START(node) ((node)->start)
153 : : #define LAST(node) ((node)->start + (node)->size - 1)
154 : :
155 [ # # # # : 0 : INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
# # # # #
# # # ]
156 : : u64, __subtree_last,
157 : : START, LAST, static inline, drm_mm_interval_tree)
158 : :
159 : : struct drm_mm_node *
160 : 0 : __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
161 : : {
162 : 0 : return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
163 [ # # ]: 0 : start, last) ?: (struct drm_mm_node *)&mm->head_node;
164 : : }
165 : : EXPORT_SYMBOL(__drm_mm_interval_first);
166 : :
167 : 0 : static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
168 : : struct drm_mm_node *node)
169 : : {
170 : 0 : struct drm_mm *mm = hole_node->mm;
171 : 0 : struct rb_node **link, *rb;
172 : 0 : struct drm_mm_node *parent;
173 : 0 : bool leftmost;
174 : :
175 : 0 : node->__subtree_last = LAST(node);
176 : :
177 [ # # ]: 0 : if (drm_mm_node_allocated(hole_node)) {
178 : 0 : rb = &hole_node->rb;
179 [ # # ]: 0 : while (rb) {
180 : 0 : parent = rb_entry(rb, struct drm_mm_node, rb);
181 [ # # ]: 0 : if (parent->__subtree_last >= node->__subtree_last)
182 : : break;
183 : :
184 : 0 : parent->__subtree_last = node->__subtree_last;
185 : 0 : rb = rb_parent(rb);
186 : : }
187 : :
188 : 0 : rb = &hole_node->rb;
189 : 0 : link = &hole_node->rb.rb_right;
190 : 0 : leftmost = false;
191 : : } else {
192 : 0 : rb = NULL;
193 : 0 : link = &mm->interval_tree.rb_root.rb_node;
194 : 0 : leftmost = true;
195 : : }
196 : :
197 [ # # ]: 0 : while (*link) {
198 : 0 : rb = *link;
199 : 0 : parent = rb_entry(rb, struct drm_mm_node, rb);
200 [ # # ]: 0 : if (parent->__subtree_last < node->__subtree_last)
201 : 0 : parent->__subtree_last = node->__subtree_last;
202 [ # # ]: 0 : if (node->start < parent->start) {
203 : 0 : link = &parent->rb.rb_left;
204 : : } else {
205 : 0 : link = &parent->rb.rb_right;
206 : 0 : leftmost = false;
207 : : }
208 : : }
209 : :
210 [ # # ]: 0 : rb_link_node(&node->rb, rb, link);
211 [ # # ]: 0 : rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
212 : : &drm_mm_interval_tree_augment);
213 : 0 : }
214 : :
215 : : #define RB_INSERT(root, member, expr) do { \
216 : : struct rb_node **link = &root.rb_node, *rb = NULL; \
217 : : u64 x = expr(node); \
218 : : while (*link) { \
219 : : rb = *link; \
220 : : if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
221 : : link = &rb->rb_left; \
222 : : else \
223 : : link = &rb->rb_right; \
224 : : } \
225 : : rb_link_node(&node->member, rb, link); \
226 : : rb_insert_color(&node->member, &root); \
227 : : } while (0)
228 : :
229 : : #define HOLE_SIZE(NODE) ((NODE)->hole_size)
230 : : #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
231 : :
232 : 0 : static u64 rb_to_hole_size(struct rb_node *rb)
233 : : {
234 : 0 : return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
235 : : }
236 : :
237 : 0 : static void insert_hole_size(struct rb_root_cached *root,
238 : : struct drm_mm_node *node)
239 : : {
240 : 0 : struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
241 : 0 : u64 x = node->hole_size;
242 : 0 : bool first = true;
243 : :
244 [ # # ]: 0 : while (*link) {
245 : 0 : rb = *link;
246 [ # # ]: 0 : if (x > rb_to_hole_size(rb)) {
247 : 0 : link = &rb->rb_left;
248 : : } else {
249 : 0 : link = &rb->rb_right;
250 : 0 : first = false;
251 : : }
252 : : }
253 : :
254 [ # # ]: 0 : rb_link_node(&node->rb_hole_size, rb, link);
255 [ # # ]: 0 : rb_insert_color_cached(&node->rb_hole_size, root, first);
256 : 0 : }
257 : :
258 : 0 : static void add_hole(struct drm_mm_node *node)
259 : : {
260 : 0 : struct drm_mm *mm = node->mm;
261 : :
262 : 0 : node->hole_size =
263 : 0 : __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
264 : 0 : DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
265 : :
266 : 0 : insert_hole_size(&mm->holes_size, node);
267 [ # # # # ]: 0 : RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
268 : :
269 : 0 : list_add(&node->hole_stack, &mm->hole_stack);
270 : 0 : }
271 : :
272 : 0 : static void rm_hole(struct drm_mm_node *node)
273 : : {
274 : 0 : DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
275 : :
276 : 0 : list_del(&node->hole_stack);
277 : 0 : rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
278 : 0 : rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
279 : 0 : node->hole_size = 0;
280 : :
281 : 0 : DRM_MM_BUG_ON(drm_mm_hole_follows(node));
282 : 0 : }
283 : :
284 : 0 : static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
285 : : {
286 [ # # ]: 0 : return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
287 : : }
288 : :
289 : 0 : static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
290 : : {
291 [ # # # # ]: 0 : return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
292 : : }
293 : :
294 : : static inline u64 rb_hole_size(struct rb_node *rb)
295 : : {
296 : : return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
297 : : }
298 : :
299 : 0 : static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
300 : : {
301 : 0 : struct rb_node *rb = mm->holes_size.rb_root.rb_node;
302 : 0 : struct drm_mm_node *best = NULL;
303 : :
304 : 0 : do {
305 : 0 : struct drm_mm_node *node =
306 : 0 : rb_entry(rb, struct drm_mm_node, rb_hole_size);
307 : :
308 [ # # ]: 0 : if (size <= node->hole_size) {
309 : 0 : best = node;
310 : 0 : rb = rb->rb_right;
311 : : } else {
312 : 0 : rb = rb->rb_left;
313 : : }
314 [ # # ]: 0 : } while (rb);
315 : :
316 : : return best;
317 : : }
318 : :
319 : 0 : static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
320 : : {
321 : 0 : struct rb_node *rb = mm->holes_addr.rb_node;
322 : 0 : struct drm_mm_node *node = NULL;
323 : :
324 [ # # # # : 0 : while (rb) {
# # ]
325 : 0 : u64 hole_start;
326 : :
327 : 0 : node = rb_hole_addr_to_node(rb);
328 [ # # # # : 0 : hole_start = __drm_mm_hole_node_start(node);
# # ]
329 : :
330 [ # # # # : 0 : if (addr < hole_start)
# # ]
331 : 0 : rb = node->rb_hole_addr.rb_left;
332 [ # # # # : 0 : else if (addr > hole_start + node->hole_size)
# # ]
333 : 0 : rb = node->rb_hole_addr.rb_right;
334 : : else
335 : : break;
336 : : }
337 : :
338 : 0 : return node;
339 : : }
340 : :
341 : : static struct drm_mm_node *
342 : 0 : first_hole(struct drm_mm *mm,
343 : : u64 start, u64 end, u64 size,
344 : : enum drm_mm_insert_mode mode)
345 : : {
346 [ # # # # ]: 0 : switch (mode) {
347 : 0 : default:
348 : : case DRM_MM_INSERT_BEST:
349 : 0 : return best_hole(mm, size);
350 : :
351 : 0 : case DRM_MM_INSERT_LOW:
352 : 0 : return find_hole(mm, start);
353 : :
354 : 0 : case DRM_MM_INSERT_HIGH:
355 : 0 : return find_hole(mm, end);
356 : :
357 : 0 : case DRM_MM_INSERT_EVICT:
358 [ # # ]: 0 : return list_first_entry_or_null(&mm->hole_stack,
359 : : struct drm_mm_node,
360 : : hole_stack);
361 : : }
362 : : }
363 : :
364 : : static struct drm_mm_node *
365 : 0 : next_hole(struct drm_mm *mm,
366 : : struct drm_mm_node *node,
367 : : enum drm_mm_insert_mode mode)
368 : : {
369 [ # # # # ]: 0 : switch (mode) {
370 : 0 : default:
371 : : case DRM_MM_INSERT_BEST:
372 : 0 : return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
373 : :
374 : 0 : case DRM_MM_INSERT_LOW:
375 : 0 : return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
376 : :
377 : 0 : case DRM_MM_INSERT_HIGH:
378 : 0 : return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
379 : :
380 : 0 : case DRM_MM_INSERT_EVICT:
381 : 0 : node = list_next_entry(node, hole_stack);
382 [ # # ]: 0 : return &node->hole_stack == &mm->hole_stack ? NULL : node;
383 : : }
384 : : }
385 : :
386 : : /**
387 : : * drm_mm_reserve_node - insert an pre-initialized node
388 : : * @mm: drm_mm allocator to insert @node into
389 : : * @node: drm_mm_node to insert
390 : : *
391 : : * This functions inserts an already set-up &drm_mm_node into the allocator,
392 : : * meaning that start, size and color must be set by the caller. All other
393 : : * fields must be cleared to 0. This is useful to initialize the allocator with
394 : : * preallocated objects which must be set-up before the range allocator can be
395 : : * set-up, e.g. when taking over a firmware framebuffer.
396 : : *
397 : : * Returns:
398 : : * 0 on success, -ENOSPC if there's no hole where @node is.
399 : : */
400 : 0 : int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
401 : : {
402 : 0 : u64 end = node->start + node->size;
403 : 0 : struct drm_mm_node *hole;
404 : 0 : u64 hole_start, hole_end;
405 : 0 : u64 adj_start, adj_end;
406 : :
407 : 0 : end = node->start + node->size;
408 [ # # ]: 0 : if (unlikely(end <= node->start))
409 : : return -ENOSPC;
410 : :
411 : : /* Find the relevant hole to add our node to */
412 : 0 : hole = find_hole(mm, node->start);
413 [ # # ]: 0 : if (!hole)
414 : : return -ENOSPC;
415 : :
416 [ # # ]: 0 : adj_start = hole_start = __drm_mm_hole_node_start(hole);
417 : 0 : adj_end = hole_end = hole_start + hole->hole_size;
418 : :
419 [ # # ]: 0 : if (mm->color_adjust)
420 : 0 : mm->color_adjust(hole, node->color, &adj_start, &adj_end);
421 : :
422 [ # # # # ]: 0 : if (adj_start > node->start || adj_end < end)
423 : : return -ENOSPC;
424 : :
425 : 0 : node->mm = mm;
426 : :
427 : 0 : __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
428 : 0 : list_add(&node->node_list, &hole->node_list);
429 : 0 : drm_mm_interval_tree_add_node(hole, node);
430 : 0 : node->hole_size = 0;
431 : :
432 : 0 : rm_hole(hole);
433 [ # # ]: 0 : if (node->start > hole_start)
434 : 0 : add_hole(hole);
435 [ # # ]: 0 : if (end < hole_end)
436 : 0 : add_hole(node);
437 : :
438 : : save_stack(node);
439 : : return 0;
440 : : }
441 : : EXPORT_SYMBOL(drm_mm_reserve_node);
442 : :
443 : 0 : static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
444 : : {
445 : 0 : return rb ? rb_to_hole_size(rb) : 0;
446 : : }
447 : :
448 : : /**
449 : : * drm_mm_insert_node_in_range - ranged search for space and insert @node
450 : : * @mm: drm_mm to allocate from
451 : : * @node: preallocate node to insert
452 : : * @size: size of the allocation
453 : : * @alignment: alignment of the allocation
454 : : * @color: opaque tag value to use for this node
455 : : * @range_start: start of the allowed range for this node
456 : : * @range_end: end of the allowed range for this node
457 : : * @mode: fine-tune the allocation search and placement
458 : : *
459 : : * The preallocated @node must be cleared to 0.
460 : : *
461 : : * Returns:
462 : : * 0 on success, -ENOSPC if there's no suitable hole.
463 : : */
464 : 0 : int drm_mm_insert_node_in_range(struct drm_mm * const mm,
465 : : struct drm_mm_node * const node,
466 : : u64 size, u64 alignment,
467 : : unsigned long color,
468 : : u64 range_start, u64 range_end,
469 : : enum drm_mm_insert_mode mode)
470 : : {
471 : 0 : struct drm_mm_node *hole;
472 : 0 : u64 remainder_mask;
473 : 0 : bool once;
474 : :
475 : 0 : DRM_MM_BUG_ON(range_start > range_end);
476 : :
477 [ # # # # ]: 0 : if (unlikely(size == 0 || range_end - range_start < size))
478 : : return -ENOSPC;
479 : :
480 [ # # # # ]: 0 : if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
481 : : return -ENOSPC;
482 : :
483 [ # # ]: 0 : if (alignment <= 1)
484 : 0 : alignment = 0;
485 : :
486 : 0 : once = mode & DRM_MM_INSERT_ONCE;
487 : 0 : mode &= ~DRM_MM_INSERT_ONCE;
488 : :
489 [ # # # # ]: 0 : remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
490 : 0 : for (hole = first_hole(mm, range_start, range_end, size, mode);
491 [ # # ]: 0 : hole;
492 : 0 : hole = once ? NULL : next_hole(mm, hole, mode)) {
493 [ # # ]: 0 : u64 hole_start = __drm_mm_hole_node_start(hole);
494 : 0 : u64 hole_end = hole_start + hole->hole_size;
495 : 0 : u64 adj_start, adj_end;
496 : 0 : u64 col_start, col_end;
497 : :
498 [ # # ]: 0 : if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
499 : : break;
500 : :
501 [ # # ]: 0 : if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
502 : : break;
503 : :
504 : 0 : col_start = hole_start;
505 : 0 : col_end = hole_end;
506 [ # # ]: 0 : if (mm->color_adjust)
507 : 0 : mm->color_adjust(hole, color, &col_start, &col_end);
508 : :
509 : 0 : adj_start = max(col_start, range_start);
510 : 0 : adj_end = min(col_end, range_end);
511 : :
512 [ # # # # ]: 0 : if (adj_end <= adj_start || adj_end - adj_start < size)
513 [ # # ]: 0 : continue;
514 : :
515 [ # # ]: 0 : if (mode == DRM_MM_INSERT_HIGH)
516 : 0 : adj_start = adj_end - size;
517 : :
518 [ # # ]: 0 : if (alignment) {
519 : 0 : u64 rem;
520 : :
521 [ # # ]: 0 : if (likely(remainder_mask))
522 : 0 : rem = adj_start & remainder_mask;
523 : : else
524 : 0 : div64_u64_rem(adj_start, alignment, &rem);
525 [ # # ]: 0 : if (rem) {
526 : 0 : adj_start -= rem;
527 [ # # ]: 0 : if (mode != DRM_MM_INSERT_HIGH)
528 : 0 : adj_start += alignment;
529 : :
530 [ # # ]: 0 : if (adj_start < max(col_start, range_start) ||
531 [ # # ]: 0 : min(col_end, range_end) - adj_start < size)
532 : 0 : continue;
533 : :
534 [ # # ]: 0 : if (adj_end <= adj_start ||
535 : : adj_end - adj_start < size)
536 : 0 : continue;
537 : : }
538 : : }
539 : :
540 : 0 : node->mm = mm;
541 : 0 : node->size = size;
542 : 0 : node->start = adj_start;
543 : 0 : node->color = color;
544 : 0 : node->hole_size = 0;
545 : :
546 : 0 : __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
547 : 0 : list_add(&node->node_list, &hole->node_list);
548 : 0 : drm_mm_interval_tree_add_node(hole, node);
549 : :
550 : 0 : rm_hole(hole);
551 [ # # ]: 0 : if (adj_start > hole_start)
552 : 0 : add_hole(hole);
553 [ # # ]: 0 : if (adj_start + size < hole_end)
554 : 0 : add_hole(node);
555 : :
556 : 0 : save_stack(node);
557 : 0 : return 0;
558 : : }
559 : :
560 : : return -ENOSPC;
561 : : }
562 : : EXPORT_SYMBOL(drm_mm_insert_node_in_range);
563 : :
564 : : static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
565 : : {
566 : : return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
567 : : }
568 : :
569 : : /**
570 : : * drm_mm_remove_node - Remove a memory node from the allocator.
571 : : * @node: drm_mm_node to remove
572 : : *
573 : : * This just removes a node from its drm_mm allocator. The node does not need to
574 : : * be cleared again before it can be re-inserted into this or any other drm_mm
575 : : * allocator. It is a bug to call this function on a unallocated node.
576 : : */
577 : 0 : void drm_mm_remove_node(struct drm_mm_node *node)
578 : : {
579 : 0 : struct drm_mm *mm = node->mm;
580 : 0 : struct drm_mm_node *prev_node;
581 : :
582 : 0 : DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
583 : 0 : DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
584 : :
585 : 0 : prev_node = list_prev_entry(node, node_list);
586 : :
587 [ # # ]: 0 : if (drm_mm_hole_follows(node))
588 : 0 : rm_hole(node);
589 : :
590 : 0 : drm_mm_interval_tree_remove(node, &mm->interval_tree);
591 [ # # ]: 0 : list_del(&node->node_list);
592 : :
593 [ # # ]: 0 : if (drm_mm_hole_follows(prev_node))
594 : 0 : rm_hole(prev_node);
595 : 0 : add_hole(prev_node);
596 : :
597 : 0 : clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
598 : 0 : }
599 : : EXPORT_SYMBOL(drm_mm_remove_node);
600 : :
601 : : /**
602 : : * drm_mm_replace_node - move an allocation from @old to @new
603 : : * @old: drm_mm_node to remove from the allocator
604 : : * @new: drm_mm_node which should inherit @old's allocation
605 : : *
606 : : * This is useful for when drivers embed the drm_mm_node structure and hence
607 : : * can't move allocations by reassigning pointers. It's a combination of remove
608 : : * and insert with the guarantee that the allocation start will match.
609 : : */
610 : 0 : void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
611 : : {
612 : 0 : struct drm_mm *mm = old->mm;
613 : :
614 : 0 : DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
615 : :
616 : 0 : *new = *old;
617 : :
618 : 0 : __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
619 [ # # ]: 0 : list_replace(&old->node_list, &new->node_list);
620 [ # # ]: 0 : rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
621 : :
622 [ # # ]: 0 : if (drm_mm_hole_follows(old)) {
623 [ # # ]: 0 : list_replace(&old->hole_stack, &new->hole_stack);
624 [ # # ]: 0 : rb_replace_node_cached(&old->rb_hole_size,
625 : : &new->rb_hole_size,
626 : : &mm->holes_size);
627 : 0 : rb_replace_node(&old->rb_hole_addr,
628 : : &new->rb_hole_addr,
629 : : &mm->holes_addr);
630 : : }
631 : :
632 : 0 : clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
633 : 0 : }
634 : : EXPORT_SYMBOL(drm_mm_replace_node);
635 : :
636 : : /**
637 : : * DOC: lru scan roster
638 : : *
639 : : * Very often GPUs need to have continuous allocations for a given object. When
640 : : * evicting objects to make space for a new one it is therefore not most
641 : : * efficient when we simply start to select all objects from the tail of an LRU
642 : : * until there's a suitable hole: Especially for big objects or nodes that
643 : : * otherwise have special allocation constraints there's a good chance we evict
644 : : * lots of (smaller) objects unnecessarily.
645 : : *
646 : : * The DRM range allocator supports this use-case through the scanning
647 : : * interfaces. First a scan operation needs to be initialized with
648 : : * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
649 : : * objects to the roster, probably by walking an LRU list, but this can be
650 : : * freely implemented. Eviction candiates are added using
651 : : * drm_mm_scan_add_block() until a suitable hole is found or there are no
652 : : * further evictable objects. Eviction roster metadata is tracked in &struct
653 : : * drm_mm_scan.
654 : : *
655 : : * The driver must walk through all objects again in exactly the reverse
656 : : * order to restore the allocator state. Note that while the allocator is used
657 : : * in the scan mode no other operation is allowed.
658 : : *
659 : : * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
660 : : * reported true) in the scan, and any overlapping nodes after color adjustment
661 : : * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
662 : : * since freeing a node is also O(1) the overall complexity is
663 : : * O(scanned_objects). So like the free stack which needs to be walked before a
664 : : * scan operation even begins this is linear in the number of objects. It
665 : : * doesn't seem to hurt too badly.
666 : : */
667 : :
668 : : /**
669 : : * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
670 : : * @scan: scan state
671 : : * @mm: drm_mm to scan
672 : : * @size: size of the allocation
673 : : * @alignment: alignment of the allocation
674 : : * @color: opaque tag value to use for the allocation
675 : : * @start: start of the allowed range for the allocation
676 : : * @end: end of the allowed range for the allocation
677 : : * @mode: fine-tune the allocation search and placement
678 : : *
679 : : * This simply sets up the scanning routines with the parameters for the desired
680 : : * hole.
681 : : *
682 : : * Warning:
683 : : * As long as the scan list is non-empty, no other operations than
684 : : * adding/removing nodes to/from the scan list are allowed.
685 : : */
686 : 0 : void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
687 : : struct drm_mm *mm,
688 : : u64 size,
689 : : u64 alignment,
690 : : unsigned long color,
691 : : u64 start,
692 : : u64 end,
693 : : enum drm_mm_insert_mode mode)
694 : : {
695 : 0 : DRM_MM_BUG_ON(start >= end);
696 : 0 : DRM_MM_BUG_ON(!size || size > end - start);
697 : 0 : DRM_MM_BUG_ON(mm->scan_active);
698 : :
699 : 0 : scan->mm = mm;
700 : :
701 [ # # ]: 0 : if (alignment <= 1)
702 : 0 : alignment = 0;
703 : :
704 : 0 : scan->color = color;
705 : 0 : scan->alignment = alignment;
706 [ # # # # ]: 0 : scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
707 : 0 : scan->size = size;
708 : 0 : scan->mode = mode;
709 : :
710 : 0 : DRM_MM_BUG_ON(end <= start);
711 : 0 : scan->range_start = start;
712 : 0 : scan->range_end = end;
713 : :
714 : 0 : scan->hit_start = U64_MAX;
715 : 0 : scan->hit_end = 0;
716 : 0 : }
717 : : EXPORT_SYMBOL(drm_mm_scan_init_with_range);
718 : :
719 : : /**
720 : : * drm_mm_scan_add_block - add a node to the scan list
721 : : * @scan: the active drm_mm scanner
722 : : * @node: drm_mm_node to add
723 : : *
724 : : * Add a node to the scan list that might be freed to make space for the desired
725 : : * hole.
726 : : *
727 : : * Returns:
728 : : * True if a hole has been found, false otherwise.
729 : : */
730 : 0 : bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
731 : : struct drm_mm_node *node)
732 : : {
733 : 0 : struct drm_mm *mm = scan->mm;
734 : 0 : struct drm_mm_node *hole;
735 : 0 : u64 hole_start, hole_end;
736 : 0 : u64 col_start, col_end;
737 : 0 : u64 adj_start, adj_end;
738 : :
739 : 0 : DRM_MM_BUG_ON(node->mm != mm);
740 : 0 : DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
741 : 0 : DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
742 : 0 : __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
743 : 0 : mm->scan_active++;
744 : :
745 : : /* Remove this block from the node_list so that we enlarge the hole
746 : : * (distance between the end of our previous node and the start of
747 : : * or next), without poisoning the link so that we can restore it
748 : : * later in drm_mm_scan_remove_block().
749 : : */
750 : 0 : hole = list_prev_entry(node, node_list);
751 : 0 : DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
752 [ # # ]: 0 : __list_del_entry(&node->node_list);
753 : :
754 [ # # ]: 0 : hole_start = __drm_mm_hole_node_start(hole);
755 [ # # ]: 0 : hole_end = __drm_mm_hole_node_end(hole);
756 : :
757 : 0 : col_start = hole_start;
758 : 0 : col_end = hole_end;
759 [ # # ]: 0 : if (mm->color_adjust)
760 : 0 : mm->color_adjust(hole, scan->color, &col_start, &col_end);
761 : :
762 : 0 : adj_start = max(col_start, scan->range_start);
763 : 0 : adj_end = min(col_end, scan->range_end);
764 [ # # # # ]: 0 : if (adj_end <= adj_start || adj_end - adj_start < scan->size)
765 : : return false;
766 : :
767 [ # # ]: 0 : if (scan->mode == DRM_MM_INSERT_HIGH)
768 : 0 : adj_start = adj_end - scan->size;
769 : :
770 [ # # ]: 0 : if (scan->alignment) {
771 : 0 : u64 rem;
772 : :
773 [ # # ]: 0 : if (likely(scan->remainder_mask))
774 : 0 : rem = adj_start & scan->remainder_mask;
775 : : else
776 : 0 : div64_u64_rem(adj_start, scan->alignment, &rem);
777 [ # # ]: 0 : if (rem) {
778 : 0 : adj_start -= rem;
779 [ # # ]: 0 : if (scan->mode != DRM_MM_INSERT_HIGH)
780 : 0 : adj_start += scan->alignment;
781 [ # # ]: 0 : if (adj_start < max(col_start, scan->range_start) ||
782 [ # # ]: 0 : min(col_end, scan->range_end) - adj_start < scan->size)
783 : : return false;
784 : :
785 [ # # ]: 0 : if (adj_end <= adj_start ||
786 : : adj_end - adj_start < scan->size)
787 : : return false;
788 : : }
789 : : }
790 : :
791 : 0 : scan->hit_start = adj_start;
792 : 0 : scan->hit_end = adj_start + scan->size;
793 : :
794 : 0 : DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
795 : 0 : DRM_MM_BUG_ON(scan->hit_start < hole_start);
796 : 0 : DRM_MM_BUG_ON(scan->hit_end > hole_end);
797 : :
798 : 0 : return true;
799 : : }
800 : : EXPORT_SYMBOL(drm_mm_scan_add_block);
801 : :
802 : : /**
803 : : * drm_mm_scan_remove_block - remove a node from the scan list
804 : : * @scan: the active drm_mm scanner
805 : : * @node: drm_mm_node to remove
806 : : *
807 : : * Nodes **must** be removed in exactly the reverse order from the scan list as
808 : : * they have been added (e.g. using list_add() as they are added and then
809 : : * list_for_each() over that eviction list to remove), otherwise the internal
810 : : * state of the memory manager will be corrupted.
811 : : *
812 : : * When the scan list is empty, the selected memory nodes can be freed. An
813 : : * immediately following drm_mm_insert_node_in_range_generic() or one of the
814 : : * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
815 : : * the just freed block (because it's at the top of the free_stack list).
816 : : *
817 : : * Returns:
818 : : * True if this block should be evicted, false otherwise. Will always
819 : : * return false when no hole has been found.
820 : : */
821 : 0 : bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
822 : : struct drm_mm_node *node)
823 : : {
824 : 0 : struct drm_mm_node *prev_node;
825 : :
826 : 0 : DRM_MM_BUG_ON(node->mm != scan->mm);
827 : 0 : DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
828 : 0 : __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
829 : :
830 : 0 : DRM_MM_BUG_ON(!node->mm->scan_active);
831 : 0 : node->mm->scan_active--;
832 : :
833 : : /* During drm_mm_scan_add_block() we decoupled this node leaving
834 : : * its pointers intact. Now that the caller is walking back along
835 : : * the eviction list we can restore this block into its rightful
836 : : * place on the full node_list. To confirm that the caller is walking
837 : : * backwards correctly we check that prev_node->next == node->next,
838 : : * i.e. both believe the same node should be on the other side of the
839 : : * hole.
840 : : */
841 : 0 : prev_node = list_prev_entry(node, node_list);
842 : 0 : DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
843 : : list_next_entry(node, node_list));
844 [ # # ]: 0 : list_add(&node->node_list, &prev_node->node_list);
845 : :
846 [ # # ]: 0 : return (node->start + node->size > scan->hit_start &&
847 [ # # ]: 0 : node->start < scan->hit_end);
848 : : }
849 : : EXPORT_SYMBOL(drm_mm_scan_remove_block);
850 : :
851 : : /**
852 : : * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
853 : : * @scan: drm_mm scan with target hole
854 : : *
855 : : * After completing an eviction scan and removing the selected nodes, we may
856 : : * need to remove a few more nodes from either side of the target hole if
857 : : * mm.color_adjust is being used.
858 : : *
859 : : * Returns:
860 : : * A node to evict, or NULL if there are no overlapping nodes.
861 : : */
862 : 0 : struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
863 : : {
864 : 0 : struct drm_mm *mm = scan->mm;
865 : 0 : struct drm_mm_node *hole;
866 : 0 : u64 hole_start, hole_end;
867 : :
868 : 0 : DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
869 : :
870 [ # # ]: 0 : if (!mm->color_adjust)
871 : : return NULL;
872 : :
873 : : /*
874 : : * The hole found during scanning should ideally be the first element
875 : : * in the hole_stack list, but due to side-effects in the driver it
876 : : * may not be.
877 : : */
878 [ # # ]: 0 : list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
879 [ # # ]: 0 : hole_start = __drm_mm_hole_node_start(hole);
880 : 0 : hole_end = hole_start + hole->hole_size;
881 : :
882 [ # # ]: 0 : if (hole_start <= scan->hit_start &&
883 [ # # ]: 0 : hole_end >= scan->hit_end)
884 : : break;
885 : : }
886 : :
887 : : /* We should only be called after we found the hole previously */
888 : 0 : DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
889 [ # # ]: 0 : if (unlikely(&hole->hole_stack == &mm->hole_stack))
890 : : return NULL;
891 : :
892 : 0 : DRM_MM_BUG_ON(hole_start > scan->hit_start);
893 : 0 : DRM_MM_BUG_ON(hole_end < scan->hit_end);
894 : :
895 : 0 : mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
896 [ # # ]: 0 : if (hole_start > scan->hit_start)
897 : : return hole;
898 [ # # ]: 0 : if (hole_end < scan->hit_end)
899 : 0 : return list_next_entry(hole, node_list);
900 : :
901 : : return NULL;
902 : : }
903 : : EXPORT_SYMBOL(drm_mm_scan_color_evict);
904 : :
905 : : /**
906 : : * drm_mm_init - initialize a drm-mm allocator
907 : : * @mm: the drm_mm structure to initialize
908 : : * @start: start of the range managed by @mm
909 : : * @size: end of the range managed by @mm
910 : : *
911 : : * Note that @mm must be cleared to 0 before calling this function.
912 : : */
913 : 0 : void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
914 : : {
915 : 0 : DRM_MM_BUG_ON(start + size <= start);
916 : :
917 : 0 : mm->color_adjust = NULL;
918 : :
919 : 0 : INIT_LIST_HEAD(&mm->hole_stack);
920 : 0 : mm->interval_tree = RB_ROOT_CACHED;
921 : 0 : mm->holes_size = RB_ROOT_CACHED;
922 : 0 : mm->holes_addr = RB_ROOT;
923 : :
924 : : /* Clever trick to avoid a special case in the free hole tracking. */
925 : 0 : INIT_LIST_HEAD(&mm->head_node.node_list);
926 : 0 : mm->head_node.flags = 0;
927 : 0 : mm->head_node.mm = mm;
928 : 0 : mm->head_node.start = start + size;
929 : 0 : mm->head_node.size = -size;
930 : 0 : add_hole(&mm->head_node);
931 : :
932 : 0 : mm->scan_active = 0;
933 : 0 : }
934 : : EXPORT_SYMBOL(drm_mm_init);
935 : :
936 : : /**
937 : : * drm_mm_takedown - clean up a drm_mm allocator
938 : : * @mm: drm_mm allocator to clean up
939 : : *
940 : : * Note that it is a bug to call this function on an allocator which is not
941 : : * clean.
942 : : */
943 : 0 : void drm_mm_takedown(struct drm_mm *mm)
944 : : {
945 [ # # ]: 0 : if (WARN(!drm_mm_clean(mm),
946 : : "Memory manager not clean during takedown.\n"))
947 : : show_leaks(mm);
948 : 0 : }
949 : : EXPORT_SYMBOL(drm_mm_takedown);
950 : :
951 : 0 : static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
952 : : {
953 : 0 : u64 start, size;
954 : :
955 : 0 : size = entry->hole_size;
956 [ # # ]: 0 : if (size) {
957 : 0 : start = drm_mm_hole_node_start(entry);
958 : 0 : drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
959 : : start, start + size, size);
960 : : }
961 : :
962 : 0 : return size;
963 : : }
964 : : /**
965 : : * drm_mm_print - print allocator state
966 : : * @mm: drm_mm allocator to print
967 : : * @p: DRM printer to use
968 : : */
969 : 0 : void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
970 : : {
971 : 0 : const struct drm_mm_node *entry;
972 : 0 : u64 total_used = 0, total_free = 0, total = 0;
973 : :
974 : 0 : total_free += drm_mm_dump_hole(p, &mm->head_node);
975 : :
976 [ # # ]: 0 : drm_mm_for_each_node(entry, mm) {
977 : 0 : drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
978 : 0 : entry->start + entry->size, entry->size);
979 : 0 : total_used += entry->size;
980 : 0 : total_free += drm_mm_dump_hole(p, entry);
981 : : }
982 : 0 : total = total_free + total_used;
983 : :
984 : 0 : drm_printf(p, "total: %llu, used %llu free %llu\n", total,
985 : : total_used, total_free);
986 : 0 : }
987 : : EXPORT_SYMBOL(drm_mm_print);
|