Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0
2 : : /*
3 : : * Setup routines for AGP 3.5 compliant bridges.
4 : : */
5 : :
6 : : #include <linux/list.h>
7 : : #include <linux/pci.h>
8 : : #include <linux/agp_backend.h>
9 : : #include <linux/module.h>
10 : : #include <linux/slab.h>
11 : :
12 : : #include "agp.h"
13 : :
14 : : /* Generic AGP 3.5 enabling routines */
15 : :
16 : : struct agp_3_5_dev {
17 : : struct list_head list;
18 : : u8 capndx;
19 : : u32 maxbw;
20 : : struct pci_dev *dev;
21 : : };
22 : :
23 : : static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24 : : {
25 : : struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26 : : struct list_head *pos;
27 : :
28 : : list_for_each(pos, head) {
29 : : cur = list_entry(pos, struct agp_3_5_dev, list);
30 : : if (cur->maxbw > n->maxbw)
31 : : break;
32 : : }
33 : : list_add_tail(new, pos);
34 : : }
35 : :
36 : : static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37 : : {
38 : : struct agp_3_5_dev *cur;
39 : : struct pci_dev *dev;
40 : : struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41 : : u32 nistat;
42 : :
43 : : INIT_LIST_HEAD(head);
44 : :
45 : : for (pos=start; pos!=head; ) {
46 : : cur = list_entry(pos, struct agp_3_5_dev, list);
47 : : dev = cur->dev;
48 : :
49 : : pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50 : : cur->maxbw = (nistat >> 16) & 0xff;
51 : :
52 : : tmp = pos;
53 : : pos = pos->next;
54 : : agp_3_5_dev_list_insert(head, tmp);
55 : : }
56 : : }
57 : :
58 : : /*
59 : : * Initialize all isochronous transfer parameters for an AGP 3.0
60 : : * node (i.e. a host bridge in combination with the adapters
61 : : * lying behind it...)
62 : : */
63 : :
64 : : static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65 : : struct agp_3_5_dev *dev_list, unsigned int ndevs)
66 : : {
67 : : /*
68 : : * Convenience structure to make the calculations clearer
69 : : * here. The field names come straight from the AGP 3.0 spec.
70 : : */
71 : : struct isoch_data {
72 : : u32 maxbw;
73 : : u32 n;
74 : : u32 y;
75 : : u32 l;
76 : : u32 rq;
77 : : struct agp_3_5_dev *dev;
78 : : };
79 : :
80 : : struct pci_dev *td = bridge->dev, *dev;
81 : : struct list_head *head = &dev_list->list, *pos;
82 : : struct agp_3_5_dev *cur;
83 : : struct isoch_data *master, target;
84 : : unsigned int cdev = 0;
85 : : u32 mnistat, tnistat, tstatus, mcmd;
86 : : u16 tnicmd, mnicmd;
87 : : u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88 : : u32 step, rem, rem_isoch, rem_async;
89 : : int ret = 0;
90 : :
91 : : /*
92 : : * We'll work with an array of isoch_data's (one for each
93 : : * device in dev_list) throughout this function.
94 : : */
95 : : master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
96 : : if (master == NULL) {
97 : : ret = -ENOMEM;
98 : : goto get_out;
99 : : }
100 : :
101 : : /*
102 : : * Sort the device list by maxbw. We need to do this because the
103 : : * spec suggests that the devices with the smallest requirements
104 : : * have their resources allocated first, with all remaining resources
105 : : * falling to the device with the largest requirement.
106 : : *
107 : : * We don't exactly do this, we divide target resources by ndevs
108 : : * and split them amongst the AGP 3.0 devices. The remainder of such
109 : : * division operations are dropped on the last device, sort of like
110 : : * the spec mentions it should be done.
111 : : *
112 : : * We can't do this sort when we initially construct the dev_list
113 : : * because we don't know until this function whether isochronous
114 : : * transfers are enabled and consequently whether maxbw will mean
115 : : * anything.
116 : : */
117 : : agp_3_5_dev_list_sort(dev_list, ndevs);
118 : :
119 : : pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120 : : pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121 : :
122 : : /* Extract power-on defaults from the target */
123 : : target.maxbw = (tnistat >> 16) & 0xff;
124 : : target.n = (tnistat >> 8) & 0xff;
125 : : target.y = (tnistat >> 6) & 0x3;
126 : : target.l = (tnistat >> 3) & 0x7;
127 : : target.rq = (tstatus >> 24) & 0xff;
128 : :
129 : : y_max = target.y;
130 : :
131 : : /*
132 : : * Extract power-on defaults for each device in dev_list. Along
133 : : * the way, calculate the total isochronous bandwidth required
134 : : * by these devices and the largest requested payload size.
135 : : */
136 : : list_for_each(pos, head) {
137 : : cur = list_entry(pos, struct agp_3_5_dev, list);
138 : : dev = cur->dev;
139 : :
140 : : pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141 : :
142 : : master[cdev].maxbw = (mnistat >> 16) & 0xff;
143 : : master[cdev].n = (mnistat >> 8) & 0xff;
144 : : master[cdev].y = (mnistat >> 6) & 0x3;
145 : : master[cdev].dev = cur;
146 : :
147 : : tot_bw += master[cdev].maxbw;
148 : : y_max = max(y_max, master[cdev].y);
149 : :
150 : : cdev++;
151 : : }
152 : :
153 : : /* Check if this configuration has any chance of working */
154 : : if (tot_bw > target.maxbw) {
155 : : dev_err(&td->dev, "isochronous bandwidth required "
156 : : "by AGP 3.0 devices exceeds that which is supported by "
157 : : "the AGP 3.0 bridge!\n");
158 : : ret = -ENODEV;
159 : : goto free_and_exit;
160 : : }
161 : :
162 : : target.y = y_max;
163 : :
164 : : /*
165 : : * Write the calculated payload size into the target's NICMD
166 : : * register. Doing this directly effects the ISOCH_N value
167 : : * in the target's NISTAT register, so we need to do this now
168 : : * to get an accurate value for ISOCH_N later.
169 : : */
170 : : pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171 : : tnicmd &= ~(0x3 << 6);
172 : : tnicmd |= target.y << 6;
173 : : pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174 : :
175 : : /* Reread the target's ISOCH_N */
176 : : pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177 : : target.n = (tnistat >> 8) & 0xff;
178 : :
179 : : /* Calculate the minimum ISOCH_N needed by each master */
180 : : for (cdev=0; cdev<ndevs; cdev++) {
181 : : master[cdev].y = target.y;
182 : : master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183 : :
184 : : tot_n += master[cdev].n;
185 : : }
186 : :
187 : : /* Exit if the minimal ISOCH_N allocation among the masters is more
188 : : * than the target can handle. */
189 : : if (tot_n > target.n) {
190 : : dev_err(&td->dev, "number of isochronous "
191 : : "transactions per period required by AGP 3.0 devices "
192 : : "exceeds that which is supported by the AGP 3.0 "
193 : : "bridge!\n");
194 : : ret = -ENODEV;
195 : : goto free_and_exit;
196 : : }
197 : :
198 : : /* Calculate left over ISOCH_N capability in the target. We'll give
199 : : * this to the hungriest device (as per the spec) */
200 : : rem = target.n - tot_n;
201 : :
202 : : /*
203 : : * Calculate the minimum isochronous RQ depth needed by each master.
204 : : * Along the way, distribute the extra ISOCH_N capability calculated
205 : : * above.
206 : : */
207 : : for (cdev=0; cdev<ndevs; cdev++) {
208 : : /*
209 : : * This is a little subtle. If ISOCH_Y > 64B, then ISOCH_Y
210 : : * byte isochronous writes will be broken into 64B pieces.
211 : : * This means we need to budget more RQ depth to account for
212 : : * these kind of writes (each isochronous write is actually
213 : : * many writes on the AGP bus).
214 : : */
215 : : master[cdev].rq = master[cdev].n;
216 : : if (master[cdev].y > 0x1)
217 : : master[cdev].rq *= (1 << (master[cdev].y - 1));
218 : :
219 : : tot_rq += master[cdev].rq;
220 : : }
221 : : master[ndevs-1].n += rem;
222 : :
223 : : /* Figure the number of isochronous and asynchronous RQ slots the
224 : : * target is providing. */
225 : : rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226 : : rq_async = target.rq - rq_isoch;
227 : :
228 : : /* Exit if the minimal RQ needs of the masters exceeds what the target
229 : : * can provide. */
230 : : if (tot_rq > rq_isoch) {
231 : : dev_err(&td->dev, "number of request queue slots "
232 : : "required by the isochronous bandwidth requested by "
233 : : "AGP 3.0 devices exceeds the number provided by the "
234 : : "AGP 3.0 bridge!\n");
235 : : ret = -ENODEV;
236 : : goto free_and_exit;
237 : : }
238 : :
239 : : /* Calculate asynchronous RQ capability in the target (per master) as
240 : : * well as the total number of leftover isochronous RQ slots. */
241 : : step = rq_async / ndevs;
242 : : rem_async = step + (rq_async % ndevs);
243 : : rem_isoch = rq_isoch - tot_rq;
244 : :
245 : : /* Distribute the extra RQ slots calculated above and write our
246 : : * isochronous settings out to the actual devices. */
247 : : for (cdev=0; cdev<ndevs; cdev++) {
248 : : cur = master[cdev].dev;
249 : : dev = cur->dev;
250 : :
251 : : master[cdev].rq += (cdev == ndevs - 1)
252 : : ? (rem_async + rem_isoch) : step;
253 : :
254 : : pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255 : : pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256 : :
257 : : mnicmd &= ~(0xff << 8);
258 : : mnicmd &= ~(0x3 << 6);
259 : : mcmd &= ~(0xff << 24);
260 : :
261 : : mnicmd |= master[cdev].n << 8;
262 : : mnicmd |= master[cdev].y << 6;
263 : : mcmd |= master[cdev].rq << 24;
264 : :
265 : : pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266 : : pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267 : : }
268 : :
269 : : free_and_exit:
270 : : kfree(master);
271 : :
272 : : get_out:
273 : : return ret;
274 : : }
275 : :
276 : : /*
277 : : * This function basically allocates request queue slots among the
278 : : * AGP 3.0 systems in nonisochronous nodes. The algorithm is
279 : : * pretty stupid, divide the total number of RQ slots provided by the
280 : : * target by ndevs. Distribute this many slots to each AGP 3.0 device,
281 : : * giving any left over slots to the last device in dev_list.
282 : : */
283 : : static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284 : : struct agp_3_5_dev *dev_list, unsigned int ndevs)
285 : : {
286 : : struct agp_3_5_dev *cur;
287 : : struct list_head *head = &dev_list->list, *pos;
288 : : u32 tstatus, mcmd;
289 : : u32 trq, mrq, rem;
290 : : unsigned int cdev = 0;
291 : :
292 : : pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293 : :
294 : : trq = (tstatus >> 24) & 0xff;
295 : : mrq = trq / ndevs;
296 : :
297 : : rem = mrq + (trq % ndevs);
298 : :
299 : : for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300 : : cur = list_entry(pos, struct agp_3_5_dev, list);
301 : :
302 : : pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303 : : mcmd &= ~(0xff << 24);
304 : : mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305 : : pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306 : : }
307 : : }
308 : :
309 : : /*
310 : : * Fully configure and enable an AGP 3.0 host bridge and all the devices
311 : : * lying behind it.
312 : : */
313 : 0 : int agp_3_5_enable(struct agp_bridge_data *bridge)
314 : : {
315 : 0 : struct pci_dev *td = bridge->dev, *dev = NULL;
316 : 0 : u8 mcapndx;
317 : 0 : u32 isoch;
318 : 0 : u32 tstatus, mstatus, ncapid;
319 : 0 : u32 mmajor;
320 : 0 : u16 mpstat;
321 : 0 : struct agp_3_5_dev *dev_list, *cur;
322 : 0 : struct list_head *head, *pos;
323 : 0 : unsigned int ndevs = 0;
324 : 0 : int ret = 0;
325 : :
326 : : /* Extract some power-on defaults from the target */
327 : 0 : pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328 : 0 : isoch = (tstatus >> 17) & 0x1;
329 [ # # ]: 0 : if (isoch == 0) /* isoch xfers not available, bail out. */
330 : : return -ENODEV;
331 : :
332 : : /*
333 : : * Allocate a head for our AGP 3.5 device list
334 : : * (multiple AGP v3 devices are allowed behind a single bridge).
335 : : */
336 [ # # ]: 0 : if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337 : 0 : ret = -ENOMEM;
338 : 0 : goto get_out;
339 : : }
340 : 0 : head = &dev_list->list;
341 : 0 : INIT_LIST_HEAD(head);
342 : :
343 : : /* Find all AGP devices, and add them to dev_list. */
344 [ # # ]: 0 : for_each_pci_dev(dev) {
345 : 0 : mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346 [ # # ]: 0 : if (mcapndx == 0)
347 : 0 : continue;
348 : :
349 [ # # # # ]: 0 : switch ((dev->class >>8) & 0xff00) {
350 : 0 : case 0x0600: /* Bridge */
351 : : /* Skip bridges. We should call this function for each one. */
352 : 0 : continue;
353 : :
354 : : case 0x0001: /* Unclassified device */
355 : : /* Don't know what this is, but log it for investigation. */
356 : 0 : if (mcapndx != 0) {
357 [ # # ]: 0 : dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358 : : pci_name(dev),
359 : : dev->vendor, dev->device);
360 : : }
361 : 0 : continue;
362 : :
363 : : case 0x0300: /* Display controller */
364 : : case 0x0400: /* Multimedia controller */
365 [ # # ]: 0 : if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366 : 0 : ret = -ENOMEM;
367 : 0 : goto free_and_exit;
368 : : }
369 : 0 : cur->dev = dev;
370 : :
371 : 0 : pos = &cur->list;
372 : 0 : list_add(pos, head);
373 : 0 : ndevs++;
374 : 0 : continue;
375 : :
376 : 0 : default:
377 : 0 : continue;
378 : : }
379 : : }
380 : :
381 : : /*
382 : : * Take an initial pass through the devices lying behind our host
383 : : * bridge. Make sure each one is actually an AGP 3.0 device, otherwise
384 : : * exit with an error message. Along the way store the AGP 3.0
385 : : * cap_ptr for each device
386 : : */
387 [ # # ]: 0 : list_for_each(pos, head) {
388 : 0 : cur = list_entry(pos, struct agp_3_5_dev, list);
389 : 0 : dev = cur->dev;
390 : :
391 : 0 : pci_read_config_word(dev, PCI_STATUS, &mpstat);
392 [ # # ]: 0 : if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393 : 0 : continue;
394 : :
395 : 0 : pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396 [ # # ]: 0 : if (mcapndx != 0) {
397 : 0 : do {
398 : 0 : pci_read_config_dword(dev, mcapndx, &ncapid);
399 [ # # ]: 0 : if ((ncapid & 0xff) != 2)
400 : 0 : mcapndx = (ncapid >> 8) & 0xff;
401 : : }
402 [ # # # # ]: 0 : while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403 : : }
404 : :
405 [ # # ]: 0 : if (mcapndx == 0) {
406 [ # # ]: 0 : dev_err(&td->dev, "woah! Non-AGP device %s on "
407 : : "secondary bus of AGP 3.5 bridge!\n",
408 : : pci_name(dev));
409 : 0 : ret = -ENODEV;
410 : 0 : goto free_and_exit;
411 : : }
412 : :
413 : 0 : mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414 [ # # ]: 0 : if (mmajor < 3) {
415 [ # # ]: 0 : dev_err(&td->dev, "woah! AGP 2.0 device %s on "
416 : : "secondary bus of AGP 3.5 bridge operating "
417 : : "with AGP 3.0 electricals!\n", pci_name(dev));
418 : 0 : ret = -ENODEV;
419 : 0 : goto free_and_exit;
420 : : }
421 : :
422 : 0 : cur->capndx = mcapndx;
423 : :
424 : 0 : pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425 : :
426 [ # # ]: 0 : if (((mstatus >> 3) & 0x1) == 0) {
427 [ # # ]: 0 : dev_err(&td->dev, "woah! AGP 3.x device %s not "
428 : : "operating in AGP 3.x mode on secondary bus "
429 : : "of AGP 3.5 bridge operating with AGP 3.0 "
430 : : "electricals!\n", pci_name(dev));
431 : 0 : ret = -ENODEV;
432 : 0 : goto free_and_exit;
433 : : }
434 : : }
435 : :
436 : : /*
437 : : * Call functions to divide target resources amongst the AGP 3.0
438 : : * masters. This process is dramatically different depending on
439 : : * whether isochronous transfers are supported.
440 : : */
441 : 0 : if (isoch) {
442 : 0 : ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443 [ # # ]: 0 : if (ret) {
444 : 0 : dev_info(&td->dev, "something bad happened setting "
445 : : "up isochronous xfers; falling back to "
446 : : "non-isochronous xfer mode\n");
447 : : } else {
448 : 0 : goto free_and_exit;
449 : : }
450 : : }
451 : 0 : agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452 : :
453 : 0 : free_and_exit:
454 : : /* Be sure to free the dev_list */
455 [ # # ]: 0 : for (pos=head->next; pos!=head; ) {
456 : 0 : cur = list_entry(pos, struct agp_3_5_dev, list);
457 : :
458 : 0 : pos = pos->next;
459 : 0 : kfree(cur);
460 : : }
461 : 0 : kfree(dev_list);
462 : :
463 : : get_out:
464 : : return ret;
465 : : }
|