Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0 */
2 : : /*
3 : : * Latched RB-trees
4 : : *
5 : : * Copyright (C) 2015 Intel Corp., Peter Zijlstra <peterz@infradead.org>
6 : : *
7 : : * Since RB-trees have non-atomic modifications they're not immediately suited
8 : : * for RCU/lockless queries. Even though we made RB-tree lookups non-fatal for
9 : : * lockless lookups; we cannot guarantee they return a correct result.
10 : : *
11 : : * The simplest solution is a seqlock + RB-tree, this will allow lockless
12 : : * lookups; but has the constraint (inherent to the seqlock) that read sides
13 : : * cannot nest in write sides.
14 : : *
15 : : * If we need to allow unconditional lookups (say as required for NMI context
16 : : * usage) we need a more complex setup; this data structure provides this by
17 : : * employing the latch technique -- see @raw_write_seqcount_latch -- to
18 : : * implement a latched RB-tree which does allow for unconditional lookups by
19 : : * virtue of always having (at least) one stable copy of the tree.
20 : : *
21 : : * However, while we have the guarantee that there is at all times one stable
22 : : * copy, this does not guarantee an iteration will not observe modifications.
23 : : * What might have been a stable copy at the start of the iteration, need not
24 : : * remain so for the duration of the iteration.
25 : : *
26 : : * Therefore, this does require a lockless RB-tree iteration to be non-fatal;
27 : : * see the comment in lib/rbtree.c. Note however that we only require the first
28 : : * condition -- not seeing partial stores -- because the latch thing isolates
29 : : * us from loops. If we were to interrupt a modification the lookup would be
30 : : * pointed at the stable tree and complete while the modification was halted.
31 : : */
32 : :
33 : : #ifndef RB_TREE_LATCH_H
34 : : #define RB_TREE_LATCH_H
35 : :
36 : : #include <linux/rbtree.h>
37 : : #include <linux/seqlock.h>
38 : : #include <linux/rcupdate.h>
39 : :
40 : : struct latch_tree_node {
41 : : struct rb_node node[2];
42 : : };
43 : :
44 : : struct latch_tree_root {
45 : : seqcount_t seq;
46 : : struct rb_root tree[2];
47 : : };
48 : :
49 : : /**
50 : : * latch_tree_ops - operators to define the tree order
51 : : * @less: used for insertion; provides the (partial) order between two elements.
52 : : * @comp: used for lookups; provides the order between the search key and an element.
53 : : *
54 : : * The operators are related like:
55 : : *
56 : : * comp(a->key,b) < 0 := less(a,b)
57 : : * comp(a->key,b) > 0 := less(b,a)
58 : : * comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
59 : : *
60 : : * If these operators define a partial order on the elements we make no
61 : : * guarantee on which of the elements matching the key is found. See
62 : : * latch_tree_find().
63 : : */
64 : : struct latch_tree_ops {
65 : : bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b);
66 : : int (*comp)(void *key, struct latch_tree_node *b);
67 : : };
68 : :
69 : : static __always_inline struct latch_tree_node *
70 : 22 : __lt_from_rb(struct rb_node *node, int idx)
71 : : {
72 : 22 : return container_of(node, struct latch_tree_node, node[idx]);
73 : : }
74 : :
75 : : static __always_inline void
76 : 44 : __lt_insert(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx,
77 : : bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b))
78 : : {
79 : 44 : struct rb_root *root = <r->tree[idx];
80 : 44 : struct rb_node **link = &root->rb_node;
81 : 44 : struct rb_node *node = <n->node[idx];
82 : 44 : struct rb_node *parent = NULL;
83 : 44 : struct latch_tree_node *ltp;
84 : :
85 [ + + + + ]: 66 : while (*link) {
86 : 22 : parent = *link;
87 : 22 : ltp = __lt_from_rb(parent, idx);
88 : :
89 [ - + - + ]: 22 : if (less(ltn, ltp))
90 : 0 : link = &parent->rb_left;
91 : : else
92 : 22 : link = &parent->rb_right;
93 : : }
94 : :
95 : 44 : rb_link_node_rcu(node, parent, link);
96 : 44 : rb_insert_color(node, root);
97 : : }
98 : :
99 : : static __always_inline void
100 : 22 : __lt_erase(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx)
101 : : {
102 : 22 : rb_erase(<n->node[idx], <r->tree[idx]);
103 : : }
104 : :
105 : : static __always_inline struct latch_tree_node *
106 : 0 : __lt_find(void *key, struct latch_tree_root *ltr, int idx,
107 : : int (*comp)(void *key, struct latch_tree_node *node))
108 : : {
109 : 0 : struct rb_node *node = rcu_dereference_raw(ltr->tree[idx].rb_node);
110 : 0 : struct latch_tree_node *ltn;
111 : 0 : int c;
112 : :
113 [ # # ]: 0 : while (node) {
114 : 0 : ltn = __lt_from_rb(node, idx);
115 : 0 : c = comp(key, ltn);
116 : :
117 [ # # ]: 0 : if (c < 0)
118 : 0 : node = rcu_dereference_raw(node->rb_left);
119 [ # # ]: 0 : else if (c > 0)
120 : 0 : node = rcu_dereference_raw(node->rb_right);
121 : : else
122 : : return ltn;
123 : : }
124 : :
125 : : return NULL;
126 : : }
127 : :
128 : : /**
129 : : * latch_tree_insert() - insert @node into the trees @root
130 : : * @node: nodes to insert
131 : : * @root: trees to insert @node into
132 : : * @ops: operators defining the node order
133 : : *
134 : : * It inserts @node into @root in an ordered fashion such that we can always
135 : : * observe one complete tree. See the comment for raw_write_seqcount_latch().
136 : : *
137 : : * The inserts use rcu_assign_pointer() to publish the element such that the
138 : : * tree structure is stored before we can observe the new @node.
139 : : *
140 : : * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
141 : : * serialized.
142 : : */
143 : : static __always_inline void
144 : 22 : latch_tree_insert(struct latch_tree_node *node,
145 : : struct latch_tree_root *root,
146 : : const struct latch_tree_ops *ops)
147 : : {
148 : 22 : raw_write_seqcount_latch(&root->seq);
149 : 22 : __lt_insert(node, root, 0, ops->less);
150 : 22 : raw_write_seqcount_latch(&root->seq);
151 : 22 : __lt_insert(node, root, 1, ops->less);
152 : : }
153 : :
154 : : /**
155 : : * latch_tree_erase() - removes @node from the trees @root
156 : : * @node: nodes to remote
157 : : * @root: trees to remove @node from
158 : : * @ops: operators defining the node order
159 : : *
160 : : * Removes @node from the trees @root in an ordered fashion such that we can
161 : : * always observe one complete tree. See the comment for
162 : : * raw_write_seqcount_latch().
163 : : *
164 : : * It is assumed that @node will observe one RCU quiescent state before being
165 : : * reused of freed.
166 : : *
167 : : * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
168 : : * serialized.
169 : : */
170 : : static __always_inline void
171 : 11 : latch_tree_erase(struct latch_tree_node *node,
172 : : struct latch_tree_root *root,
173 : : const struct latch_tree_ops *ops)
174 : : {
175 : 11 : raw_write_seqcount_latch(&root->seq);
176 : 11 : __lt_erase(node, root, 0);
177 : 11 : raw_write_seqcount_latch(&root->seq);
178 : 11 : __lt_erase(node, root, 1);
179 : : }
180 : :
181 : : /**
182 : : * latch_tree_find() - find the node matching @key in the trees @root
183 : : * @key: search key
184 : : * @root: trees to search for @key
185 : : * @ops: operators defining the node order
186 : : *
187 : : * Does a lockless lookup in the trees @root for the node matching @key.
188 : : *
189 : : * It is assumed that this is called while holding the appropriate RCU read
190 : : * side lock.
191 : : *
192 : : * If the operators define a partial order on the elements (there are multiple
193 : : * elements which have the same key value) it is undefined which of these
194 : : * elements will be found. Nor is it possible to iterate the tree to find
195 : : * further elements with the same key value.
196 : : *
197 : : * Returns: a pointer to the node matching @key or NULL.
198 : : */
199 : : static __always_inline struct latch_tree_node *
200 : 0 : latch_tree_find(void *key, struct latch_tree_root *root,
201 : : const struct latch_tree_ops *ops)
202 : : {
203 : 0 : struct latch_tree_node *node;
204 : 0 : unsigned int seq;
205 : :
206 : 0 : do {
207 : 0 : seq = raw_read_seqcount_latch(&root->seq);
208 : 0 : node = __lt_find(key, root, seq & 1, ops->comp);
209 [ # # ]: 0 : } while (read_seqcount_retry(&root->seq, seq));
210 : :
211 [ # # ]: 0 : return node;
212 : : }
213 : :
214 : : #endif /* RB_TREE_LATCH_H */
|