Branch data Line data Source code
1 : : /*
2 : : * Copyright © 2015-2016 Intel Corporation
3 : : *
4 : : * Permission is hereby granted, free of charge, to any person obtaining a
5 : : * copy of this software and associated documentation files (the "Software"),
6 : : * to deal in the Software without restriction, including without limitation
7 : : * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 : : * and/or sell copies of the Software, and to permit persons to whom the
9 : : * Software is furnished to do so, subject to the following conditions:
10 : : *
11 : : * The above copyright notice and this permission notice (including the next
12 : : * paragraph) shall be included in all copies or substantial portions of the
13 : : * Software.
14 : : *
15 : : * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 : : * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 : : * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 : : * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 : : * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 : : * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 : : * IN THE SOFTWARE.
22 : : *
23 : : * Authors:
24 : : * Robert Bragg <robert@sixbynine.org>
25 : : */
26 : :
27 : :
28 : : /**
29 : : * DOC: i915 Perf Overview
30 : : *
31 : : * Gen graphics supports a large number of performance counters that can help
32 : : * driver and application developers understand and optimize their use of the
33 : : * GPU.
34 : : *
35 : : * This i915 perf interface enables userspace to configure and open a file
36 : : * descriptor representing a stream of GPU metrics which can then be read() as
37 : : * a stream of sample records.
38 : : *
39 : : * The interface is particularly suited to exposing buffered metrics that are
40 : : * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 : : *
42 : : * Streams representing a single context are accessible to applications with a
43 : : * corresponding drm file descriptor, such that OpenGL can use the interface
44 : : * without special privileges. Access to system-wide metrics requires root
45 : : * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 : : * sysctl option.
47 : : *
48 : : */
49 : :
50 : : /**
51 : : * DOC: i915 Perf History and Comparison with Core Perf
52 : : *
53 : : * The interface was initially inspired by the core Perf infrastructure but
54 : : * some notable differences are:
55 : : *
56 : : * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 : : * a perf event primarily corresponds to a single 64bit value, while a stream
58 : : * might sample sets of tightly-coupled counters, depending on the
59 : : * configuration. For example the Gen OA unit isn't designed to support
60 : : * orthogonal configurations of individual counters; it's configured for a set
61 : : * of related counters. Samples for an i915 perf stream capturing OA metrics
62 : : * will include a set of counter values packed in a compact HW specific format.
63 : : * The OA unit supports a number of different packing formats which can be
64 : : * selected by the user opening the stream. Perf has support for grouping
65 : : * events, but each event in the group is configured, validated and
66 : : * authenticated individually with separate system calls.
67 : : *
68 : : * i915 perf stream configurations are provided as an array of u64 (key,value)
69 : : * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 : : * interleaved with event-type specific members.
71 : : *
72 : : * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 : : * The supported metrics are being written to memory by the GPU unsynchronized
74 : : * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 : : * the constraints on HW configuration require reports to be filtered before it
76 : : * would be acceptable to expose them to unprivileged applications - to hide
77 : : * the metrics of other processes/contexts. For these use cases a read() based
78 : : * interface is a good fit, and provides an opportunity to filter data as it
79 : : * gets copied from the GPU mapped buffers to userspace buffers.
80 : : *
81 : : *
82 : : * Issues hit with first prototype based on Core Perf
83 : : * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 : : *
85 : : * The first prototype of this driver was based on the core perf
86 : : * infrastructure, and while we did make that mostly work, with some changes to
87 : : * perf, we found we were breaking or working around too many assumptions baked
88 : : * into perf's currently cpu centric design.
89 : : *
90 : : * In the end we didn't see a clear benefit to making perf's implementation and
91 : : * interface more complex by changing design assumptions while we knew we still
92 : : * wouldn't be able to use any existing perf based userspace tools.
93 : : *
94 : : * Also considering the Gen specific nature of the Observability hardware and
95 : : * how userspace will sometimes need to combine i915 perf OA metrics with
96 : : * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 : : * expecting the interface to be used by a platform specific userspace such as
98 : : * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 : : * a standard vendor/architecture agnostic interface by not using perf.
100 : : *
101 : : *
102 : : * For posterity, in case we might re-visit trying to adapt core perf to be
103 : : * better suited to exposing i915 metrics these were the main pain points we
104 : : * hit:
105 : : *
106 : : * - The perf based OA PMU driver broke some significant design assumptions:
107 : : *
108 : : * Existing perf pmus are used for profiling work on a cpu and we were
109 : : * introducing the idea of _IS_DEVICE pmus with different security
110 : : * implications, the need to fake cpu-related data (such as user/kernel
111 : : * registers) to fit with perf's current design, and adding _DEVICE records
112 : : * as a way to forward device-specific status records.
113 : : *
114 : : * The OA unit writes reports of counters into a circular buffer, without
115 : : * involvement from the CPU, making our PMU driver the first of a kind.
116 : : *
117 : : * Given the way we were periodically forward data from the GPU-mapped, OA
118 : : * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 : : * we were sampling too fast and so we had to subvert its throttling checks.
120 : : *
121 : : * Perf supports groups of counters and allows those to be read via
122 : : * transactions internally but transactions currently seem designed to be
123 : : * explicitly initiated from the cpu (say in response to a userspace read())
124 : : * and while we could pull a report out of the OA buffer we can't
125 : : * trigger a report from the cpu on demand.
126 : : *
127 : : * Related to being report based; the OA counters are configured in HW as a
128 : : * set while perf generally expects counter configurations to be orthogonal.
129 : : * Although counters can be associated with a group leader as they are
130 : : * opened, there's no clear precedent for being able to provide group-wide
131 : : * configuration attributes (for example we want to let userspace choose the
132 : : * OA unit report format used to capture all counters in a set, or specify a
133 : : * GPU context to filter metrics on). We avoided using perf's grouping
134 : : * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 : : * field. This suited our userspace well considering how coupled the counters
136 : : * are when dealing with normalizing. It would be inconvenient to split
137 : : * counters up into separate events, only to require userspace to recombine
138 : : * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 : : * for combining with the side-band raw reports it captures using
140 : : * MI_REPORT_PERF_COUNT commands.
141 : : *
142 : : * - As a side note on perf's grouping feature; there was also some concern
143 : : * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 : : * would quite drastically inflate our sample sizes, which would likely
145 : : * lower the effective sampling resolutions we could use when the available
146 : : * memory bandwidth is limited.
147 : : *
148 : : * With the OA unit's report formats, counters are packed together as 32
149 : : * or 40bit values, with the largest report size being 256 bytes.
150 : : *
151 : : * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 : : * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 : : * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 : : *
155 : : * Related to counter orthogonality; we can't time share the OA unit, while
156 : : * event scheduling is a central design idea within perf for allowing
157 : : * userspace to open + enable more events than can be configured in HW at any
158 : : * one time. The OA unit is not designed to allow re-configuration while in
159 : : * use. We can't reconfigure the OA unit without losing internal OA unit
160 : : * state which we can't access explicitly to save and restore. Reconfiguring
161 : : * the OA unit is also relatively slow, involving ~100 register writes. From
162 : : * userspace Mesa also depends on a stable OA configuration when emitting
163 : : * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 : : * disabled while there are outstanding MI_RPC commands lest we hang the
165 : : * command streamer.
166 : : *
167 : : * The contents of sample records aren't extensible by device drivers (i.e.
168 : : * the sample_type bits). As an example; Sourab Gupta had been looking to
169 : : * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 : : * into sample records by using the 'raw' field, but it's tricky to pack more
171 : : * than one thing into this field because events/core.c currently only lets a
172 : : * pmu give a single raw data pointer plus len which will be copied into the
173 : : * ring buffer. To include more than the OA report we'd have to copy the
174 : : * report into an intermediate larger buffer. I'd been considering allowing a
175 : : * vector of data+len values to be specified for copying the raw data, but
176 : : * it felt like a kludge to being using the raw field for this purpose.
177 : : *
178 : : * - It felt like our perf based PMU was making some technical compromises
179 : : * just for the sake of using perf:
180 : : *
181 : : * perf_event_open() requires events to either relate to a pid or a specific
182 : : * cpu core, while our device pmu related to neither. Events opened with a
183 : : * pid will be automatically enabled/disabled according to the scheduling of
184 : : * that process - so not appropriate for us. When an event is related to a
185 : : * cpu id, perf ensures pmu methods will be invoked via an inter process
186 : : * interrupt on that core. To avoid invasive changes our userspace opened OA
187 : : * perf events for a specific cpu. This was workable but it meant the
188 : : * majority of the OA driver ran in atomic context, including all OA report
189 : : * forwarding, which wasn't really necessary in our case and seems to make
190 : : * our locking requirements somewhat complex as we handled the interaction
191 : : * with the rest of the i915 driver.
192 : : */
193 : :
194 : : #include <linux/anon_inodes.h>
195 : : #include <linux/sizes.h>
196 : : #include <linux/uuid.h>
197 : :
198 : : #include "gem/i915_gem_context.h"
199 : : #include "gt/intel_engine_pm.h"
200 : : #include "gt/intel_engine_user.h"
201 : : #include "gt/intel_gt.h"
202 : : #include "gt/intel_lrc_reg.h"
203 : : #include "gt/intel_ring.h"
204 : :
205 : : #include "i915_drv.h"
206 : : #include "i915_perf.h"
207 : : #include "oa/i915_oa_hsw.h"
208 : : #include "oa/i915_oa_bdw.h"
209 : : #include "oa/i915_oa_chv.h"
210 : : #include "oa/i915_oa_sklgt2.h"
211 : : #include "oa/i915_oa_sklgt3.h"
212 : : #include "oa/i915_oa_sklgt4.h"
213 : : #include "oa/i915_oa_bxt.h"
214 : : #include "oa/i915_oa_kblgt2.h"
215 : : #include "oa/i915_oa_kblgt3.h"
216 : : #include "oa/i915_oa_glk.h"
217 : : #include "oa/i915_oa_cflgt2.h"
218 : : #include "oa/i915_oa_cflgt3.h"
219 : : #include "oa/i915_oa_cnl.h"
220 : : #include "oa/i915_oa_icl.h"
221 : : #include "oa/i915_oa_tgl.h"
222 : :
223 : : /* HW requires this to be a power of two, between 128k and 16M, though driver
224 : : * is currently generally designed assuming the largest 16M size is used such
225 : : * that the overflow cases are unlikely in normal operation.
226 : : */
227 : : #define OA_BUFFER_SIZE SZ_16M
228 : :
229 : : #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
230 : :
231 : : /**
232 : : * DOC: OA Tail Pointer Race
233 : : *
234 : : * There's a HW race condition between OA unit tail pointer register updates and
235 : : * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 : : * been written out to the OA buffer so far (in terms of what's visible to the
237 : : * CPU).
238 : : *
239 : : * Although this can be observed explicitly while copying reports to userspace
240 : : * by checking for a zeroed report-id field in tail reports, we want to account
241 : : * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
242 : : * read() attempts.
243 : : *
244 : : * In effect we define a tail pointer for reading that lags the real tail
245 : : * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 : : * time for the corresponding reports to become visible to the CPU.
247 : : *
248 : : * To manage this we actually track two tail pointers:
249 : : * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 : : * can trust the corresponding data is visible to the CPU; at which point
251 : : * it is considered 'aged'.
252 : : * 2) An 'aged' tail that can be used for read()ing.
253 : : *
254 : : * The two separate pointers let us decouple read()s from tail pointer aging.
255 : : *
256 : : * The tail pointers are checked and updated at a limited rate within a hrtimer
257 : : * callback (the same callback that is used for delivering EPOLLIN events)
258 : : *
259 : : * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 : : * indicates that an updated tail pointer is needed.
261 : : *
262 : : * Most of the implementation details for this workaround are in
263 : : * oa_buffer_check_unlocked() and _append_oa_reports()
264 : : *
265 : : * Note for posterity: previously the driver used to define an effective tail
266 : : * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 : : * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 : : * This was flawed considering that the OA unit may also automatically generate
269 : : * non-periodic reports (such as on context switch) or the OA unit may be
270 : : * enabled without any periodic sampling.
271 : : */
272 : : #define OA_TAIL_MARGIN_NSEC 100000ULL
273 : : #define INVALID_TAIL_PTR 0xffffffff
274 : :
275 : : /* frequency for checking whether the OA unit has written new reports to the
276 : : * circular OA buffer...
277 : : */
278 : : #define POLL_FREQUENCY 200
279 : : #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
280 : :
281 : : /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
282 : : static u32 i915_perf_stream_paranoid = true;
283 : :
284 : : /* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 : : * of the 64bit timestamp bits to trigger reports from) but there's currently
286 : : * no known use case for sampling as infrequently as once per 47 thousand years.
287 : : *
288 : : * Since the timestamps included in OA reports are only 32bits it seems
289 : : * reasonable to limit the OA exponent where it's still possible to account for
290 : : * overflow in OA report timestamps.
291 : : */
292 : : #define OA_EXPONENT_MAX 31
293 : :
294 : : #define INVALID_CTX_ID 0xffffffff
295 : :
296 : : /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297 : : #define OAREPORT_REASON_MASK 0x3f
298 : : #define OAREPORT_REASON_MASK_EXTENDED 0x7f
299 : : #define OAREPORT_REASON_SHIFT 19
300 : : #define OAREPORT_REASON_TIMER (1<<0)
301 : : #define OAREPORT_REASON_CTX_SWITCH (1<<3)
302 : : #define OAREPORT_REASON_CLK_RATIO (1<<5)
303 : :
304 : :
305 : : /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
306 : : *
307 : : * The highest sampling frequency we can theoretically program the OA unit
308 : : * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
309 : : *
310 : : * Initialized just before we register the sysctl parameter.
311 : : */
312 : : static int oa_sample_rate_hard_limit;
313 : :
314 : : /* Theoretically we can program the OA unit to sample every 160ns but don't
315 : : * allow that by default unless root...
316 : : *
317 : : * The default threshold of 100000Hz is based on perf's similar
318 : : * kernel.perf_event_max_sample_rate sysctl parameter.
319 : : */
320 : : static u32 i915_oa_max_sample_rate = 100000;
321 : :
322 : : /* XXX: beware if future OA HW adds new report formats that the current
323 : : * code assumes all reports have a power-of-two size and ~(size - 1) can
324 : : * be used as a mask to align the OA tail pointer.
325 : : */
326 : : static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
327 : : [I915_OA_FORMAT_A13] = { 0, 64 },
328 : : [I915_OA_FORMAT_A29] = { 1, 128 },
329 : : [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
330 : : /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 : : [I915_OA_FORMAT_B4_C8] = { 4, 64 },
332 : : [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
333 : : [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
334 : : [I915_OA_FORMAT_C4_B8] = { 7, 64 },
335 : : };
336 : :
337 : : static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
338 : : [I915_OA_FORMAT_A12] = { 0, 64 },
339 : : [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
340 : : [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
341 : : [I915_OA_FORMAT_C4_B8] = { 7, 64 },
342 : : };
343 : :
344 : : static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
345 : : [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
346 : : };
347 : :
348 : : #define SAMPLE_OA_REPORT (1<<0)
349 : :
350 : : /**
351 : : * struct perf_open_properties - for validated properties given to open a stream
352 : : * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 : : * @single_context: Whether a single or all gpu contexts should be monitored
354 : : * @hold_preemption: Whether the preemption is disabled for the filtered
355 : : * context
356 : : * @ctx_handle: A gem ctx handle for use with @single_context
357 : : * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 : : * @oa_format: An OA unit HW report format
359 : : * @oa_periodic: Whether to enable periodic OA unit sampling
360 : : * @oa_period_exponent: The OA unit sampling period is derived from this
361 : : * @engine: The engine (typically rcs0) being monitored by the OA unit
362 : : *
363 : : * As read_properties_unlocked() enumerates and validates the properties given
364 : : * to open a stream of metrics the configuration is built up in the structure
365 : : * which starts out zero initialized.
366 : : */
367 : : struct perf_open_properties {
368 : : u32 sample_flags;
369 : :
370 : : u64 single_context:1;
371 : : u64 hold_preemption:1;
372 : : u64 ctx_handle;
373 : :
374 : : /* OA sampling state */
375 : : int metrics_set;
376 : : int oa_format;
377 : : bool oa_periodic;
378 : : int oa_period_exponent;
379 : :
380 : : struct intel_engine_cs *engine;
381 : : };
382 : :
383 : : struct i915_oa_config_bo {
384 : : struct llist_node node;
385 : :
386 : : struct i915_oa_config *oa_config;
387 : : struct i915_vma *vma;
388 : : };
389 : :
390 : : static struct ctl_table_header *sysctl_header;
391 : :
392 : : static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
393 : :
394 : 0 : void i915_oa_config_release(struct kref *ref)
395 : : {
396 : 0 : struct i915_oa_config *oa_config =
397 : 0 : container_of(ref, typeof(*oa_config), ref);
398 : :
399 : 0 : kfree(oa_config->flex_regs);
400 : 0 : kfree(oa_config->b_counter_regs);
401 : 0 : kfree(oa_config->mux_regs);
402 : :
403 [ # # ]: 0 : kfree_rcu(oa_config, rcu);
404 : 0 : }
405 : :
406 : : struct i915_oa_config *
407 : 0 : i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
408 : : {
409 : 0 : struct i915_oa_config *oa_config;
410 : :
411 : 0 : rcu_read_lock();
412 [ # # ]: 0 : if (metrics_set == 1)
413 : 0 : oa_config = &perf->test_config;
414 : : else
415 : 0 : oa_config = idr_find(&perf->metrics_idr, metrics_set);
416 [ # # ]: 0 : if (oa_config)
417 : 0 : oa_config = i915_oa_config_get(oa_config);
418 : 0 : rcu_read_unlock();
419 : :
420 : 0 : return oa_config;
421 : : }
422 : :
423 : 0 : static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
424 : : {
425 : 0 : i915_oa_config_put(oa_bo->oa_config);
426 : 0 : i915_vma_put(oa_bo->vma);
427 : 0 : kfree(oa_bo);
428 : 0 : }
429 : :
430 : 0 : static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
431 : : {
432 : 0 : struct intel_uncore *uncore = stream->uncore;
433 : :
434 : 0 : return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
435 : : GEN12_OAG_OATAILPTR_MASK;
436 : : }
437 : :
438 : 0 : static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
439 : : {
440 : 0 : struct intel_uncore *uncore = stream->uncore;
441 : :
442 : 0 : return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
443 : : }
444 : :
445 : 0 : static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
446 : : {
447 : 0 : struct intel_uncore *uncore = stream->uncore;
448 : 0 : u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
449 : :
450 : 0 : return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
451 : : }
452 : :
453 : : /**
454 : : * oa_buffer_check_unlocked - check for data and update tail ptr state
455 : : * @stream: i915 stream instance
456 : : *
457 : : * This is either called via fops (for blocking reads in user ctx) or the poll
458 : : * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
459 : : * if there is data available for userspace to read.
460 : : *
461 : : * This function is central to providing a workaround for the OA unit tail
462 : : * pointer having a race with respect to what data is visible to the CPU.
463 : : * It is responsible for reading tail pointers from the hardware and giving
464 : : * the pointers time to 'age' before they are made available for reading.
465 : : * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
466 : : *
467 : : * Besides returning true when there is data available to read() this function
468 : : * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
469 : : * and .aged_tail_idx state used for reading.
470 : : *
471 : : * Note: It's safe to read OA config state here unlocked, assuming that this is
472 : : * only called while the stream is enabled, while the global OA configuration
473 : : * can't be modified.
474 : : *
475 : : * Returns: %true if the OA buffer contains data, else %false
476 : : */
477 : 0 : static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
478 : : {
479 : 0 : int report_size = stream->oa_buffer.format_size;
480 : 0 : unsigned long flags;
481 : 0 : unsigned int aged_idx;
482 : 0 : u32 head, hw_tail, aged_tail, aging_tail;
483 : 0 : u64 now;
484 : :
485 : : /* We have to consider the (unlikely) possibility that read() errors
486 : : * could result in an OA buffer reset which might reset the head,
487 : : * tails[] and aged_tail state.
488 : : */
489 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
490 : :
491 : : /* NB: The head we observe here might effectively be a little out of
492 : : * date (between head and tails[aged_idx].offset if there is currently
493 : : * a read() in progress.
494 : : */
495 : 0 : head = stream->oa_buffer.head;
496 : :
497 : 0 : aged_idx = stream->oa_buffer.aged_tail_idx;
498 : 0 : aged_tail = stream->oa_buffer.tails[aged_idx].offset;
499 : 0 : aging_tail = stream->oa_buffer.tails[!aged_idx].offset;
500 : :
501 : 0 : hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
502 : :
503 : : /* The tail pointer increases in 64 byte increments,
504 : : * not in report_size steps...
505 : : */
506 : 0 : hw_tail &= ~(report_size - 1);
507 : :
508 : 0 : now = ktime_get_mono_fast_ns();
509 : :
510 : : /* Update the aged tail
511 : : *
512 : : * Flip the tail pointer available for read()s once the aging tail is
513 : : * old enough to trust that the corresponding data will be visible to
514 : : * the CPU...
515 : : *
516 : : * Do this before updating the aging pointer in case we may be able to
517 : : * immediately start aging a new pointer too (if new data has become
518 : : * available) without needing to wait for a later hrtimer callback.
519 : : */
520 [ # # ]: 0 : if (aging_tail != INVALID_TAIL_PTR &&
521 [ # # ]: 0 : ((now - stream->oa_buffer.aging_timestamp) >
522 : : OA_TAIL_MARGIN_NSEC)) {
523 : :
524 : 0 : aged_idx ^= 1;
525 : 0 : stream->oa_buffer.aged_tail_idx = aged_idx;
526 : :
527 : 0 : aged_tail = aging_tail;
528 : :
529 : : /* Mark that we need a new pointer to start aging... */
530 : 0 : stream->oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
531 : 0 : aging_tail = INVALID_TAIL_PTR;
532 : : }
533 : :
534 : : /* Update the aging tail
535 : : *
536 : : * We throttle aging tail updates until we have a new tail that
537 : : * represents >= one report more data than is already available for
538 : : * reading. This ensures there will be enough data for a successful
539 : : * read once this new pointer has aged and ensures we will give the new
540 : : * pointer time to age.
541 : : */
542 [ # # # # ]: 0 : if (aging_tail == INVALID_TAIL_PTR &&
543 : 0 : (aged_tail == INVALID_TAIL_PTR ||
544 [ # # ]: 0 : OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
545 : 0 : struct i915_vma *vma = stream->oa_buffer.vma;
546 [ # # ]: 0 : u32 gtt_offset = i915_ggtt_offset(vma);
547 : :
548 : : /* Be paranoid and do a bounds check on the pointer read back
549 : : * from hardware, just in case some spurious hardware condition
550 : : * could put the tail out of bounds...
551 : : */
552 [ # # ]: 0 : if (hw_tail >= gtt_offset &&
553 [ # # ]: 0 : hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
554 : 0 : stream->oa_buffer.tails[!aged_idx].offset =
555 : : aging_tail = hw_tail;
556 : 0 : stream->oa_buffer.aging_timestamp = now;
557 : : } else {
558 : 0 : DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
559 : : hw_tail);
560 : : }
561 : : }
562 : :
563 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
564 : :
565 : 0 : return aged_tail == INVALID_TAIL_PTR ?
566 [ # # # # ]: 0 : false : OA_TAKEN(aged_tail, head) >= report_size;
567 : : }
568 : :
569 : : /**
570 : : * append_oa_status - Appends a status record to a userspace read() buffer.
571 : : * @stream: An i915-perf stream opened for OA metrics
572 : : * @buf: destination buffer given by userspace
573 : : * @count: the number of bytes userspace wants to read
574 : : * @offset: (inout): the current position for writing into @buf
575 : : * @type: The kind of status to report to userspace
576 : : *
577 : : * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
578 : : * into the userspace read() buffer.
579 : : *
580 : : * The @buf @offset will only be updated on success.
581 : : *
582 : : * Returns: 0 on success, negative error code on failure.
583 : : */
584 : : static int append_oa_status(struct i915_perf_stream *stream,
585 : : char __user *buf,
586 : : size_t count,
587 : : size_t *offset,
588 : : enum drm_i915_perf_record_type type)
589 : : {
590 : : struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
591 : :
592 : : if ((count - *offset) < header.size)
593 : : return -ENOSPC;
594 : :
595 : : if (copy_to_user(buf + *offset, &header, sizeof(header)))
596 : : return -EFAULT;
597 : :
598 : : (*offset) += header.size;
599 : :
600 : : return 0;
601 : : }
602 : :
603 : : /**
604 : : * append_oa_sample - Copies single OA report into userspace read() buffer.
605 : : * @stream: An i915-perf stream opened for OA metrics
606 : : * @buf: destination buffer given by userspace
607 : : * @count: the number of bytes userspace wants to read
608 : : * @offset: (inout): the current position for writing into @buf
609 : : * @report: A single OA report to (optionally) include as part of the sample
610 : : *
611 : : * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
612 : : * properties when opening a stream, tracked as `stream->sample_flags`. This
613 : : * function copies the requested components of a single sample to the given
614 : : * read() @buf.
615 : : *
616 : : * The @buf @offset will only be updated on success.
617 : : *
618 : : * Returns: 0 on success, negative error code on failure.
619 : : */
620 : 0 : static int append_oa_sample(struct i915_perf_stream *stream,
621 : : char __user *buf,
622 : : size_t count,
623 : : size_t *offset,
624 : : const u8 *report)
625 : : {
626 : 0 : int report_size = stream->oa_buffer.format_size;
627 : 0 : struct drm_i915_perf_record_header header;
628 : 0 : u32 sample_flags = stream->sample_flags;
629 : :
630 : 0 : header.type = DRM_I915_PERF_RECORD_SAMPLE;
631 : 0 : header.pad = 0;
632 : 0 : header.size = stream->sample_size;
633 : :
634 [ # # ]: 0 : if ((count - *offset) < header.size)
635 : : return -ENOSPC;
636 : :
637 : 0 : buf += *offset;
638 [ # # ]: 0 : if (copy_to_user(buf, &header, sizeof(header)))
639 : : return -EFAULT;
640 : 0 : buf += sizeof(header);
641 : :
642 [ # # ]: 0 : if (sample_flags & SAMPLE_OA_REPORT) {
643 [ # # # # ]: 0 : if (copy_to_user(buf, report, report_size))
644 : : return -EFAULT;
645 : : }
646 : :
647 : 0 : (*offset) += header.size;
648 : :
649 : 0 : return 0;
650 : : }
651 : :
652 : : /**
653 : : * Copies all buffered OA reports into userspace read() buffer.
654 : : * @stream: An i915-perf stream opened for OA metrics
655 : : * @buf: destination buffer given by userspace
656 : : * @count: the number of bytes userspace wants to read
657 : : * @offset: (inout): the current position for writing into @buf
658 : : *
659 : : * Notably any error condition resulting in a short read (-%ENOSPC or
660 : : * -%EFAULT) will be returned even though one or more records may
661 : : * have been successfully copied. In this case it's up to the caller
662 : : * to decide if the error should be squashed before returning to
663 : : * userspace.
664 : : *
665 : : * Note: reports are consumed from the head, and appended to the
666 : : * tail, so the tail chases the head?... If you think that's mad
667 : : * and back-to-front you're not alone, but this follows the
668 : : * Gen PRM naming convention.
669 : : *
670 : : * Returns: 0 on success, negative error code on failure.
671 : : */
672 : 0 : static int gen8_append_oa_reports(struct i915_perf_stream *stream,
673 : : char __user *buf,
674 : : size_t count,
675 : : size_t *offset)
676 : : {
677 : 0 : struct intel_uncore *uncore = stream->uncore;
678 : 0 : int report_size = stream->oa_buffer.format_size;
679 : 0 : u8 *oa_buf_base = stream->oa_buffer.vaddr;
680 [ # # ]: 0 : u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
681 : 0 : u32 mask = (OA_BUFFER_SIZE - 1);
682 : 0 : size_t start_offset = *offset;
683 : 0 : unsigned long flags;
684 : 0 : unsigned int aged_tail_idx;
685 : 0 : u32 head, tail;
686 : 0 : u32 taken;
687 : 0 : int ret = 0;
688 : :
689 [ # # # # ]: 0 : if (WARN_ON(!stream->enabled))
690 : : return -EIO;
691 : :
692 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
693 : :
694 : 0 : head = stream->oa_buffer.head;
695 : 0 : aged_tail_idx = stream->oa_buffer.aged_tail_idx;
696 : 0 : tail = stream->oa_buffer.tails[aged_tail_idx].offset;
697 : :
698 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
699 : :
700 : : /*
701 : : * An invalid tail pointer here means we're still waiting for the poll
702 : : * hrtimer callback to give us a pointer
703 : : */
704 [ # # ]: 0 : if (tail == INVALID_TAIL_PTR)
705 : : return -EAGAIN;
706 : :
707 : : /*
708 : : * NB: oa_buffer.head/tail include the gtt_offset which we don't want
709 : : * while indexing relative to oa_buf_base.
710 : : */
711 : 0 : head -= gtt_offset;
712 : 0 : tail -= gtt_offset;
713 : :
714 : : /*
715 : : * An out of bounds or misaligned head or tail pointer implies a driver
716 : : * bug since we validate + align the tail pointers we read from the
717 : : * hardware and we are in full control of the head pointer which should
718 : : * only be incremented by multiples of the report size (notably also
719 : : * all a power of two).
720 : : */
721 [ # # # # : 0 : if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
# # # # #
# # # #
# ]
722 : : tail > OA_BUFFER_SIZE || tail % report_size,
723 : : "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
724 : : head, tail))
725 : : return -EIO;
726 : :
727 : :
728 : 0 : for (/* none */;
729 [ # # ]: 0 : (taken = OA_TAKEN(tail, head));
730 : 0 : head = (head + report_size) & mask) {
731 : 0 : u8 *report = oa_buf_base + head;
732 : 0 : u32 *report32 = (void *)report;
733 : 0 : u32 ctx_id;
734 : 0 : u32 reason;
735 : :
736 : : /*
737 : : * All the report sizes factor neatly into the buffer
738 : : * size so we never expect to see a report split
739 : : * between the beginning and end of the buffer.
740 : : *
741 : : * Given the initial alignment check a misalignment
742 : : * here would imply a driver bug that would result
743 : : * in an overrun.
744 : : */
745 [ # # # # ]: 0 : if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
746 : 0 : DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
747 : 0 : break;
748 : : }
749 : :
750 : : /*
751 : : * The reason field includes flags identifying what
752 : : * triggered this specific report (mostly timer
753 : : * triggered or e.g. due to a context switch).
754 : : *
755 : : * This field is never expected to be zero so we can
756 : : * check that the report isn't invalid before copying
757 : : * it to userspace...
758 : : */
759 : 0 : reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
760 : 0 : (IS_GEN(stream->perf->i915, 12) ?
761 [ # # ]: 0 : OAREPORT_REASON_MASK_EXTENDED :
762 : : OAREPORT_REASON_MASK));
763 [ # # ]: 0 : if (reason == 0) {
764 [ # # ]: 0 : if (__ratelimit(&stream->perf->spurious_report_rs))
765 : 0 : DRM_NOTE("Skipping spurious, invalid OA report\n");
766 : 0 : continue;
767 : : }
768 : :
769 : 0 : ctx_id = report32[2] & stream->specific_ctx_id_mask;
770 : :
771 : : /*
772 : : * Squash whatever is in the CTX_ID field if it's marked as
773 : : * invalid to be sure we avoid false-positive, single-context
774 : : * filtering below...
775 : : *
776 : : * Note: that we don't clear the valid_ctx_bit so userspace can
777 : : * understand that the ID has been squashed by the kernel.
778 : : */
779 [ # # # # ]: 0 : if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
780 : : INTEL_GEN(stream->perf->i915) <= 11)
781 : 0 : ctx_id = report32[2] = INVALID_CTX_ID;
782 : :
783 : : /*
784 : : * NB: For Gen 8 the OA unit no longer supports clock gating
785 : : * off for a specific context and the kernel can't securely
786 : : * stop the counters from updating as system-wide / global
787 : : * values.
788 : : *
789 : : * Automatic reports now include a context ID so reports can be
790 : : * filtered on the cpu but it's not worth trying to
791 : : * automatically subtract/hide counter progress for other
792 : : * contexts while filtering since we can't stop userspace
793 : : * issuing MI_REPORT_PERF_COUNT commands which would still
794 : : * provide a side-band view of the real values.
795 : : *
796 : : * To allow userspace (such as Mesa/GL_INTEL_performance_query)
797 : : * to normalize counters for a single filtered context then it
798 : : * needs be forwarded bookend context-switch reports so that it
799 : : * can track switches in between MI_REPORT_PERF_COUNT commands
800 : : * and can itself subtract/ignore the progress of counters
801 : : * associated with other contexts. Note that the hardware
802 : : * automatically triggers reports when switching to a new
803 : : * context which are tagged with the ID of the newly active
804 : : * context. To avoid the complexity (and likely fragility) of
805 : : * reading ahead while parsing reports to try and minimize
806 : : * forwarding redundant context switch reports (i.e. between
807 : : * other, unrelated contexts) we simply elect to forward them
808 : : * all.
809 : : *
810 : : * We don't rely solely on the reason field to identify context
811 : : * switches since it's not-uncommon for periodic samples to
812 : : * identify a switch before any 'context switch' report.
813 : : */
814 [ # # ]: 0 : if (!stream->perf->exclusive_stream->ctx ||
815 [ # # ]: 0 : stream->specific_ctx_id == ctx_id ||
816 [ # # ]: 0 : stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
817 [ # # ]: 0 : reason & OAREPORT_REASON_CTX_SWITCH) {
818 : :
819 : : /*
820 : : * While filtering for a single context we avoid
821 : : * leaking the IDs of other contexts.
822 : : */
823 [ # # ]: 0 : if (stream->perf->exclusive_stream->ctx &&
824 [ # # ]: 0 : stream->specific_ctx_id != ctx_id) {
825 : 0 : report32[2] = INVALID_CTX_ID;
826 : : }
827 : :
828 : 0 : ret = append_oa_sample(stream, buf, count, offset,
829 : : report);
830 [ # # ]: 0 : if (ret)
831 : : break;
832 : :
833 : 0 : stream->oa_buffer.last_ctx_id = ctx_id;
834 : : }
835 : :
836 : : /*
837 : : * The above reason field sanity check is based on
838 : : * the assumption that the OA buffer is initially
839 : : * zeroed and we reset the field after copying so the
840 : : * check is still meaningful once old reports start
841 : : * being overwritten.
842 : : */
843 : 0 : report32[0] = 0;
844 : : }
845 : :
846 [ # # ]: 0 : if (start_offset != *offset) {
847 : 0 : i915_reg_t oaheadptr;
848 : :
849 [ # # ]: 0 : oaheadptr = IS_GEN(stream->perf->i915, 12) ?
850 : : GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
851 : :
852 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
853 : :
854 : : /*
855 : : * We removed the gtt_offset for the copy loop above, indexing
856 : : * relative to oa_buf_base so put back here...
857 : : */
858 : 0 : head += gtt_offset;
859 : 0 : intel_uncore_write(uncore, oaheadptr,
860 : : head & GEN12_OAG_OAHEADPTR_MASK);
861 : 0 : stream->oa_buffer.head = head;
862 : :
863 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
864 : : }
865 : :
866 : : return ret;
867 : : }
868 : :
869 : : /**
870 : : * gen8_oa_read - copy status records then buffered OA reports
871 : : * @stream: An i915-perf stream opened for OA metrics
872 : : * @buf: destination buffer given by userspace
873 : : * @count: the number of bytes userspace wants to read
874 : : * @offset: (inout): the current position for writing into @buf
875 : : *
876 : : * Checks OA unit status registers and if necessary appends corresponding
877 : : * status records for userspace (such as for a buffer full condition) and then
878 : : * initiate appending any buffered OA reports.
879 : : *
880 : : * Updates @offset according to the number of bytes successfully copied into
881 : : * the userspace buffer.
882 : : *
883 : : * NB: some data may be successfully copied to the userspace buffer
884 : : * even if an error is returned, and this is reflected in the
885 : : * updated @offset.
886 : : *
887 : : * Returns: zero on success or a negative error code
888 : : */
889 : 0 : static int gen8_oa_read(struct i915_perf_stream *stream,
890 : : char __user *buf,
891 : : size_t count,
892 : : size_t *offset)
893 : : {
894 : 0 : struct intel_uncore *uncore = stream->uncore;
895 : 0 : u32 oastatus;
896 : 0 : i915_reg_t oastatus_reg;
897 : 0 : int ret;
898 : :
899 [ # # # # ]: 0 : if (WARN_ON(!stream->oa_buffer.vaddr))
900 : : return -EIO;
901 : :
902 [ # # ]: 0 : oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
903 : : GEN12_OAG_OASTATUS : GEN8_OASTATUS;
904 : :
905 : 0 : oastatus = intel_uncore_read(uncore, oastatus_reg);
906 : :
907 : : /*
908 : : * We treat OABUFFER_OVERFLOW as a significant error:
909 : : *
910 : : * Although theoretically we could handle this more gracefully
911 : : * sometimes, some Gens don't correctly suppress certain
912 : : * automatically triggered reports in this condition and so we
913 : : * have to assume that old reports are now being trampled
914 : : * over.
915 : : *
916 : : * Considering how we don't currently give userspace control
917 : : * over the OA buffer size and always configure a large 16MB
918 : : * buffer, then a buffer overflow does anyway likely indicate
919 : : * that something has gone quite badly wrong.
920 : : */
921 [ # # ]: 0 : if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
922 : 0 : ret = append_oa_status(stream, buf, count, offset,
923 : : DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
924 [ # # ]: 0 : if (ret)
925 : : return ret;
926 : :
927 : 0 : DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
928 : : stream->period_exponent);
929 : :
930 : 0 : stream->perf->ops.oa_disable(stream);
931 : 0 : stream->perf->ops.oa_enable(stream);
932 : :
933 : : /*
934 : : * Note: .oa_enable() is expected to re-init the oabuffer and
935 : : * reset GEN8_OASTATUS for us
936 : : */
937 : 0 : oastatus = intel_uncore_read(uncore, oastatus_reg);
938 : : }
939 : :
940 [ # # ]: 0 : if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
941 : 0 : ret = append_oa_status(stream, buf, count, offset,
942 : : DRM_I915_PERF_RECORD_OA_REPORT_LOST);
943 [ # # ]: 0 : if (ret)
944 : : return ret;
945 : 0 : intel_uncore_write(uncore, oastatus_reg,
946 : : oastatus & ~GEN8_OASTATUS_REPORT_LOST);
947 : : }
948 : :
949 : 0 : return gen8_append_oa_reports(stream, buf, count, offset);
950 : : }
951 : :
952 : : /**
953 : : * Copies all buffered OA reports into userspace read() buffer.
954 : : * @stream: An i915-perf stream opened for OA metrics
955 : : * @buf: destination buffer given by userspace
956 : : * @count: the number of bytes userspace wants to read
957 : : * @offset: (inout): the current position for writing into @buf
958 : : *
959 : : * Notably any error condition resulting in a short read (-%ENOSPC or
960 : : * -%EFAULT) will be returned even though one or more records may
961 : : * have been successfully copied. In this case it's up to the caller
962 : : * to decide if the error should be squashed before returning to
963 : : * userspace.
964 : : *
965 : : * Note: reports are consumed from the head, and appended to the
966 : : * tail, so the tail chases the head?... If you think that's mad
967 : : * and back-to-front you're not alone, but this follows the
968 : : * Gen PRM naming convention.
969 : : *
970 : : * Returns: 0 on success, negative error code on failure.
971 : : */
972 : 0 : static int gen7_append_oa_reports(struct i915_perf_stream *stream,
973 : : char __user *buf,
974 : : size_t count,
975 : : size_t *offset)
976 : : {
977 : 0 : struct intel_uncore *uncore = stream->uncore;
978 : 0 : int report_size = stream->oa_buffer.format_size;
979 : 0 : u8 *oa_buf_base = stream->oa_buffer.vaddr;
980 [ # # ]: 0 : u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
981 : 0 : u32 mask = (OA_BUFFER_SIZE - 1);
982 : 0 : size_t start_offset = *offset;
983 : 0 : unsigned long flags;
984 : 0 : unsigned int aged_tail_idx;
985 : 0 : u32 head, tail;
986 : 0 : u32 taken;
987 : 0 : int ret = 0;
988 : :
989 [ # # # # ]: 0 : if (WARN_ON(!stream->enabled))
990 : : return -EIO;
991 : :
992 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
993 : :
994 : 0 : head = stream->oa_buffer.head;
995 : 0 : aged_tail_idx = stream->oa_buffer.aged_tail_idx;
996 : 0 : tail = stream->oa_buffer.tails[aged_tail_idx].offset;
997 : :
998 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
999 : :
1000 : : /* An invalid tail pointer here means we're still waiting for the poll
1001 : : * hrtimer callback to give us a pointer
1002 : : */
1003 [ # # ]: 0 : if (tail == INVALID_TAIL_PTR)
1004 : : return -EAGAIN;
1005 : :
1006 : : /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1007 : : * while indexing relative to oa_buf_base.
1008 : : */
1009 : 0 : head -= gtt_offset;
1010 : 0 : tail -= gtt_offset;
1011 : :
1012 : : /* An out of bounds or misaligned head or tail pointer implies a driver
1013 : : * bug since we validate + align the tail pointers we read from the
1014 : : * hardware and we are in full control of the head pointer which should
1015 : : * only be incremented by multiples of the report size (notably also
1016 : : * all a power of two).
1017 : : */
1018 [ # # # # : 0 : if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
# # # # #
# # # #
# ]
1019 : : tail > OA_BUFFER_SIZE || tail % report_size,
1020 : : "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1021 : : head, tail))
1022 : : return -EIO;
1023 : :
1024 : :
1025 : 0 : for (/* none */;
1026 [ # # ]: 0 : (taken = OA_TAKEN(tail, head));
1027 : 0 : head = (head + report_size) & mask) {
1028 : 0 : u8 *report = oa_buf_base + head;
1029 : 0 : u32 *report32 = (void *)report;
1030 : :
1031 : : /* All the report sizes factor neatly into the buffer
1032 : : * size so we never expect to see a report split
1033 : : * between the beginning and end of the buffer.
1034 : : *
1035 : : * Given the initial alignment check a misalignment
1036 : : * here would imply a driver bug that would result
1037 : : * in an overrun.
1038 : : */
1039 [ # # # # ]: 0 : if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1040 : 0 : DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1041 : 0 : break;
1042 : : }
1043 : :
1044 : : /* The report-ID field for periodic samples includes
1045 : : * some undocumented flags related to what triggered
1046 : : * the report and is never expected to be zero so we
1047 : : * can check that the report isn't invalid before
1048 : : * copying it to userspace...
1049 : : */
1050 [ # # ]: 0 : if (report32[0] == 0) {
1051 [ # # ]: 0 : if (__ratelimit(&stream->perf->spurious_report_rs))
1052 : 0 : DRM_NOTE("Skipping spurious, invalid OA report\n");
1053 : 0 : continue;
1054 : : }
1055 : :
1056 : 0 : ret = append_oa_sample(stream, buf, count, offset, report);
1057 [ # # ]: 0 : if (ret)
1058 : : break;
1059 : :
1060 : : /* The above report-id field sanity check is based on
1061 : : * the assumption that the OA buffer is initially
1062 : : * zeroed and we reset the field after copying so the
1063 : : * check is still meaningful once old reports start
1064 : : * being overwritten.
1065 : : */
1066 : 0 : report32[0] = 0;
1067 : : }
1068 : :
1069 [ # # ]: 0 : if (start_offset != *offset) {
1070 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1071 : :
1072 : : /* We removed the gtt_offset for the copy loop above, indexing
1073 : : * relative to oa_buf_base so put back here...
1074 : : */
1075 : 0 : head += gtt_offset;
1076 : :
1077 : 0 : intel_uncore_write(uncore, GEN7_OASTATUS2,
1078 : 0 : (head & GEN7_OASTATUS2_HEAD_MASK) |
1079 : : GEN7_OASTATUS2_MEM_SELECT_GGTT);
1080 : 0 : stream->oa_buffer.head = head;
1081 : :
1082 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1083 : : }
1084 : :
1085 : : return ret;
1086 : : }
1087 : :
1088 : : /**
1089 : : * gen7_oa_read - copy status records then buffered OA reports
1090 : : * @stream: An i915-perf stream opened for OA metrics
1091 : : * @buf: destination buffer given by userspace
1092 : : * @count: the number of bytes userspace wants to read
1093 : : * @offset: (inout): the current position for writing into @buf
1094 : : *
1095 : : * Checks Gen 7 specific OA unit status registers and if necessary appends
1096 : : * corresponding status records for userspace (such as for a buffer full
1097 : : * condition) and then initiate appending any buffered OA reports.
1098 : : *
1099 : : * Updates @offset according to the number of bytes successfully copied into
1100 : : * the userspace buffer.
1101 : : *
1102 : : * Returns: zero on success or a negative error code
1103 : : */
1104 : 0 : static int gen7_oa_read(struct i915_perf_stream *stream,
1105 : : char __user *buf,
1106 : : size_t count,
1107 : : size_t *offset)
1108 : : {
1109 : 0 : struct intel_uncore *uncore = stream->uncore;
1110 : 0 : u32 oastatus1;
1111 : 0 : int ret;
1112 : :
1113 [ # # # # ]: 0 : if (WARN_ON(!stream->oa_buffer.vaddr))
1114 : : return -EIO;
1115 : :
1116 : 0 : oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1117 : :
1118 : : /* XXX: On Haswell we don't have a safe way to clear oastatus1
1119 : : * bits while the OA unit is enabled (while the tail pointer
1120 : : * may be updated asynchronously) so we ignore status bits
1121 : : * that have already been reported to userspace.
1122 : : */
1123 : 0 : oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1124 : :
1125 : : /* We treat OABUFFER_OVERFLOW as a significant error:
1126 : : *
1127 : : * - The status can be interpreted to mean that the buffer is
1128 : : * currently full (with a higher precedence than OA_TAKEN()
1129 : : * which will start to report a near-empty buffer after an
1130 : : * overflow) but it's awkward that we can't clear the status
1131 : : * on Haswell, so without a reset we won't be able to catch
1132 : : * the state again.
1133 : : *
1134 : : * - Since it also implies the HW has started overwriting old
1135 : : * reports it may also affect our sanity checks for invalid
1136 : : * reports when copying to userspace that assume new reports
1137 : : * are being written to cleared memory.
1138 : : *
1139 : : * - In the future we may want to introduce a flight recorder
1140 : : * mode where the driver will automatically maintain a safe
1141 : : * guard band between head/tail, avoiding this overflow
1142 : : * condition, but we avoid the added driver complexity for
1143 : : * now.
1144 : : */
1145 [ # # ]: 0 : if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1146 : 0 : ret = append_oa_status(stream, buf, count, offset,
1147 : : DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1148 [ # # ]: 0 : if (ret)
1149 : : return ret;
1150 : :
1151 : 0 : DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1152 : : stream->period_exponent);
1153 : :
1154 : 0 : stream->perf->ops.oa_disable(stream);
1155 : 0 : stream->perf->ops.oa_enable(stream);
1156 : :
1157 : 0 : oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1158 : : }
1159 : :
1160 [ # # ]: 0 : if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1161 : 0 : ret = append_oa_status(stream, buf, count, offset,
1162 : : DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1163 [ # # ]: 0 : if (ret)
1164 : : return ret;
1165 : 0 : stream->perf->gen7_latched_oastatus1 |=
1166 : : GEN7_OASTATUS1_REPORT_LOST;
1167 : : }
1168 : :
1169 : 0 : return gen7_append_oa_reports(stream, buf, count, offset);
1170 : : }
1171 : :
1172 : : /**
1173 : : * i915_oa_wait_unlocked - handles blocking IO until OA data available
1174 : : * @stream: An i915-perf stream opened for OA metrics
1175 : : *
1176 : : * Called when userspace tries to read() from a blocking stream FD opened
1177 : : * for OA metrics. It waits until the hrtimer callback finds a non-empty
1178 : : * OA buffer and wakes us.
1179 : : *
1180 : : * Note: it's acceptable to have this return with some false positives
1181 : : * since any subsequent read handling will return -EAGAIN if there isn't
1182 : : * really data ready for userspace yet.
1183 : : *
1184 : : * Returns: zero on success or a negative error code
1185 : : */
1186 : 0 : static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1187 : : {
1188 : : /* We would wait indefinitely if periodic sampling is not enabled */
1189 [ # # ]: 0 : if (!stream->periodic)
1190 : : return -EIO;
1191 : :
1192 [ # # # # : 0 : return wait_event_interruptible(stream->poll_wq,
# # ]
1193 : : oa_buffer_check_unlocked(stream));
1194 : : }
1195 : :
1196 : : /**
1197 : : * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1198 : : * @stream: An i915-perf stream opened for OA metrics
1199 : : * @file: An i915 perf stream file
1200 : : * @wait: poll() state table
1201 : : *
1202 : : * For handling userspace polling on an i915 perf stream opened for OA metrics,
1203 : : * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1204 : : * when it sees data ready to read in the circular OA buffer.
1205 : : */
1206 : 0 : static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1207 : : struct file *file,
1208 : : poll_table *wait)
1209 : : {
1210 [ # # ]: 0 : poll_wait(file, &stream->poll_wq, wait);
1211 : 0 : }
1212 : :
1213 : : /**
1214 : : * i915_oa_read - just calls through to &i915_oa_ops->read
1215 : : * @stream: An i915-perf stream opened for OA metrics
1216 : : * @buf: destination buffer given by userspace
1217 : : * @count: the number of bytes userspace wants to read
1218 : : * @offset: (inout): the current position for writing into @buf
1219 : : *
1220 : : * Updates @offset according to the number of bytes successfully copied into
1221 : : * the userspace buffer.
1222 : : *
1223 : : * Returns: zero on success or a negative error code
1224 : : */
1225 : 0 : static int i915_oa_read(struct i915_perf_stream *stream,
1226 : : char __user *buf,
1227 : : size_t count,
1228 : : size_t *offset)
1229 : : {
1230 : 0 : return stream->perf->ops.read(stream, buf, count, offset);
1231 : : }
1232 : :
1233 : 0 : static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1234 : : {
1235 : 0 : struct i915_gem_engines_iter it;
1236 : 0 : struct i915_gem_context *ctx = stream->ctx;
1237 : 0 : struct intel_context *ce;
1238 : 0 : int err;
1239 : :
1240 [ # # ]: 0 : for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1241 [ # # ]: 0 : if (ce->engine != stream->engine) /* first match! */
1242 : 0 : continue;
1243 : :
1244 : : /*
1245 : : * As the ID is the gtt offset of the context's vma we
1246 : : * pin the vma to ensure the ID remains fixed.
1247 : : */
1248 : 0 : err = intel_context_pin(ce);
1249 [ # # ]: 0 : if (err == 0) {
1250 : 0 : stream->pinned_ctx = ce;
1251 : 0 : break;
1252 : : }
1253 : : }
1254 : 0 : i915_gem_context_unlock_engines(ctx);
1255 : :
1256 : 0 : return stream->pinned_ctx;
1257 : : }
1258 : :
1259 : : /**
1260 : : * oa_get_render_ctx_id - determine and hold ctx hw id
1261 : : * @stream: An i915-perf stream opened for OA metrics
1262 : : *
1263 : : * Determine the render context hw id, and ensure it remains fixed for the
1264 : : * lifetime of the stream. This ensures that we don't have to worry about
1265 : : * updating the context ID in OACONTROL on the fly.
1266 : : *
1267 : : * Returns: zero on success or a negative error code
1268 : : */
1269 : 0 : static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1270 : : {
1271 : 0 : struct intel_context *ce;
1272 : :
1273 : 0 : ce = oa_pin_context(stream);
1274 [ # # ]: 0 : if (IS_ERR(ce))
1275 : 0 : return PTR_ERR(ce);
1276 : :
1277 [ # # # # ]: 0 : switch (INTEL_GEN(ce->engine->i915)) {
1278 : 0 : case 7: {
1279 : : /*
1280 : : * On Haswell we don't do any post processing of the reports
1281 : : * and don't need to use the mask.
1282 : : */
1283 : 0 : stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1284 : 0 : stream->specific_ctx_id_mask = 0;
1285 : 0 : break;
1286 : : }
1287 : :
1288 : 0 : case 8:
1289 : : case 9:
1290 : : case 10:
1291 [ # # ]: 0 : if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1292 : 0 : stream->specific_ctx_id_mask =
1293 : : (1U << GEN8_CTX_ID_WIDTH) - 1;
1294 : 0 : stream->specific_ctx_id = stream->specific_ctx_id_mask;
1295 : : } else {
1296 : : /*
1297 : : * When using GuC, the context descriptor we write in
1298 : : * i915 is read by GuC and rewritten before it's
1299 : : * actually written into the hardware. The LRCA is
1300 : : * what is put into the context id field of the
1301 : : * context descriptor by GuC. Because it's aligned to
1302 : : * a page, the lower 12bits are always at 0 and
1303 : : * dropped by GuC. They won't be part of the context
1304 : : * ID in the OA reports, so squash those lower bits.
1305 : : */
1306 : 0 : stream->specific_ctx_id =
1307 : 0 : lower_32_bits(ce->lrc_desc) >> 12;
1308 : :
1309 : : /*
1310 : : * GuC uses the top bit to signal proxy submission, so
1311 : : * ignore that bit.
1312 : : */
1313 : 0 : stream->specific_ctx_id_mask =
1314 : : (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1315 : : }
1316 : : break;
1317 : :
1318 : 0 : case 11:
1319 : : case 12: {
1320 : 0 : stream->specific_ctx_id_mask =
1321 : : ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1322 : 0 : stream->specific_ctx_id = stream->specific_ctx_id_mask;
1323 : 0 : break;
1324 : : }
1325 : :
1326 : : default:
1327 : 0 : MISSING_CASE(INTEL_GEN(ce->engine->i915));
1328 : : }
1329 : :
1330 : 0 : ce->tag = stream->specific_ctx_id_mask;
1331 : :
1332 : 0 : DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1333 : : stream->specific_ctx_id,
1334 : : stream->specific_ctx_id_mask);
1335 : :
1336 : 0 : return 0;
1337 : : }
1338 : :
1339 : : /**
1340 : : * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1341 : : * @stream: An i915-perf stream opened for OA metrics
1342 : : *
1343 : : * In case anything needed doing to ensure the context HW ID would remain valid
1344 : : * for the lifetime of the stream, then that can be undone here.
1345 : : */
1346 : 0 : static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1347 : : {
1348 : 0 : struct intel_context *ce;
1349 : :
1350 : 0 : ce = fetch_and_zero(&stream->pinned_ctx);
1351 : 0 : if (ce) {
1352 : 0 : ce->tag = 0; /* recomputed on next submission after parking */
1353 : 0 : intel_context_unpin(ce);
1354 : : }
1355 : :
1356 : 0 : stream->specific_ctx_id = INVALID_CTX_ID;
1357 : 0 : stream->specific_ctx_id_mask = 0;
1358 : 0 : }
1359 : :
1360 : : static void
1361 : 0 : free_oa_buffer(struct i915_perf_stream *stream)
1362 : : {
1363 : 0 : i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1364 : : I915_VMA_RELEASE_MAP);
1365 : :
1366 : 0 : stream->oa_buffer.vaddr = NULL;
1367 : : }
1368 : :
1369 : : static void
1370 : : free_oa_configs(struct i915_perf_stream *stream)
1371 : : {
1372 : : struct i915_oa_config_bo *oa_bo, *tmp;
1373 : :
1374 : : i915_oa_config_put(stream->oa_config);
1375 : : llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1376 : : free_oa_config_bo(oa_bo);
1377 : : }
1378 : :
1379 : : static void
1380 : 0 : free_noa_wait(struct i915_perf_stream *stream)
1381 : : {
1382 : 0 : i915_vma_unpin_and_release(&stream->noa_wait, 0);
1383 : : }
1384 : :
1385 : 0 : static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1386 : : {
1387 : 0 : struct i915_perf *perf = stream->perf;
1388 : :
1389 [ # # ]: 0 : BUG_ON(stream != perf->exclusive_stream);
1390 : :
1391 : : /*
1392 : : * Unset exclusive_stream first, it will be checked while disabling
1393 : : * the metric set on gen8+.
1394 : : */
1395 : 0 : perf->exclusive_stream = NULL;
1396 : 0 : perf->ops.disable_metric_set(stream);
1397 : :
1398 : 0 : free_oa_buffer(stream);
1399 : :
1400 : 0 : intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1401 : 0 : intel_engine_pm_put(stream->engine);
1402 : :
1403 [ # # ]: 0 : if (stream->ctx)
1404 [ # # ]: 0 : oa_put_render_ctx_id(stream);
1405 : :
1406 : 0 : free_oa_configs(stream);
1407 : 0 : free_noa_wait(stream);
1408 : :
1409 [ # # ]: 0 : if (perf->spurious_report_rs.missed) {
1410 : 0 : DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1411 : : perf->spurious_report_rs.missed);
1412 : : }
1413 : 0 : }
1414 : :
1415 : 0 : static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1416 : : {
1417 : 0 : struct intel_uncore *uncore = stream->uncore;
1418 : 0 : u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1419 : 0 : unsigned long flags;
1420 : :
1421 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1422 : :
1423 : : /* Pre-DevBDW: OABUFFER must be set with counters off,
1424 : : * before OASTATUS1, but after OASTATUS2
1425 : : */
1426 : 0 : intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1427 : : gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1428 : 0 : stream->oa_buffer.head = gtt_offset;
1429 : :
1430 : 0 : intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1431 : :
1432 : 0 : intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1433 : : gtt_offset | OABUFFER_SIZE_16M);
1434 : :
1435 : : /* Mark that we need updated tail pointers to read from... */
1436 : 0 : stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1437 : 0 : stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1438 : :
1439 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1440 : :
1441 : : /* On Haswell we have to track which OASTATUS1 flags we've
1442 : : * already seen since they can't be cleared while periodic
1443 : : * sampling is enabled.
1444 : : */
1445 : 0 : stream->perf->gen7_latched_oastatus1 = 0;
1446 : :
1447 : : /* NB: although the OA buffer will initially be allocated
1448 : : * zeroed via shmfs (and so this memset is redundant when
1449 : : * first allocating), we may re-init the OA buffer, either
1450 : : * when re-enabling a stream or in error/reset paths.
1451 : : *
1452 : : * The reason we clear the buffer for each re-init is for the
1453 : : * sanity check in gen7_append_oa_reports() that looks at the
1454 : : * report-id field to make sure it's non-zero which relies on
1455 : : * the assumption that new reports are being written to zeroed
1456 : : * memory...
1457 : : */
1458 : 0 : memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1459 : :
1460 : 0 : stream->pollin = false;
1461 : 0 : }
1462 : :
1463 : 0 : static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1464 : : {
1465 : 0 : struct intel_uncore *uncore = stream->uncore;
1466 : 0 : u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1467 : 0 : unsigned long flags;
1468 : :
1469 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1470 : :
1471 : 0 : intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1472 : 0 : intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1473 : 0 : stream->oa_buffer.head = gtt_offset;
1474 : :
1475 : 0 : intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1476 : :
1477 : : /*
1478 : : * PRM says:
1479 : : *
1480 : : * "This MMIO must be set before the OATAILPTR
1481 : : * register and after the OAHEADPTR register. This is
1482 : : * to enable proper functionality of the overflow
1483 : : * bit."
1484 : : */
1485 : 0 : intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1486 : : OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1487 : 0 : intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1488 : :
1489 : : /* Mark that we need updated tail pointers to read from... */
1490 : 0 : stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1491 : 0 : stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1492 : :
1493 : : /*
1494 : : * Reset state used to recognise context switches, affecting which
1495 : : * reports we will forward to userspace while filtering for a single
1496 : : * context.
1497 : : */
1498 : 0 : stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1499 : :
1500 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1501 : :
1502 : : /*
1503 : : * NB: although the OA buffer will initially be allocated
1504 : : * zeroed via shmfs (and so this memset is redundant when
1505 : : * first allocating), we may re-init the OA buffer, either
1506 : : * when re-enabling a stream or in error/reset paths.
1507 : : *
1508 : : * The reason we clear the buffer for each re-init is for the
1509 : : * sanity check in gen8_append_oa_reports() that looks at the
1510 : : * reason field to make sure it's non-zero which relies on
1511 : : * the assumption that new reports are being written to zeroed
1512 : : * memory...
1513 : : */
1514 : 0 : memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1515 : :
1516 : 0 : stream->pollin = false;
1517 : 0 : }
1518 : :
1519 : 0 : static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1520 : : {
1521 : 0 : struct intel_uncore *uncore = stream->uncore;
1522 : 0 : u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1523 : 0 : unsigned long flags;
1524 : :
1525 : 0 : spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1526 : :
1527 : 0 : intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1528 : 0 : intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1529 : : gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1530 : 0 : stream->oa_buffer.head = gtt_offset;
1531 : :
1532 : : /*
1533 : : * PRM says:
1534 : : *
1535 : : * "This MMIO must be set before the OATAILPTR
1536 : : * register and after the OAHEADPTR register. This is
1537 : : * to enable proper functionality of the overflow
1538 : : * bit."
1539 : : */
1540 : 0 : intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1541 : : OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1542 : 0 : intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1543 : : gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1544 : :
1545 : : /* Mark that we need updated tail pointers to read from... */
1546 : 0 : stream->oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1547 : 0 : stream->oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1548 : :
1549 : : /*
1550 : : * Reset state used to recognise context switches, affecting which
1551 : : * reports we will forward to userspace while filtering for a single
1552 : : * context.
1553 : : */
1554 : 0 : stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1555 : :
1556 : 0 : spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1557 : :
1558 : : /*
1559 : : * NB: although the OA buffer will initially be allocated
1560 : : * zeroed via shmfs (and so this memset is redundant when
1561 : : * first allocating), we may re-init the OA buffer, either
1562 : : * when re-enabling a stream or in error/reset paths.
1563 : : *
1564 : : * The reason we clear the buffer for each re-init is for the
1565 : : * sanity check in gen8_append_oa_reports() that looks at the
1566 : : * reason field to make sure it's non-zero which relies on
1567 : : * the assumption that new reports are being written to zeroed
1568 : : * memory...
1569 : : */
1570 : 0 : memset(stream->oa_buffer.vaddr, 0,
1571 : 0 : stream->oa_buffer.vma->size);
1572 : :
1573 : 0 : stream->pollin = false;
1574 : 0 : }
1575 : :
1576 : 0 : static int alloc_oa_buffer(struct i915_perf_stream *stream)
1577 : : {
1578 : 0 : struct drm_i915_gem_object *bo;
1579 : 0 : struct i915_vma *vma;
1580 : 0 : int ret;
1581 : :
1582 [ # # # # ]: 0 : if (WARN_ON(stream->oa_buffer.vma))
1583 : : return -ENODEV;
1584 : :
1585 : 0 : BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1586 : 0 : BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1587 : :
1588 : 0 : bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1589 [ # # ]: 0 : if (IS_ERR(bo)) {
1590 : 0 : DRM_ERROR("Failed to allocate OA buffer\n");
1591 : 0 : return PTR_ERR(bo);
1592 : : }
1593 : :
1594 : 0 : i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1595 : :
1596 : : /* PreHSW required 512K alignment, HSW requires 16M */
1597 : 0 : vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1598 [ # # ]: 0 : if (IS_ERR(vma)) {
1599 : 0 : ret = PTR_ERR(vma);
1600 : 0 : goto err_unref;
1601 : : }
1602 : 0 : stream->oa_buffer.vma = vma;
1603 : :
1604 : 0 : stream->oa_buffer.vaddr =
1605 : 0 : i915_gem_object_pin_map(bo, I915_MAP_WB);
1606 [ # # ]: 0 : if (IS_ERR(stream->oa_buffer.vaddr)) {
1607 : 0 : ret = PTR_ERR(stream->oa_buffer.vaddr);
1608 : 0 : goto err_unpin;
1609 : : }
1610 : :
1611 : : return 0;
1612 : :
1613 : : err_unpin:
1614 : 0 : __i915_vma_unpin(vma);
1615 : :
1616 : 0 : err_unref:
1617 : 0 : i915_gem_object_put(bo);
1618 : :
1619 : 0 : stream->oa_buffer.vaddr = NULL;
1620 : 0 : stream->oa_buffer.vma = NULL;
1621 : :
1622 : 0 : return ret;
1623 : : }
1624 : :
1625 : 0 : static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1626 : : bool save, i915_reg_t reg, u32 offset,
1627 : : u32 dword_count)
1628 : : {
1629 : 0 : u32 cmd;
1630 : 0 : u32 d;
1631 : :
1632 : 0 : cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1633 : 0 : if (INTEL_GEN(stream->perf->i915) >= 8)
1634 : 0 : cmd++;
1635 : :
1636 [ # # # # : 0 : for (d = 0; d < dword_count; d++) {
# # # # ]
1637 : 0 : *cs++ = cmd;
1638 : 0 : *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1639 : 0 : *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1640 : 0 : offset) + 4 * d;
1641 : 0 : *cs++ = 0;
1642 : : }
1643 : :
1644 : 0 : return cs;
1645 : : }
1646 : :
1647 : 0 : static int alloc_noa_wait(struct i915_perf_stream *stream)
1648 : : {
1649 : 0 : struct drm_i915_private *i915 = stream->perf->i915;
1650 : 0 : struct drm_i915_gem_object *bo;
1651 : 0 : struct i915_vma *vma;
1652 : 0 : const u64 delay_ticks = 0xffffffffffffffff -
1653 : 0 : DIV64_U64_ROUND_UP(
1654 : : atomic64_read(&stream->perf->noa_programming_delay) *
1655 : : RUNTIME_INFO(i915)->cs_timestamp_frequency_khz,
1656 : : 1000000ull);
1657 : 0 : const u32 base = stream->engine->mmio_base;
1658 : : #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1659 : 0 : u32 *batch, *ts0, *cs, *jump;
1660 : 0 : int ret, i;
1661 : 0 : enum {
1662 : : START_TS,
1663 : : NOW_TS,
1664 : : DELTA_TS,
1665 : : JUMP_PREDICATE,
1666 : : DELTA_TARGET,
1667 : : N_CS_GPR
1668 : : };
1669 : :
1670 : 0 : bo = i915_gem_object_create_internal(i915, 4096);
1671 [ # # ]: 0 : if (IS_ERR(bo)) {
1672 : 0 : DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1673 : 0 : return PTR_ERR(bo);
1674 : : }
1675 : :
1676 : : /*
1677 : : * We pin in GGTT because we jump into this buffer now because
1678 : : * multiple OA config BOs will have a jump to this address and it
1679 : : * needs to be fixed during the lifetime of the i915/perf stream.
1680 : : */
1681 : 0 : vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1682 [ # # ]: 0 : if (IS_ERR(vma)) {
1683 : 0 : ret = PTR_ERR(vma);
1684 : 0 : goto err_unref;
1685 : : }
1686 : :
1687 : 0 : batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1688 [ # # ]: 0 : if (IS_ERR(batch)) {
1689 : 0 : ret = PTR_ERR(batch);
1690 : 0 : goto err_unpin;
1691 : : }
1692 : :
1693 : : /* Save registers. */
1694 [ # # ]: 0 : for (i = 0; i < N_CS_GPR; i++)
1695 : 0 : cs = save_restore_register(
1696 : 0 : stream, cs, true /* save */, CS_GPR(i),
1697 [ # # ]: 0 : INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1698 [ # # ]: 0 : cs = save_restore_register(
1699 : : stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1700 : : INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1701 : :
1702 : : /* First timestamp snapshot location. */
1703 : 0 : ts0 = cs;
1704 : :
1705 : : /*
1706 : : * Initial snapshot of the timestamp register to implement the wait.
1707 : : * We work with 32b values, so clear out the top 32b bits of the
1708 : : * register because the ALU works 64bits.
1709 : : */
1710 : 0 : *cs++ = MI_LOAD_REGISTER_IMM(1);
1711 [ # # ]: 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1712 : 0 : *cs++ = 0;
1713 : 0 : *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1714 : 0 : *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1715 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1716 : :
1717 : : /*
1718 : : * This is the location we're going to jump back into until the
1719 : : * required amount of time has passed.
1720 : : */
1721 : 0 : jump = cs;
1722 : :
1723 : : /*
1724 : : * Take another snapshot of the timestamp register. Take care to clear
1725 : : * up the top 32bits of CS_GPR(1) as we're using it for other
1726 : : * operations below.
1727 : : */
1728 : 0 : *cs++ = MI_LOAD_REGISTER_IMM(1);
1729 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1730 : 0 : *cs++ = 0;
1731 : 0 : *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1732 : 0 : *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1733 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1734 : :
1735 : : /*
1736 : : * Do a diff between the 2 timestamps and store the result back into
1737 : : * CS_GPR(1).
1738 : : */
1739 : 0 : *cs++ = MI_MATH(5);
1740 : 0 : *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1741 : 0 : *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1742 : 0 : *cs++ = MI_MATH_SUB;
1743 : 0 : *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1744 : 0 : *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1745 : :
1746 : : /*
1747 : : * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1748 : : * timestamp have rolled over the 32bits) into the predicate register
1749 : : * to be used for the predicated jump.
1750 : : */
1751 : 0 : *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1752 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1753 : 0 : *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1754 : :
1755 : : /* Restart from the beginning if we had timestamps roll over. */
1756 : 0 : *cs++ = (INTEL_GEN(i915) < 8 ?
1757 : : MI_BATCH_BUFFER_START :
1758 [ # # ]: 0 : MI_BATCH_BUFFER_START_GEN8) |
1759 : : MI_BATCH_PREDICATE;
1760 [ # # ]: 0 : *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1761 : 0 : *cs++ = 0;
1762 : :
1763 : : /*
1764 : : * Now add the diff between to previous timestamps and add it to :
1765 : : * (((1 * << 64) - 1) - delay_ns)
1766 : : *
1767 : : * When the Carry Flag contains 1 this means the elapsed time is
1768 : : * longer than the expected delay, and we can exit the wait loop.
1769 : : */
1770 : 0 : *cs++ = MI_LOAD_REGISTER_IMM(2);
1771 [ # # ]: 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1772 : 0 : *cs++ = lower_32_bits(delay_ticks);
1773 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1774 : 0 : *cs++ = upper_32_bits(delay_ticks);
1775 : :
1776 : 0 : *cs++ = MI_MATH(4);
1777 : 0 : *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1778 : 0 : *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1779 : 0 : *cs++ = MI_MATH_ADD;
1780 : 0 : *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1781 : :
1782 : 0 : *cs++ = MI_ARB_CHECK;
1783 : :
1784 : : /*
1785 : : * Transfer the result into the predicate register to be used for the
1786 : : * predicated jump.
1787 : : */
1788 : 0 : *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1789 : 0 : *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1790 : 0 : *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1791 : :
1792 : : /* Predicate the jump. */
1793 : 0 : *cs++ = (INTEL_GEN(i915) < 8 ?
1794 : : MI_BATCH_BUFFER_START :
1795 [ # # ]: 0 : MI_BATCH_BUFFER_START_GEN8) |
1796 : : MI_BATCH_PREDICATE;
1797 : 0 : *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1798 : 0 : *cs++ = 0;
1799 : :
1800 : : /* Restore registers. */
1801 [ # # ]: 0 : for (i = 0; i < N_CS_GPR; i++)
1802 : 0 : cs = save_restore_register(
1803 : 0 : stream, cs, false /* restore */, CS_GPR(i),
1804 [ # # ]: 0 : INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1805 [ # # ]: 0 : cs = save_restore_register(
1806 : : stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1807 : : INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1808 : :
1809 : : /* And return to the ring. */
1810 : 0 : *cs++ = MI_BATCH_BUFFER_END;
1811 : :
1812 : 0 : GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1813 : :
1814 : 0 : i915_gem_object_flush_map(bo);
1815 : 0 : i915_gem_object_unpin_map(bo);
1816 : :
1817 : 0 : stream->noa_wait = vma;
1818 : 0 : return 0;
1819 : :
1820 : : err_unpin:
1821 : 0 : i915_vma_unpin_and_release(&vma, 0);
1822 : 0 : err_unref:
1823 : 0 : i915_gem_object_put(bo);
1824 : 0 : return ret;
1825 : : }
1826 : :
1827 : 0 : static u32 *write_cs_mi_lri(u32 *cs,
1828 : : const struct i915_oa_reg *reg_data,
1829 : : u32 n_regs)
1830 : : {
1831 : 0 : u32 i;
1832 : :
1833 [ # # # # : 0 : for (i = 0; i < n_regs; i++) {
# # ]
1834 [ # # # # : 0 : if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
# # ]
1835 : 0 : u32 n_lri = min_t(u32,
1836 : : n_regs - i,
1837 : : MI_LOAD_REGISTER_IMM_MAX_REGS);
1838 : :
1839 : 0 : *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1840 : : }
1841 : 0 : *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1842 : 0 : *cs++ = reg_data[i].value;
1843 : : }
1844 : :
1845 : 0 : return cs;
1846 : : }
1847 : :
1848 : 0 : static int num_lri_dwords(int num_regs)
1849 : : {
1850 : 0 : int count = 0;
1851 : :
1852 : 0 : if (num_regs > 0) {
1853 : 0 : count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1854 : 0 : count += num_regs * 2;
1855 : : }
1856 : :
1857 : 0 : return count;
1858 : : }
1859 : :
1860 : : static struct i915_oa_config_bo *
1861 : 0 : alloc_oa_config_buffer(struct i915_perf_stream *stream,
1862 : : struct i915_oa_config *oa_config)
1863 : : {
1864 : 0 : struct drm_i915_gem_object *obj;
1865 : 0 : struct i915_oa_config_bo *oa_bo;
1866 : 0 : size_t config_length = 0;
1867 : 0 : u32 *cs;
1868 : 0 : int err;
1869 : :
1870 : 0 : oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1871 [ # # ]: 0 : if (!oa_bo)
1872 : : return ERR_PTR(-ENOMEM);
1873 : :
1874 [ # # ]: 0 : config_length += num_lri_dwords(oa_config->mux_regs_len);
1875 [ # # ]: 0 : config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1876 [ # # ]: 0 : config_length += num_lri_dwords(oa_config->flex_regs_len);
1877 : 0 : config_length += 3; /* MI_BATCH_BUFFER_START */
1878 : 0 : config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1879 : :
1880 : 0 : obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1881 [ # # ]: 0 : if (IS_ERR(obj)) {
1882 : 0 : err = PTR_ERR(obj);
1883 : 0 : goto err_free;
1884 : : }
1885 : :
1886 : 0 : cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1887 [ # # ]: 0 : if (IS_ERR(cs)) {
1888 : 0 : err = PTR_ERR(cs);
1889 : 0 : goto err_oa_bo;
1890 : : }
1891 : :
1892 : 0 : cs = write_cs_mi_lri(cs,
1893 : : oa_config->mux_regs,
1894 : : oa_config->mux_regs_len);
1895 : 0 : cs = write_cs_mi_lri(cs,
1896 : : oa_config->b_counter_regs,
1897 : : oa_config->b_counter_regs_len);
1898 : 0 : cs = write_cs_mi_lri(cs,
1899 : : oa_config->flex_regs,
1900 : : oa_config->flex_regs_len);
1901 : :
1902 : : /* Jump into the active wait. */
1903 : 0 : *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1904 [ # # ]: 0 : MI_BATCH_BUFFER_START :
1905 : : MI_BATCH_BUFFER_START_GEN8);
1906 : 0 : *cs++ = i915_ggtt_offset(stream->noa_wait);
1907 : 0 : *cs++ = 0;
1908 : :
1909 : 0 : i915_gem_object_flush_map(obj);
1910 : 0 : i915_gem_object_unpin_map(obj);
1911 : :
1912 : 0 : oa_bo->vma = i915_vma_instance(obj,
1913 : 0 : &stream->engine->gt->ggtt->vm,
1914 : : NULL);
1915 [ # # ]: 0 : if (IS_ERR(oa_bo->vma)) {
1916 : 0 : err = PTR_ERR(oa_bo->vma);
1917 : 0 : goto err_oa_bo;
1918 : : }
1919 : :
1920 : 0 : oa_bo->oa_config = i915_oa_config_get(oa_config);
1921 : 0 : llist_add(&oa_bo->node, &stream->oa_config_bos);
1922 : :
1923 : 0 : return oa_bo;
1924 : :
1925 : 0 : err_oa_bo:
1926 : 0 : i915_gem_object_put(obj);
1927 : 0 : err_free:
1928 : 0 : kfree(oa_bo);
1929 : 0 : return ERR_PTR(err);
1930 : : }
1931 : :
1932 : : static struct i915_vma *
1933 : 0 : get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1934 : : {
1935 : 0 : struct i915_oa_config_bo *oa_bo;
1936 : :
1937 : : /*
1938 : : * Look for the buffer in the already allocated BOs attached
1939 : : * to the stream.
1940 : : */
1941 [ # # ]: 0 : llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1942 [ # # ]: 0 : if (oa_bo->oa_config == oa_config &&
1943 : 0 : memcmp(oa_bo->oa_config->uuid,
1944 [ # # ]: 0 : oa_config->uuid,
1945 : : sizeof(oa_config->uuid)) == 0)
1946 : 0 : goto out;
1947 : : }
1948 : :
1949 : 0 : oa_bo = alloc_oa_config_buffer(stream, oa_config);
1950 [ # # ]: 0 : if (IS_ERR(oa_bo))
1951 : : return ERR_CAST(oa_bo);
1952 : :
1953 : 0 : out:
1954 : 0 : return i915_vma_get(oa_bo->vma);
1955 : : }
1956 : :
1957 : : static struct i915_request *
1958 : 0 : emit_oa_config(struct i915_perf_stream *stream,
1959 : : struct i915_oa_config *oa_config,
1960 : : struct intel_context *ce)
1961 : : {
1962 : 0 : struct i915_request *rq;
1963 : 0 : struct i915_vma *vma;
1964 : 0 : int err;
1965 : :
1966 : 0 : vma = get_oa_vma(stream, oa_config);
1967 [ # # ]: 0 : if (IS_ERR(vma))
1968 : : return ERR_CAST(vma);
1969 : :
1970 : 0 : err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1971 [ # # ]: 0 : if (err)
1972 : 0 : goto err_vma_put;
1973 : :
1974 : 0 : intel_engine_pm_get(ce->engine);
1975 : 0 : rq = i915_request_create(ce);
1976 : 0 : intel_engine_pm_put(ce->engine);
1977 [ # # ]: 0 : if (IS_ERR(rq)) {
1978 : 0 : err = PTR_ERR(rq);
1979 : 0 : goto err_vma_unpin;
1980 : : }
1981 : :
1982 : 0 : i915_vma_lock(vma);
1983 : 0 : err = i915_request_await_object(rq, vma->obj, 0);
1984 [ # # ]: 0 : if (!err)
1985 : 0 : err = i915_vma_move_to_active(vma, rq, 0);
1986 : 0 : i915_vma_unlock(vma);
1987 [ # # ]: 0 : if (err)
1988 : 0 : goto err_add_request;
1989 : :
1990 : 0 : err = rq->engine->emit_bb_start(rq,
1991 : : vma->node.start, 0,
1992 : : I915_DISPATCH_SECURE);
1993 [ # # ]: 0 : if (err)
1994 : 0 : goto err_add_request;
1995 : :
1996 [ # # ]: 0 : i915_request_get(rq);
1997 : 0 : err_add_request:
1998 : 0 : i915_request_add(rq);
1999 : 0 : err_vma_unpin:
2000 : 0 : i915_vma_unpin(vma);
2001 : 0 : err_vma_put:
2002 : 0 : i915_vma_put(vma);
2003 [ # # ]: 0 : return err ? ERR_PTR(err) : rq;
2004 : : }
2005 : :
2006 : 0 : static struct intel_context *oa_context(struct i915_perf_stream *stream)
2007 : : {
2008 : 0 : return stream->pinned_ctx ?: stream->engine->kernel_context;
2009 : : }
2010 : :
2011 : : static struct i915_request *
2012 : 0 : hsw_enable_metric_set(struct i915_perf_stream *stream)
2013 : : {
2014 : 0 : struct intel_uncore *uncore = stream->uncore;
2015 : :
2016 : : /*
2017 : : * PRM:
2018 : : *
2019 : : * OA unit is using “crclk” for its functionality. When trunk
2020 : : * level clock gating takes place, OA clock would be gated,
2021 : : * unable to count the events from non-render clock domain.
2022 : : * Render clock gating must be disabled when OA is enabled to
2023 : : * count the events from non-render domain. Unit level clock
2024 : : * gating for RCS should also be disabled.
2025 : : */
2026 : 0 : intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2027 : : GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2028 : 0 : intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2029 : : 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2030 : :
2031 [ # # ]: 0 : return emit_oa_config(stream, stream->oa_config, oa_context(stream));
2032 : : }
2033 : :
2034 : 0 : static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2035 : : {
2036 : 0 : struct intel_uncore *uncore = stream->uncore;
2037 : :
2038 : 0 : intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2039 : : GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2040 : 0 : intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2041 : : 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2042 : :
2043 : 0 : intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2044 : 0 : }
2045 : :
2046 : 0 : static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2047 : : i915_reg_t reg)
2048 : : {
2049 : 0 : u32 mmio = i915_mmio_reg_offset(reg);
2050 : 0 : int i;
2051 : :
2052 : : /*
2053 : : * This arbitrary default will select the 'EU FPU0 Pipeline
2054 : : * Active' event. In the future it's anticipated that there
2055 : : * will be an explicit 'No Event' we can select, but not yet...
2056 : : */
2057 [ # # # # ]: 0 : if (!oa_config)
2058 : : return 0;
2059 : :
2060 [ # # # # ]: 0 : for (i = 0; i < oa_config->flex_regs_len; i++) {
2061 [ # # # # ]: 0 : if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2062 : 0 : return oa_config->flex_regs[i].value;
2063 : : }
2064 : :
2065 : : return 0;
2066 : : }
2067 : : /*
2068 : : * NB: It must always remain pointer safe to run this even if the OA unit
2069 : : * has been disabled.
2070 : : *
2071 : : * It's fine to put out-of-date values into these per-context registers
2072 : : * in the case that the OA unit has been disabled.
2073 : : */
2074 : : static void
2075 : 0 : gen8_update_reg_state_unlocked(const struct intel_context *ce,
2076 : : const struct i915_perf_stream *stream)
2077 : : {
2078 : 0 : u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2079 : 0 : u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2080 : : /* The MMIO offsets for Flex EU registers aren't contiguous */
2081 : 0 : i915_reg_t flex_regs[] = {
2082 : : EU_PERF_CNTL0,
2083 : : EU_PERF_CNTL1,
2084 : : EU_PERF_CNTL2,
2085 : : EU_PERF_CNTL3,
2086 : : EU_PERF_CNTL4,
2087 : : EU_PERF_CNTL5,
2088 : : EU_PERF_CNTL6,
2089 : : };
2090 : 0 : u32 *reg_state = ce->lrc_reg_state;
2091 : 0 : int i;
2092 : :
2093 : 0 : reg_state[ctx_oactxctrl + 1] =
2094 : 0 : (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2095 [ # # ]: 0 : (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2096 : : GEN8_OA_COUNTER_RESUME;
2097 : :
2098 [ # # ]: 0 : for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2099 : 0 : reg_state[ctx_flexeu0 + i * 2 + 1] =
2100 [ # # ]: 0 : oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2101 : :
2102 : 0 : reg_state[CTX_R_PWR_CLK_STATE] =
2103 : 0 : intel_sseu_make_rpcs(ce->engine->i915, &ce->sseu);
2104 : 0 : }
2105 : :
2106 : : struct flex {
2107 : : i915_reg_t reg;
2108 : : u32 offset;
2109 : : u32 value;
2110 : : };
2111 : :
2112 : : static int
2113 : : gen8_store_flex(struct i915_request *rq,
2114 : : struct intel_context *ce,
2115 : : const struct flex *flex, unsigned int count)
2116 : : {
2117 : : u32 offset;
2118 : : u32 *cs;
2119 : :
2120 : : cs = intel_ring_begin(rq, 4 * count);
2121 : : if (IS_ERR(cs))
2122 : : return PTR_ERR(cs);
2123 : :
2124 : : offset = i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
2125 : : do {
2126 : : *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2127 : : *cs++ = offset + flex->offset * sizeof(u32);
2128 : : *cs++ = 0;
2129 : : *cs++ = flex->value;
2130 : : } while (flex++, --count);
2131 : :
2132 : : intel_ring_advance(rq, cs);
2133 : :
2134 : : return 0;
2135 : : }
2136 : :
2137 : : static int
2138 : : gen8_load_flex(struct i915_request *rq,
2139 : : struct intel_context *ce,
2140 : : const struct flex *flex, unsigned int count)
2141 : : {
2142 : : u32 *cs;
2143 : :
2144 : : GEM_BUG_ON(!count || count > 63);
2145 : :
2146 : : cs = intel_ring_begin(rq, 2 * count + 2);
2147 : : if (IS_ERR(cs))
2148 : : return PTR_ERR(cs);
2149 : :
2150 : : *cs++ = MI_LOAD_REGISTER_IMM(count);
2151 : : do {
2152 : : *cs++ = i915_mmio_reg_offset(flex->reg);
2153 : : *cs++ = flex->value;
2154 : : } while (flex++, --count);
2155 : : *cs++ = MI_NOOP;
2156 : :
2157 : : intel_ring_advance(rq, cs);
2158 : :
2159 : : return 0;
2160 : : }
2161 : :
2162 : 0 : static int gen8_modify_context(struct intel_context *ce,
2163 : : const struct flex *flex, unsigned int count)
2164 : : {
2165 : 0 : struct i915_request *rq;
2166 : 0 : int err;
2167 : :
2168 : 0 : rq = intel_engine_create_kernel_request(ce->engine);
2169 [ # # ]: 0 : if (IS_ERR(rq))
2170 : 0 : return PTR_ERR(rq);
2171 : :
2172 : : /* Serialise with the remote context */
2173 : 0 : err = intel_context_prepare_remote_request(ce, rq);
2174 [ # # ]: 0 : if (err == 0)
2175 : 0 : err = gen8_store_flex(rq, ce, flex, count);
2176 : :
2177 : 0 : i915_request_add(rq);
2178 : 0 : return err;
2179 : : }
2180 : :
2181 : 0 : static int gen8_modify_self(struct intel_context *ce,
2182 : : const struct flex *flex, unsigned int count)
2183 : : {
2184 : 0 : struct i915_request *rq;
2185 : 0 : int err;
2186 : :
2187 : 0 : rq = i915_request_create(ce);
2188 [ # # ]: 0 : if (IS_ERR(rq))
2189 : 0 : return PTR_ERR(rq);
2190 : :
2191 : 0 : err = gen8_load_flex(rq, ce, flex, count);
2192 : :
2193 : 0 : i915_request_add(rq);
2194 : 0 : return err;
2195 : : }
2196 : :
2197 : 0 : static int gen8_configure_context(struct i915_gem_context *ctx,
2198 : : struct flex *flex, unsigned int count)
2199 : : {
2200 : 0 : struct i915_gem_engines_iter it;
2201 : 0 : struct intel_context *ce;
2202 : 0 : int err = 0;
2203 : :
2204 [ # # ]: 0 : for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2205 : 0 : GEM_BUG_ON(ce == ce->engine->kernel_context);
2206 : :
2207 [ # # ]: 0 : if (ce->engine->class != RENDER_CLASS)
2208 : 0 : continue;
2209 : :
2210 : : /* Otherwise OA settings will be set upon first use */
2211 [ # # ]: 0 : if (!intel_context_pin_if_active(ce))
2212 : 0 : continue;
2213 : :
2214 : 0 : flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2215 : 0 : err = gen8_modify_context(ce, flex, count);
2216 : :
2217 : 0 : intel_context_unpin(ce);
2218 [ # # ]: 0 : if (err)
2219 : : break;
2220 : : }
2221 : 0 : i915_gem_context_unlock_engines(ctx);
2222 : :
2223 : 0 : return err;
2224 : : }
2225 : :
2226 : 0 : static int gen12_configure_oar_context(struct i915_perf_stream *stream, bool enable)
2227 : : {
2228 : 0 : int err;
2229 : 0 : struct intel_context *ce = stream->pinned_ctx;
2230 : 0 : u32 format = stream->oa_buffer.format;
2231 : 0 : struct flex regs_context[] = {
2232 : : {
2233 : : GEN8_OACTXCONTROL,
2234 : 0 : stream->perf->ctx_oactxctrl_offset + 1,
2235 : 0 : enable ? GEN8_OA_COUNTER_RESUME : 0,
2236 : : },
2237 : : };
2238 : : /* Offsets in regs_lri are not used since this configuration is only
2239 : : * applied using LRI. Initialize the correct offsets for posterity.
2240 : : */
2241 : : #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2242 : 0 : struct flex regs_lri[] = {
2243 : : {
2244 : : GEN12_OAR_OACONTROL,
2245 : : GEN12_OAR_OACONTROL_OFFSET + 1,
2246 : 0 : (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2247 [ # # ]: 0 : (enable ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2248 : : },
2249 : : {
2250 : 0 : RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2251 : : CTX_CONTEXT_CONTROL,
2252 [ # # ]: 0 : _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2253 : : enable ?
2254 : : GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2255 : : 0)
2256 : : },
2257 : : };
2258 : :
2259 : : /* Modify the context image of pinned context with regs_context*/
2260 : 0 : err = intel_context_lock_pinned(ce);
2261 [ # # ]: 0 : if (err)
2262 : : return err;
2263 : :
2264 : 0 : err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2265 : 0 : intel_context_unlock_pinned(ce);
2266 [ # # ]: 0 : if (err)
2267 : : return err;
2268 : :
2269 : : /* Apply regs_lri using LRI with pinned context */
2270 : 0 : return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri));
2271 : : }
2272 : :
2273 : : /*
2274 : : * Manages updating the per-context aspects of the OA stream
2275 : : * configuration across all contexts.
2276 : : *
2277 : : * The awkward consideration here is that OACTXCONTROL controls the
2278 : : * exponent for periodic sampling which is primarily used for system
2279 : : * wide profiling where we'd like a consistent sampling period even in
2280 : : * the face of context switches.
2281 : : *
2282 : : * Our approach of updating the register state context (as opposed to
2283 : : * say using a workaround batch buffer) ensures that the hardware
2284 : : * won't automatically reload an out-of-date timer exponent even
2285 : : * transiently before a WA BB could be parsed.
2286 : : *
2287 : : * This function needs to:
2288 : : * - Ensure the currently running context's per-context OA state is
2289 : : * updated
2290 : : * - Ensure that all existing contexts will have the correct per-context
2291 : : * OA state if they are scheduled for use.
2292 : : * - Ensure any new contexts will be initialized with the correct
2293 : : * per-context OA state.
2294 : : *
2295 : : * Note: it's only the RCS/Render context that has any OA state.
2296 : : * Note: the first flex register passed must always be R_PWR_CLK_STATE
2297 : : */
2298 : : static int oa_configure_all_contexts(struct i915_perf_stream *stream,
2299 : : struct flex *regs,
2300 : : size_t num_regs)
2301 : : {
2302 : : struct drm_i915_private *i915 = stream->perf->i915;
2303 : : struct intel_engine_cs *engine;
2304 : : struct i915_gem_context *ctx, *cn;
2305 : : int err;
2306 : :
2307 : : lockdep_assert_held(&stream->perf->lock);
2308 : :
2309 : : /*
2310 : : * The OA register config is setup through the context image. This image
2311 : : * might be written to by the GPU on context switch (in particular on
2312 : : * lite-restore). This means we can't safely update a context's image,
2313 : : * if this context is scheduled/submitted to run on the GPU.
2314 : : *
2315 : : * We could emit the OA register config through the batch buffer but
2316 : : * this might leave small interval of time where the OA unit is
2317 : : * configured at an invalid sampling period.
2318 : : *
2319 : : * Note that since we emit all requests from a single ring, there
2320 : : * is still an implicit global barrier here that may cause a high
2321 : : * priority context to wait for an otherwise independent low priority
2322 : : * context. Contexts idle at the time of reconfiguration are not
2323 : : * trapped behind the barrier.
2324 : : */
2325 : : spin_lock(&i915->gem.contexts.lock);
2326 : : list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2327 : : if (!kref_get_unless_zero(&ctx->ref))
2328 : : continue;
2329 : :
2330 : : spin_unlock(&i915->gem.contexts.lock);
2331 : :
2332 : : err = gen8_configure_context(ctx, regs, num_regs);
2333 : : if (err) {
2334 : : i915_gem_context_put(ctx);
2335 : : return err;
2336 : : }
2337 : :
2338 : : spin_lock(&i915->gem.contexts.lock);
2339 : : list_safe_reset_next(ctx, cn, link);
2340 : : i915_gem_context_put(ctx);
2341 : : }
2342 : : spin_unlock(&i915->gem.contexts.lock);
2343 : :
2344 : : /*
2345 : : * After updating all other contexts, we need to modify ourselves.
2346 : : * If we don't modify the kernel_context, we do not get events while
2347 : : * idle.
2348 : : */
2349 : : for_each_uabi_engine(engine, i915) {
2350 : : struct intel_context *ce = engine->kernel_context;
2351 : :
2352 : : if (engine->class != RENDER_CLASS)
2353 : : continue;
2354 : :
2355 : : regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2356 : :
2357 : : err = gen8_modify_self(ce, regs, num_regs);
2358 : : if (err)
2359 : : return err;
2360 : : }
2361 : :
2362 : : return 0;
2363 : : }
2364 : :
2365 : 0 : static int gen12_configure_all_contexts(struct i915_perf_stream *stream,
2366 : : const struct i915_oa_config *oa_config)
2367 : : {
2368 : 0 : struct flex regs[] = {
2369 : : {
2370 : : GEN8_R_PWR_CLK_STATE,
2371 : : CTX_R_PWR_CLK_STATE,
2372 : : },
2373 : : };
2374 : :
2375 : 0 : return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2376 : : }
2377 : :
2378 : 0 : static int lrc_configure_all_contexts(struct i915_perf_stream *stream,
2379 : : const struct i915_oa_config *oa_config)
2380 : : {
2381 : : /* The MMIO offsets for Flex EU registers aren't contiguous */
2382 : 0 : const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2383 : : #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2384 : 0 : struct flex regs[] = {
2385 : : {
2386 : : GEN8_R_PWR_CLK_STATE,
2387 : : CTX_R_PWR_CLK_STATE,
2388 : : },
2389 : : {
2390 : : GEN8_OACTXCONTROL,
2391 : 0 : stream->perf->ctx_oactxctrl_offset + 1,
2392 : : },
2393 : 0 : { EU_PERF_CNTL0, ctx_flexeuN(0) },
2394 : 0 : { EU_PERF_CNTL1, ctx_flexeuN(1) },
2395 : 0 : { EU_PERF_CNTL2, ctx_flexeuN(2) },
2396 : 0 : { EU_PERF_CNTL3, ctx_flexeuN(3) },
2397 : 0 : { EU_PERF_CNTL4, ctx_flexeuN(4) },
2398 : 0 : { EU_PERF_CNTL5, ctx_flexeuN(5) },
2399 : 0 : { EU_PERF_CNTL6, ctx_flexeuN(6) },
2400 : : };
2401 : : #undef ctx_flexeuN
2402 : 0 : int i;
2403 : :
2404 : 0 : regs[1].value =
2405 : 0 : (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2406 [ # # ]: 0 : (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2407 : : GEN8_OA_COUNTER_RESUME;
2408 : :
2409 [ # # ]: 0 : for (i = 2; i < ARRAY_SIZE(regs); i++)
2410 [ # # ]: 0 : regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2411 : :
2412 : 0 : return oa_configure_all_contexts(stream, regs, ARRAY_SIZE(regs));
2413 : : }
2414 : :
2415 : : static struct i915_request *
2416 : 0 : gen8_enable_metric_set(struct i915_perf_stream *stream)
2417 : : {
2418 : 0 : struct intel_uncore *uncore = stream->uncore;
2419 : 0 : struct i915_oa_config *oa_config = stream->oa_config;
2420 : 0 : int ret;
2421 : :
2422 : : /*
2423 : : * We disable slice/unslice clock ratio change reports on SKL since
2424 : : * they are too noisy. The HW generates a lot of redundant reports
2425 : : * where the ratio hasn't really changed causing a lot of redundant
2426 : : * work to processes and increasing the chances we'll hit buffer
2427 : : * overruns.
2428 : : *
2429 : : * Although we don't currently use the 'disable overrun' OABUFFER
2430 : : * feature it's worth noting that clock ratio reports have to be
2431 : : * disabled before considering to use that feature since the HW doesn't
2432 : : * correctly block these reports.
2433 : : *
2434 : : * Currently none of the high-level metrics we have depend on knowing
2435 : : * this ratio to normalize.
2436 : : *
2437 : : * Note: This register is not power context saved and restored, but
2438 : : * that's OK considering that we disable RC6 while the OA unit is
2439 : : * enabled.
2440 : : *
2441 : : * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2442 : : * be read back from automatically triggered reports, as part of the
2443 : : * RPT_ID field.
2444 : : */
2445 [ # # ]: 0 : if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2446 : 0 : intel_uncore_write(uncore, GEN8_OA_DEBUG,
2447 : 0 : _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2448 : : GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2449 : : }
2450 : :
2451 : : /*
2452 : : * Update all contexts prior writing the mux configurations as we need
2453 : : * to make sure all slices/subslices are ON before writing to NOA
2454 : : * registers.
2455 : : */
2456 : 0 : ret = lrc_configure_all_contexts(stream, oa_config);
2457 [ # # ]: 0 : if (ret)
2458 : 0 : return ERR_PTR(ret);
2459 : :
2460 [ # # ]: 0 : return emit_oa_config(stream, oa_config, oa_context(stream));
2461 : : }
2462 : :
2463 : 0 : static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2464 : : {
2465 : 0 : return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2466 : : (stream->sample_flags & SAMPLE_OA_REPORT) ?
2467 : : 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2468 : : }
2469 : :
2470 : : static struct i915_request *
2471 : 0 : gen12_enable_metric_set(struct i915_perf_stream *stream)
2472 : : {
2473 : 0 : struct intel_uncore *uncore = stream->uncore;
2474 : 0 : struct i915_oa_config *oa_config = stream->oa_config;
2475 : 0 : bool periodic = stream->periodic;
2476 : 0 : u32 period_exponent = stream->period_exponent;
2477 : 0 : int ret;
2478 : :
2479 : 0 : intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2480 : : /* Disable clk ratio reports, like previous Gens. */
2481 : 0 : _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2482 : : GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2483 : : /*
2484 : : * If the user didn't require OA reports, instruct
2485 : : * the hardware not to emit ctx switch reports.
2486 : : */
2487 [ # # ]: 0 : oag_report_ctx_switches(stream));
2488 : :
2489 [ # # ]: 0 : intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2490 : : (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2491 : : GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2492 : 0 : (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2493 : : : 0);
2494 : :
2495 : : /*
2496 : : * Update all contexts prior writing the mux configurations as we need
2497 : : * to make sure all slices/subslices are ON before writing to NOA
2498 : : * registers.
2499 : : */
2500 : 0 : ret = gen12_configure_all_contexts(stream, oa_config);
2501 [ # # ]: 0 : if (ret)
2502 : 0 : return ERR_PTR(ret);
2503 : :
2504 : : /*
2505 : : * For Gen12, performance counters are context
2506 : : * saved/restored. Only enable it for the context that
2507 : : * requested this.
2508 : : */
2509 [ # # ]: 0 : if (stream->ctx) {
2510 : 0 : ret = gen12_configure_oar_context(stream, true);
2511 [ # # ]: 0 : if (ret)
2512 : 0 : return ERR_PTR(ret);
2513 : : }
2514 : :
2515 [ # # ]: 0 : return emit_oa_config(stream, oa_config, oa_context(stream));
2516 : : }
2517 : :
2518 : 0 : static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2519 : : {
2520 : 0 : struct intel_uncore *uncore = stream->uncore;
2521 : :
2522 : : /* Reset all contexts' slices/subslices configurations. */
2523 : 0 : lrc_configure_all_contexts(stream, NULL);
2524 : :
2525 : 0 : intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2526 : 0 : }
2527 : :
2528 : 0 : static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2529 : : {
2530 : 0 : struct intel_uncore *uncore = stream->uncore;
2531 : :
2532 : : /* Reset all contexts' slices/subslices configurations. */
2533 : 0 : lrc_configure_all_contexts(stream, NULL);
2534 : :
2535 : : /* Make sure we disable noa to save power. */
2536 : 0 : intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2537 : 0 : }
2538 : :
2539 : 0 : static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2540 : : {
2541 : 0 : struct intel_uncore *uncore = stream->uncore;
2542 : :
2543 : : /* Reset all contexts' slices/subslices configurations. */
2544 : 0 : gen12_configure_all_contexts(stream, NULL);
2545 : :
2546 : : /* disable the context save/restore or OAR counters */
2547 [ # # ]: 0 : if (stream->ctx)
2548 : 0 : gen12_configure_oar_context(stream, false);
2549 : :
2550 : : /* Make sure we disable noa to save power. */
2551 : 0 : intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2552 : 0 : }
2553 : :
2554 : 0 : static void gen7_oa_enable(struct i915_perf_stream *stream)
2555 : : {
2556 : 0 : struct intel_uncore *uncore = stream->uncore;
2557 : 0 : struct i915_gem_context *ctx = stream->ctx;
2558 : 0 : u32 ctx_id = stream->specific_ctx_id;
2559 : 0 : bool periodic = stream->periodic;
2560 : 0 : u32 period_exponent = stream->period_exponent;
2561 : 0 : u32 report_format = stream->oa_buffer.format;
2562 : :
2563 : : /*
2564 : : * Reset buf pointers so we don't forward reports from before now.
2565 : : *
2566 : : * Think carefully if considering trying to avoid this, since it
2567 : : * also ensures status flags and the buffer itself are cleared
2568 : : * in error paths, and we have checks for invalid reports based
2569 : : * on the assumption that certain fields are written to zeroed
2570 : : * memory which this helps maintains.
2571 : : */
2572 : 0 : gen7_init_oa_buffer(stream);
2573 : :
2574 : 0 : intel_uncore_write(uncore, GEN7_OACONTROL,
2575 : 0 : (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2576 : 0 : (period_exponent <<
2577 : 0 : GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2578 [ # # ]: 0 : (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2579 : 0 : (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2580 [ # # ]: 0 : (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2581 : : GEN7_OACONTROL_ENABLE);
2582 : 0 : }
2583 : :
2584 : 0 : static void gen8_oa_enable(struct i915_perf_stream *stream)
2585 : : {
2586 : 0 : struct intel_uncore *uncore = stream->uncore;
2587 : 0 : u32 report_format = stream->oa_buffer.format;
2588 : :
2589 : : /*
2590 : : * Reset buf pointers so we don't forward reports from before now.
2591 : : *
2592 : : * Think carefully if considering trying to avoid this, since it
2593 : : * also ensures status flags and the buffer itself are cleared
2594 : : * in error paths, and we have checks for invalid reports based
2595 : : * on the assumption that certain fields are written to zeroed
2596 : : * memory which this helps maintains.
2597 : : */
2598 : 0 : gen8_init_oa_buffer(stream);
2599 : :
2600 : : /*
2601 : : * Note: we don't rely on the hardware to perform single context
2602 : : * filtering and instead filter on the cpu based on the context-id
2603 : : * field of reports
2604 : : */
2605 : 0 : intel_uncore_write(uncore, GEN8_OACONTROL,
2606 : 0 : (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2607 : : GEN8_OA_COUNTER_ENABLE);
2608 : 0 : }
2609 : :
2610 : 0 : static void gen12_oa_enable(struct i915_perf_stream *stream)
2611 : : {
2612 : 0 : struct intel_uncore *uncore = stream->uncore;
2613 : 0 : u32 report_format = stream->oa_buffer.format;
2614 : :
2615 : : /*
2616 : : * If we don't want OA reports from the OA buffer, then we don't even
2617 : : * need to program the OAG unit.
2618 : : */
2619 [ # # ]: 0 : if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2620 : : return;
2621 : :
2622 : 0 : gen12_init_oa_buffer(stream);
2623 : :
2624 : 0 : intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2625 : 0 : (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2626 : : GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2627 : : }
2628 : :
2629 : : /**
2630 : : * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2631 : : * @stream: An i915 perf stream opened for OA metrics
2632 : : *
2633 : : * [Re]enables hardware periodic sampling according to the period configured
2634 : : * when opening the stream. This also starts a hrtimer that will periodically
2635 : : * check for data in the circular OA buffer for notifying userspace (e.g.
2636 : : * during a read() or poll()).
2637 : : */
2638 : 0 : static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2639 : : {
2640 : 0 : stream->perf->ops.oa_enable(stream);
2641 : :
2642 [ # # ]: 0 : if (stream->periodic)
2643 : 0 : hrtimer_start(&stream->poll_check_timer,
2644 : : ns_to_ktime(POLL_PERIOD),
2645 : : HRTIMER_MODE_REL_PINNED);
2646 : 0 : }
2647 : :
2648 : 0 : static void gen7_oa_disable(struct i915_perf_stream *stream)
2649 : : {
2650 : 0 : struct intel_uncore *uncore = stream->uncore;
2651 : :
2652 : 0 : intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2653 [ # # ]: 0 : if (intel_wait_for_register(uncore,
2654 : : GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2655 : : 50))
2656 : 0 : DRM_ERROR("wait for OA to be disabled timed out\n");
2657 : 0 : }
2658 : :
2659 : 0 : static void gen8_oa_disable(struct i915_perf_stream *stream)
2660 : : {
2661 : 0 : struct intel_uncore *uncore = stream->uncore;
2662 : :
2663 : 0 : intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2664 [ # # ]: 0 : if (intel_wait_for_register(uncore,
2665 : : GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2666 : : 50))
2667 : 0 : DRM_ERROR("wait for OA to be disabled timed out\n");
2668 : 0 : }
2669 : :
2670 : 0 : static void gen12_oa_disable(struct i915_perf_stream *stream)
2671 : : {
2672 : 0 : struct intel_uncore *uncore = stream->uncore;
2673 : :
2674 : 0 : intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2675 [ # # ]: 0 : if (intel_wait_for_register(uncore,
2676 : : GEN12_OAG_OACONTROL,
2677 : : GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2678 : : 50))
2679 : 0 : DRM_ERROR("wait for OA to be disabled timed out\n");
2680 : 0 : }
2681 : :
2682 : : /**
2683 : : * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2684 : : * @stream: An i915 perf stream opened for OA metrics
2685 : : *
2686 : : * Stops the OA unit from periodically writing counter reports into the
2687 : : * circular OA buffer. This also stops the hrtimer that periodically checks for
2688 : : * data in the circular OA buffer, for notifying userspace.
2689 : : */
2690 : 0 : static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2691 : : {
2692 : 0 : stream->perf->ops.oa_disable(stream);
2693 : :
2694 [ # # ]: 0 : if (stream->periodic)
2695 : 0 : hrtimer_cancel(&stream->poll_check_timer);
2696 : 0 : }
2697 : :
2698 : : static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2699 : : .destroy = i915_oa_stream_destroy,
2700 : : .enable = i915_oa_stream_enable,
2701 : : .disable = i915_oa_stream_disable,
2702 : : .wait_unlocked = i915_oa_wait_unlocked,
2703 : : .poll_wait = i915_oa_poll_wait,
2704 : : .read = i915_oa_read,
2705 : : };
2706 : :
2707 : 0 : static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2708 : : {
2709 : 0 : struct i915_request *rq;
2710 : :
2711 : 0 : rq = stream->perf->ops.enable_metric_set(stream);
2712 [ # # ]: 0 : if (IS_ERR(rq))
2713 : 0 : return PTR_ERR(rq);
2714 : :
2715 : 0 : i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
2716 : 0 : i915_request_put(rq);
2717 : :
2718 : 0 : return 0;
2719 : : }
2720 : :
2721 : : /**
2722 : : * i915_oa_stream_init - validate combined props for OA stream and init
2723 : : * @stream: An i915 perf stream
2724 : : * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2725 : : * @props: The property state that configures stream (individually validated)
2726 : : *
2727 : : * While read_properties_unlocked() validates properties in isolation it
2728 : : * doesn't ensure that the combination necessarily makes sense.
2729 : : *
2730 : : * At this point it has been determined that userspace wants a stream of
2731 : : * OA metrics, but still we need to further validate the combined
2732 : : * properties are OK.
2733 : : *
2734 : : * If the configuration makes sense then we can allocate memory for
2735 : : * a circular OA buffer and apply the requested metric set configuration.
2736 : : *
2737 : : * Returns: zero on success or a negative error code.
2738 : : */
2739 : : static int i915_oa_stream_init(struct i915_perf_stream *stream,
2740 : : struct drm_i915_perf_open_param *param,
2741 : : struct perf_open_properties *props)
2742 : : {
2743 : : struct i915_perf *perf = stream->perf;
2744 : : int format_size;
2745 : : int ret;
2746 : :
2747 : : if (!props->engine) {
2748 : : DRM_DEBUG("OA engine not specified\n");
2749 : : return -EINVAL;
2750 : : }
2751 : :
2752 : : /*
2753 : : * If the sysfs metrics/ directory wasn't registered for some
2754 : : * reason then don't let userspace try their luck with config
2755 : : * IDs
2756 : : */
2757 : : if (!perf->metrics_kobj) {
2758 : : DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2759 : : return -EINVAL;
2760 : : }
2761 : :
2762 : : if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2763 : : (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2764 : : DRM_DEBUG("Only OA report sampling supported\n");
2765 : : return -EINVAL;
2766 : : }
2767 : :
2768 : : if (!perf->ops.enable_metric_set) {
2769 : : DRM_DEBUG("OA unit not supported\n");
2770 : : return -ENODEV;
2771 : : }
2772 : :
2773 : : /*
2774 : : * To avoid the complexity of having to accurately filter
2775 : : * counter reports and marshal to the appropriate client
2776 : : * we currently only allow exclusive access
2777 : : */
2778 : : if (perf->exclusive_stream) {
2779 : : DRM_DEBUG("OA unit already in use\n");
2780 : : return -EBUSY;
2781 : : }
2782 : :
2783 : : if (!props->oa_format) {
2784 : : DRM_DEBUG("OA report format not specified\n");
2785 : : return -EINVAL;
2786 : : }
2787 : :
2788 : : stream->engine = props->engine;
2789 : : stream->uncore = stream->engine->gt->uncore;
2790 : :
2791 : : stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2792 : :
2793 : : format_size = perf->oa_formats[props->oa_format].size;
2794 : :
2795 : : stream->sample_flags = props->sample_flags;
2796 : : stream->sample_size += format_size;
2797 : :
2798 : : stream->oa_buffer.format_size = format_size;
2799 : : if (WARN_ON(stream->oa_buffer.format_size == 0))
2800 : : return -EINVAL;
2801 : :
2802 : : stream->hold_preemption = props->hold_preemption;
2803 : :
2804 : : stream->oa_buffer.format =
2805 : : perf->oa_formats[props->oa_format].format;
2806 : :
2807 : : stream->periodic = props->oa_periodic;
2808 : : if (stream->periodic)
2809 : : stream->period_exponent = props->oa_period_exponent;
2810 : :
2811 : : if (stream->ctx) {
2812 : : ret = oa_get_render_ctx_id(stream);
2813 : : if (ret) {
2814 : : DRM_DEBUG("Invalid context id to filter with\n");
2815 : : return ret;
2816 : : }
2817 : : }
2818 : :
2819 : : ret = alloc_noa_wait(stream);
2820 : : if (ret) {
2821 : : DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2822 : : goto err_noa_wait_alloc;
2823 : : }
2824 : :
2825 : : stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2826 : : if (!stream->oa_config) {
2827 : : DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2828 : : ret = -EINVAL;
2829 : : goto err_config;
2830 : : }
2831 : :
2832 : : /* PRM - observability performance counters:
2833 : : *
2834 : : * OACONTROL, performance counter enable, note:
2835 : : *
2836 : : * "When this bit is set, in order to have coherent counts,
2837 : : * RC6 power state and trunk clock gating must be disabled.
2838 : : * This can be achieved by programming MMIO registers as
2839 : : * 0xA094=0 and 0xA090[31]=1"
2840 : : *
2841 : : * In our case we are expecting that taking pm + FORCEWAKE
2842 : : * references will effectively disable RC6.
2843 : : */
2844 : : intel_engine_pm_get(stream->engine);
2845 : : intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2846 : :
2847 : : ret = alloc_oa_buffer(stream);
2848 : : if (ret)
2849 : : goto err_oa_buf_alloc;
2850 : :
2851 : : stream->ops = &i915_oa_stream_ops;
2852 : : perf->exclusive_stream = stream;
2853 : :
2854 : : ret = i915_perf_stream_enable_sync(stream);
2855 : : if (ret) {
2856 : : DRM_DEBUG("Unable to enable metric set\n");
2857 : : goto err_enable;
2858 : : }
2859 : :
2860 : : DRM_DEBUG("opening stream oa config uuid=%s\n",
2861 : : stream->oa_config->uuid);
2862 : :
2863 : : hrtimer_init(&stream->poll_check_timer,
2864 : : CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2865 : : stream->poll_check_timer.function = oa_poll_check_timer_cb;
2866 : : init_waitqueue_head(&stream->poll_wq);
2867 : : spin_lock_init(&stream->oa_buffer.ptr_lock);
2868 : :
2869 : : return 0;
2870 : :
2871 : : err_enable:
2872 : : perf->exclusive_stream = NULL;
2873 : : perf->ops.disable_metric_set(stream);
2874 : :
2875 : : free_oa_buffer(stream);
2876 : :
2877 : : err_oa_buf_alloc:
2878 : : free_oa_configs(stream);
2879 : :
2880 : : intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2881 : : intel_engine_pm_put(stream->engine);
2882 : :
2883 : : err_config:
2884 : : free_noa_wait(stream);
2885 : :
2886 : : err_noa_wait_alloc:
2887 : : if (stream->ctx)
2888 : : oa_put_render_ctx_id(stream);
2889 : :
2890 : : return ret;
2891 : : }
2892 : :
2893 : 0 : void i915_oa_init_reg_state(const struct intel_context *ce,
2894 : : const struct intel_engine_cs *engine)
2895 : : {
2896 : 0 : struct i915_perf_stream *stream;
2897 : :
2898 : : /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2899 : :
2900 [ # # ]: 0 : if (engine->class != RENDER_CLASS)
2901 : : return;
2902 : :
2903 : 0 : stream = engine->i915->perf.exclusive_stream;
2904 : : /*
2905 : : * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
2906 : : * is already doing that, so nothing to be done for gen12 here.
2907 : : */
2908 [ # # # # ]: 0 : if (stream && INTEL_GEN(stream->perf->i915) < 12)
2909 : 0 : gen8_update_reg_state_unlocked(ce, stream);
2910 : : }
2911 : :
2912 : : /**
2913 : : * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2914 : : * @stream: An i915 perf stream
2915 : : * @file: An i915 perf stream file
2916 : : * @buf: destination buffer given by userspace
2917 : : * @count: the number of bytes userspace wants to read
2918 : : * @ppos: (inout) file seek position (unused)
2919 : : *
2920 : : * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2921 : : * ensure that if we've successfully copied any data then reporting that takes
2922 : : * precedence over any internal error status, so the data isn't lost.
2923 : : *
2924 : : * For example ret will be -ENOSPC whenever there is more buffered data than
2925 : : * can be copied to userspace, but that's only interesting if we weren't able
2926 : : * to copy some data because it implies the userspace buffer is too small to
2927 : : * receive a single record (and we never split records).
2928 : : *
2929 : : * Another case with ret == -EFAULT is more of a grey area since it would seem
2930 : : * like bad form for userspace to ask us to overrun its buffer, but the user
2931 : : * knows best:
2932 : : *
2933 : : * http://yarchive.net/comp/linux/partial_reads_writes.html
2934 : : *
2935 : : * Returns: The number of bytes copied or a negative error code on failure.
2936 : : */
2937 : 0 : static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2938 : : struct file *file,
2939 : : char __user *buf,
2940 : : size_t count,
2941 : : loff_t *ppos)
2942 : : {
2943 : : /* Note we keep the offset (aka bytes read) separate from any
2944 : : * error status so that the final check for whether we return
2945 : : * the bytes read with a higher precedence than any error (see
2946 : : * comment below) doesn't need to be handled/duplicated in
2947 : : * stream->ops->read() implementations.
2948 : : */
2949 : 0 : size_t offset = 0;
2950 : 0 : int ret = stream->ops->read(stream, buf, count, &offset);
2951 : :
2952 [ # # # # : 0 : return offset ?: (ret ?: -EAGAIN);
# # # # ]
2953 : : }
2954 : :
2955 : : /**
2956 : : * i915_perf_read - handles read() FOP for i915 perf stream FDs
2957 : : * @file: An i915 perf stream file
2958 : : * @buf: destination buffer given by userspace
2959 : : * @count: the number of bytes userspace wants to read
2960 : : * @ppos: (inout) file seek position (unused)
2961 : : *
2962 : : * The entry point for handling a read() on a stream file descriptor from
2963 : : * userspace. Most of the work is left to the i915_perf_read_locked() and
2964 : : * &i915_perf_stream_ops->read but to save having stream implementations (of
2965 : : * which we might have multiple later) we handle blocking read here.
2966 : : *
2967 : : * We can also consistently treat trying to read from a disabled stream
2968 : : * as an IO error so implementations can assume the stream is enabled
2969 : : * while reading.
2970 : : *
2971 : : * Returns: The number of bytes copied or a negative error code on failure.
2972 : : */
2973 : 0 : static ssize_t i915_perf_read(struct file *file,
2974 : : char __user *buf,
2975 : : size_t count,
2976 : : loff_t *ppos)
2977 : : {
2978 : 0 : struct i915_perf_stream *stream = file->private_data;
2979 : 0 : struct i915_perf *perf = stream->perf;
2980 : 0 : ssize_t ret;
2981 : :
2982 : : /* To ensure it's handled consistently we simply treat all reads of a
2983 : : * disabled stream as an error. In particular it might otherwise lead
2984 : : * to a deadlock for blocking file descriptors...
2985 : : */
2986 [ # # ]: 0 : if (!stream->enabled)
2987 : : return -EIO;
2988 : :
2989 [ # # ]: 0 : if (!(file->f_flags & O_NONBLOCK)) {
2990 : : /* There's the small chance of false positives from
2991 : : * stream->ops->wait_unlocked.
2992 : : *
2993 : : * E.g. with single context filtering since we only wait until
2994 : : * oabuffer has >= 1 report we don't immediately know whether
2995 : : * any reports really belong to the current context
2996 : : */
2997 : 0 : do {
2998 : 0 : ret = stream->ops->wait_unlocked(stream);
2999 [ # # ]: 0 : if (ret)
3000 : 0 : return ret;
3001 : :
3002 : 0 : mutex_lock(&perf->lock);
3003 : 0 : ret = i915_perf_read_locked(stream, file,
3004 : : buf, count, ppos);
3005 : 0 : mutex_unlock(&perf->lock);
3006 [ # # ]: 0 : } while (ret == -EAGAIN);
3007 : : } else {
3008 : 0 : mutex_lock(&perf->lock);
3009 : 0 : ret = i915_perf_read_locked(stream, file, buf, count, ppos);
3010 : 0 : mutex_unlock(&perf->lock);
3011 : : }
3012 : :
3013 : : /* We allow the poll checking to sometimes report false positive EPOLLIN
3014 : : * events where we might actually report EAGAIN on read() if there's
3015 : : * not really any data available. In this situation though we don't
3016 : : * want to enter a busy loop between poll() reporting a EPOLLIN event
3017 : : * and read() returning -EAGAIN. Clearing the oa.pollin state here
3018 : : * effectively ensures we back off until the next hrtimer callback
3019 : : * before reporting another EPOLLIN event.
3020 : : */
3021 [ # # ]: 0 : if (ret >= 0 || ret == -EAGAIN) {
3022 : : /* Maybe make ->pollin per-stream state if we support multiple
3023 : : * concurrent streams in the future.
3024 : : */
3025 : 0 : stream->pollin = false;
3026 : : }
3027 : :
3028 : : return ret;
3029 : : }
3030 : :
3031 : 0 : static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3032 : : {
3033 : 0 : struct i915_perf_stream *stream =
3034 : 0 : container_of(hrtimer, typeof(*stream), poll_check_timer);
3035 : :
3036 [ # # ]: 0 : if (oa_buffer_check_unlocked(stream)) {
3037 : 0 : stream->pollin = true;
3038 : 0 : wake_up(&stream->poll_wq);
3039 : : }
3040 : :
3041 : 0 : hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
3042 : :
3043 : 0 : return HRTIMER_RESTART;
3044 : : }
3045 : :
3046 : : /**
3047 : : * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3048 : : * @stream: An i915 perf stream
3049 : : * @file: An i915 perf stream file
3050 : : * @wait: poll() state table
3051 : : *
3052 : : * For handling userspace polling on an i915 perf stream, this calls through to
3053 : : * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3054 : : * will be woken for new stream data.
3055 : : *
3056 : : * Note: The &perf->lock mutex has been taken to serialize
3057 : : * with any non-file-operation driver hooks.
3058 : : *
3059 : : * Returns: any poll events that are ready without sleeping
3060 : : */
3061 : 0 : static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3062 : : struct file *file,
3063 : : poll_table *wait)
3064 : : {
3065 : 0 : __poll_t events = 0;
3066 : :
3067 : 0 : stream->ops->poll_wait(stream, file, wait);
3068 : :
3069 : : /* Note: we don't explicitly check whether there's something to read
3070 : : * here since this path may be very hot depending on what else
3071 : : * userspace is polling, or on the timeout in use. We rely solely on
3072 : : * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3073 : : * samples to read.
3074 : : */
3075 [ # # ]: 0 : if (stream->pollin)
3076 : 0 : events |= EPOLLIN;
3077 : :
3078 : 0 : return events;
3079 : : }
3080 : :
3081 : : /**
3082 : : * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3083 : : * @file: An i915 perf stream file
3084 : : * @wait: poll() state table
3085 : : *
3086 : : * For handling userspace polling on an i915 perf stream, this ensures
3087 : : * poll_wait() gets called with a wait queue that will be woken for new stream
3088 : : * data.
3089 : : *
3090 : : * Note: Implementation deferred to i915_perf_poll_locked()
3091 : : *
3092 : : * Returns: any poll events that are ready without sleeping
3093 : : */
3094 : 0 : static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3095 : : {
3096 : 0 : struct i915_perf_stream *stream = file->private_data;
3097 : 0 : struct i915_perf *perf = stream->perf;
3098 : 0 : __poll_t ret;
3099 : :
3100 : 0 : mutex_lock(&perf->lock);
3101 : 0 : ret = i915_perf_poll_locked(stream, file, wait);
3102 : 0 : mutex_unlock(&perf->lock);
3103 : :
3104 : 0 : return ret;
3105 : : }
3106 : :
3107 : : /**
3108 : : * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3109 : : * @stream: A disabled i915 perf stream
3110 : : *
3111 : : * [Re]enables the associated capture of data for this stream.
3112 : : *
3113 : : * If a stream was previously enabled then there's currently no intention
3114 : : * to provide userspace any guarantee about the preservation of previously
3115 : : * buffered data.
3116 : : */
3117 : 0 : static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3118 : : {
3119 [ # # ]: 0 : if (stream->enabled)
3120 : : return;
3121 : :
3122 : : /* Allow stream->ops->enable() to refer to this */
3123 : 0 : stream->enabled = true;
3124 : :
3125 [ # # ]: 0 : if (stream->ops->enable)
3126 : 0 : stream->ops->enable(stream);
3127 : :
3128 [ # # ]: 0 : if (stream->hold_preemption)
3129 : 0 : intel_context_set_nopreempt(stream->pinned_ctx);
3130 : : }
3131 : :
3132 : : /**
3133 : : * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3134 : : * @stream: An enabled i915 perf stream
3135 : : *
3136 : : * Disables the associated capture of data for this stream.
3137 : : *
3138 : : * The intention is that disabling an re-enabling a stream will ideally be
3139 : : * cheaper than destroying and re-opening a stream with the same configuration,
3140 : : * though there are no formal guarantees about what state or buffered data
3141 : : * must be retained between disabling and re-enabling a stream.
3142 : : *
3143 : : * Note: while a stream is disabled it's considered an error for userspace
3144 : : * to attempt to read from the stream (-EIO).
3145 : : */
3146 : 0 : static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3147 : : {
3148 [ # # ]: 0 : if (!stream->enabled)
3149 : : return;
3150 : :
3151 : : /* Allow stream->ops->disable() to refer to this */
3152 : 0 : stream->enabled = false;
3153 : :
3154 [ # # ]: 0 : if (stream->hold_preemption)
3155 : 0 : intel_context_clear_nopreempt(stream->pinned_ctx);
3156 : :
3157 [ # # ]: 0 : if (stream->ops->disable)
3158 : 0 : stream->ops->disable(stream);
3159 : : }
3160 : :
3161 : 0 : static long i915_perf_config_locked(struct i915_perf_stream *stream,
3162 : : unsigned long metrics_set)
3163 : : {
3164 : 0 : struct i915_oa_config *config;
3165 : 0 : long ret = stream->oa_config->id;
3166 : :
3167 : 0 : config = i915_perf_get_oa_config(stream->perf, metrics_set);
3168 [ # # ]: 0 : if (!config)
3169 : : return -EINVAL;
3170 : :
3171 [ # # ]: 0 : if (config != stream->oa_config) {
3172 : 0 : struct i915_request *rq;
3173 : :
3174 : : /*
3175 : : * If OA is bound to a specific context, emit the
3176 : : * reconfiguration inline from that context. The update
3177 : : * will then be ordered with respect to submission on that
3178 : : * context.
3179 : : *
3180 : : * When set globally, we use a low priority kernel context,
3181 : : * so it will effectively take effect when idle.
3182 : : */
3183 [ # # ]: 0 : rq = emit_oa_config(stream, config, oa_context(stream));
3184 [ # # ]: 0 : if (!IS_ERR(rq)) {
3185 : 0 : config = xchg(&stream->oa_config, config);
3186 : 0 : i915_request_put(rq);
3187 : : } else {
3188 : 0 : ret = PTR_ERR(rq);
3189 : : }
3190 : : }
3191 : :
3192 : 0 : i915_oa_config_put(config);
3193 : :
3194 : 0 : return ret;
3195 : : }
3196 : :
3197 : : /**
3198 : : * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3199 : : * @stream: An i915 perf stream
3200 : : * @cmd: the ioctl request
3201 : : * @arg: the ioctl data
3202 : : *
3203 : : * Note: The &perf->lock mutex has been taken to serialize
3204 : : * with any non-file-operation driver hooks.
3205 : : *
3206 : : * Returns: zero on success or a negative error code. Returns -EINVAL for
3207 : : * an unknown ioctl request.
3208 : : */
3209 : 0 : static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3210 : : unsigned int cmd,
3211 : : unsigned long arg)
3212 : : {
3213 [ # # # # ]: 0 : switch (cmd) {
3214 : 0 : case I915_PERF_IOCTL_ENABLE:
3215 : 0 : i915_perf_enable_locked(stream);
3216 : 0 : return 0;
3217 : 0 : case I915_PERF_IOCTL_DISABLE:
3218 : 0 : i915_perf_disable_locked(stream);
3219 : 0 : return 0;
3220 : 0 : case I915_PERF_IOCTL_CONFIG:
3221 : 0 : return i915_perf_config_locked(stream, arg);
3222 : : }
3223 : :
3224 : : return -EINVAL;
3225 : : }
3226 : :
3227 : : /**
3228 : : * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3229 : : * @file: An i915 perf stream file
3230 : : * @cmd: the ioctl request
3231 : : * @arg: the ioctl data
3232 : : *
3233 : : * Implementation deferred to i915_perf_ioctl_locked().
3234 : : *
3235 : : * Returns: zero on success or a negative error code. Returns -EINVAL for
3236 : : * an unknown ioctl request.
3237 : : */
3238 : 0 : static long i915_perf_ioctl(struct file *file,
3239 : : unsigned int cmd,
3240 : : unsigned long arg)
3241 : : {
3242 : 0 : struct i915_perf_stream *stream = file->private_data;
3243 : 0 : struct i915_perf *perf = stream->perf;
3244 : 0 : long ret;
3245 : :
3246 : 0 : mutex_lock(&perf->lock);
3247 : 0 : ret = i915_perf_ioctl_locked(stream, cmd, arg);
3248 : 0 : mutex_unlock(&perf->lock);
3249 : :
3250 : 0 : return ret;
3251 : : }
3252 : :
3253 : : /**
3254 : : * i915_perf_destroy_locked - destroy an i915 perf stream
3255 : : * @stream: An i915 perf stream
3256 : : *
3257 : : * Frees all resources associated with the given i915 perf @stream, disabling
3258 : : * any associated data capture in the process.
3259 : : *
3260 : : * Note: The &perf->lock mutex has been taken to serialize
3261 : : * with any non-file-operation driver hooks.
3262 : : */
3263 : 0 : static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3264 : : {
3265 [ # # ]: 0 : if (stream->enabled)
3266 : 0 : i915_perf_disable_locked(stream);
3267 : :
3268 [ # # ]: 0 : if (stream->ops->destroy)
3269 : 0 : stream->ops->destroy(stream);
3270 : :
3271 [ # # ]: 0 : if (stream->ctx)
3272 : 0 : i915_gem_context_put(stream->ctx);
3273 : :
3274 : 0 : kfree(stream);
3275 : 0 : }
3276 : :
3277 : : /**
3278 : : * i915_perf_release - handles userspace close() of a stream file
3279 : : * @inode: anonymous inode associated with file
3280 : : * @file: An i915 perf stream file
3281 : : *
3282 : : * Cleans up any resources associated with an open i915 perf stream file.
3283 : : *
3284 : : * NB: close() can't really fail from the userspace point of view.
3285 : : *
3286 : : * Returns: zero on success or a negative error code.
3287 : : */
3288 : 0 : static int i915_perf_release(struct inode *inode, struct file *file)
3289 : : {
3290 : 0 : struct i915_perf_stream *stream = file->private_data;
3291 : 0 : struct i915_perf *perf = stream->perf;
3292 : :
3293 : 0 : mutex_lock(&perf->lock);
3294 : 0 : i915_perf_destroy_locked(stream);
3295 : 0 : mutex_unlock(&perf->lock);
3296 : :
3297 : : /* Release the reference the perf stream kept on the driver. */
3298 : 0 : drm_dev_put(&perf->i915->drm);
3299 : :
3300 : 0 : return 0;
3301 : : }
3302 : :
3303 : :
3304 : : static const struct file_operations fops = {
3305 : : .owner = THIS_MODULE,
3306 : : .llseek = no_llseek,
3307 : : .release = i915_perf_release,
3308 : : .poll = i915_perf_poll,
3309 : : .read = i915_perf_read,
3310 : : .unlocked_ioctl = i915_perf_ioctl,
3311 : : /* Our ioctl have no arguments, so it's safe to use the same function
3312 : : * to handle 32bits compatibility.
3313 : : */
3314 : : .compat_ioctl = i915_perf_ioctl,
3315 : : };
3316 : :
3317 : :
3318 : : /**
3319 : : * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3320 : : * @perf: i915 perf instance
3321 : : * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3322 : : * @props: individually validated u64 property value pairs
3323 : : * @file: drm file
3324 : : *
3325 : : * See i915_perf_ioctl_open() for interface details.
3326 : : *
3327 : : * Implements further stream config validation and stream initialization on
3328 : : * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3329 : : * taken to serialize with any non-file-operation driver hooks.
3330 : : *
3331 : : * Note: at this point the @props have only been validated in isolation and
3332 : : * it's still necessary to validate that the combination of properties makes
3333 : : * sense.
3334 : : *
3335 : : * In the case where userspace is interested in OA unit metrics then further
3336 : : * config validation and stream initialization details will be handled by
3337 : : * i915_oa_stream_init(). The code here should only validate config state that
3338 : : * will be relevant to all stream types / backends.
3339 : : *
3340 : : * Returns: zero on success or a negative error code.
3341 : : */
3342 : : static int
3343 : : i915_perf_open_ioctl_locked(struct i915_perf *perf,
3344 : : struct drm_i915_perf_open_param *param,
3345 : : struct perf_open_properties *props,
3346 : : struct drm_file *file)
3347 : : {
3348 : : struct i915_gem_context *specific_ctx = NULL;
3349 : : struct i915_perf_stream *stream = NULL;
3350 : : unsigned long f_flags = 0;
3351 : : bool privileged_op = true;
3352 : : int stream_fd;
3353 : : int ret;
3354 : :
3355 : : if (props->single_context) {
3356 : : u32 ctx_handle = props->ctx_handle;
3357 : : struct drm_i915_file_private *file_priv = file->driver_priv;
3358 : :
3359 : : specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3360 : : if (!specific_ctx) {
3361 : : DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3362 : : ctx_handle);
3363 : : ret = -ENOENT;
3364 : : goto err;
3365 : : }
3366 : : }
3367 : :
3368 : : /*
3369 : : * On Haswell the OA unit supports clock gating off for a specific
3370 : : * context and in this mode there's no visibility of metrics for the
3371 : : * rest of the system, which we consider acceptable for a
3372 : : * non-privileged client.
3373 : : *
3374 : : * For Gen8->11 the OA unit no longer supports clock gating off for a
3375 : : * specific context and the kernel can't securely stop the counters
3376 : : * from updating as system-wide / global values. Even though we can
3377 : : * filter reports based on the included context ID we can't block
3378 : : * clients from seeing the raw / global counter values via
3379 : : * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3380 : : * enable the OA unit by default.
3381 : : *
3382 : : * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3383 : : * per context basis. So we can relax requirements there if the user
3384 : : * doesn't request global stream access (i.e. query based sampling
3385 : : * using MI_RECORD_PERF_COUNT.
3386 : : */
3387 : : if (IS_HASWELL(perf->i915) && specific_ctx)
3388 : : privileged_op = false;
3389 : : else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3390 : : (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3391 : : privileged_op = false;
3392 : :
3393 : : if (props->hold_preemption) {
3394 : : if (!props->single_context) {
3395 : : DRM_DEBUG("preemption disable with no context\n");
3396 : : ret = -EINVAL;
3397 : : goto err;
3398 : : }
3399 : : privileged_op = true;
3400 : : }
3401 : :
3402 : : /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3403 : : * we check a dev.i915.perf_stream_paranoid sysctl option
3404 : : * to determine if it's ok to access system wide OA counters
3405 : : * without CAP_SYS_ADMIN privileges.
3406 : : */
3407 : : if (privileged_op &&
3408 : : i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3409 : : DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3410 : : ret = -EACCES;
3411 : : goto err_ctx;
3412 : : }
3413 : :
3414 : : stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3415 : : if (!stream) {
3416 : : ret = -ENOMEM;
3417 : : goto err_ctx;
3418 : : }
3419 : :
3420 : : stream->perf = perf;
3421 : : stream->ctx = specific_ctx;
3422 : :
3423 : : ret = i915_oa_stream_init(stream, param, props);
3424 : : if (ret)
3425 : : goto err_alloc;
3426 : :
3427 : : /* we avoid simply assigning stream->sample_flags = props->sample_flags
3428 : : * to have _stream_init check the combination of sample flags more
3429 : : * thoroughly, but still this is the expected result at this point.
3430 : : */
3431 : : if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3432 : : ret = -ENODEV;
3433 : : goto err_flags;
3434 : : }
3435 : :
3436 : : if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3437 : : f_flags |= O_CLOEXEC;
3438 : : if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3439 : : f_flags |= O_NONBLOCK;
3440 : :
3441 : : stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3442 : : if (stream_fd < 0) {
3443 : : ret = stream_fd;
3444 : : goto err_flags;
3445 : : }
3446 : :
3447 : : if (!(param->flags & I915_PERF_FLAG_DISABLED))
3448 : : i915_perf_enable_locked(stream);
3449 : :
3450 : : /* Take a reference on the driver that will be kept with stream_fd
3451 : : * until its release.
3452 : : */
3453 : : drm_dev_get(&perf->i915->drm);
3454 : :
3455 : : return stream_fd;
3456 : :
3457 : : err_flags:
3458 : : if (stream->ops->destroy)
3459 : : stream->ops->destroy(stream);
3460 : : err_alloc:
3461 : : kfree(stream);
3462 : : err_ctx:
3463 : : if (specific_ctx)
3464 : : i915_gem_context_put(specific_ctx);
3465 : : err:
3466 : : return ret;
3467 : : }
3468 : :
3469 : 0 : static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3470 : : {
3471 : 0 : return div64_u64(1000000000ULL * (2ULL << exponent),
3472 : 0 : 1000ULL * RUNTIME_INFO(perf->i915)->cs_timestamp_frequency_khz);
3473 : : }
3474 : :
3475 : : /**
3476 : : * read_properties_unlocked - validate + copy userspace stream open properties
3477 : : * @perf: i915 perf instance
3478 : : * @uprops: The array of u64 key value pairs given by userspace
3479 : : * @n_props: The number of key value pairs expected in @uprops
3480 : : * @props: The stream configuration built up while validating properties
3481 : : *
3482 : : * Note this function only validates properties in isolation it doesn't
3483 : : * validate that the combination of properties makes sense or that all
3484 : : * properties necessary for a particular kind of stream have been set.
3485 : : *
3486 : : * Note that there currently aren't any ordering requirements for properties so
3487 : : * we shouldn't validate or assume anything about ordering here. This doesn't
3488 : : * rule out defining new properties with ordering requirements in the future.
3489 : : */
3490 : 0 : static int read_properties_unlocked(struct i915_perf *perf,
3491 : : u64 __user *uprops,
3492 : : u32 n_props,
3493 : : struct perf_open_properties *props)
3494 : : {
3495 : 0 : u64 __user *uprop = uprops;
3496 : 0 : u32 i;
3497 : :
3498 : 0 : memset(props, 0, sizeof(struct perf_open_properties));
3499 : :
3500 [ # # ]: 0 : if (!n_props) {
3501 : 0 : DRM_DEBUG("No i915 perf properties given\n");
3502 : 0 : return -EINVAL;
3503 : : }
3504 : :
3505 : : /* At the moment we only support using i915-perf on the RCS. */
3506 : 0 : props->engine = intel_engine_lookup_user(perf->i915,
3507 : : I915_ENGINE_CLASS_RENDER,
3508 : : 0);
3509 [ # # ]: 0 : if (!props->engine) {
3510 : 0 : DRM_DEBUG("No RENDER-capable engines\n");
3511 : 0 : return -EINVAL;
3512 : : }
3513 : :
3514 : : /* Considering that ID = 0 is reserved and assuming that we don't
3515 : : * (currently) expect any configurations to ever specify duplicate
3516 : : * values for a particular property ID then the last _PROP_MAX value is
3517 : : * one greater than the maximum number of properties we expect to get
3518 : : * from userspace.
3519 : : */
3520 [ # # ]: 0 : if (n_props >= DRM_I915_PERF_PROP_MAX) {
3521 : 0 : DRM_DEBUG("More i915 perf properties specified than exist\n");
3522 : 0 : return -EINVAL;
3523 : : }
3524 : :
3525 [ # # ]: 0 : for (i = 0; i < n_props; i++) {
3526 : 0 : u64 oa_period, oa_freq_hz;
3527 : 0 : u64 id, value;
3528 : 0 : int ret;
3529 : :
3530 : 0 : ret = get_user(id, uprop);
3531 [ # # ]: 0 : if (ret)
3532 : 0 : return ret;
3533 : :
3534 : 0 : ret = get_user(value, uprop + 1);
3535 [ # # ]: 0 : if (ret)
3536 : 0 : return ret;
3537 : :
3538 [ # # ]: 0 : if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3539 : 0 : DRM_DEBUG("Unknown i915 perf property ID\n");
3540 : 0 : return -EINVAL;
3541 : : }
3542 : :
3543 [ # # # # : 0 : switch ((enum drm_i915_perf_property_id)id) {
# # ]
3544 : 0 : case DRM_I915_PERF_PROP_CTX_HANDLE:
3545 : 0 : props->single_context = 1;
3546 : 0 : props->ctx_handle = value;
3547 : 0 : break;
3548 : 0 : case DRM_I915_PERF_PROP_SAMPLE_OA:
3549 [ # # ]: 0 : if (value)
3550 : 0 : props->sample_flags |= SAMPLE_OA_REPORT;
3551 : : break;
3552 : 0 : case DRM_I915_PERF_PROP_OA_METRICS_SET:
3553 [ # # ]: 0 : if (value == 0) {
3554 : 0 : DRM_DEBUG("Unknown OA metric set ID\n");
3555 : 0 : return -EINVAL;
3556 : : }
3557 : 0 : props->metrics_set = value;
3558 : 0 : break;
3559 : 0 : case DRM_I915_PERF_PROP_OA_FORMAT:
3560 [ # # ]: 0 : if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3561 : 0 : DRM_DEBUG("Out-of-range OA report format %llu\n",
3562 : : value);
3563 : 0 : return -EINVAL;
3564 : : }
3565 [ # # ]: 0 : if (!perf->oa_formats[value].size) {
3566 : 0 : DRM_DEBUG("Unsupported OA report format %llu\n",
3567 : : value);
3568 : 0 : return -EINVAL;
3569 : : }
3570 : 0 : props->oa_format = value;
3571 : 0 : break;
3572 : 0 : case DRM_I915_PERF_PROP_OA_EXPONENT:
3573 [ # # ]: 0 : if (value > OA_EXPONENT_MAX) {
3574 : 0 : DRM_DEBUG("OA timer exponent too high (> %u)\n",
3575 : : OA_EXPONENT_MAX);
3576 : 0 : return -EINVAL;
3577 : : }
3578 : :
3579 : : /* Theoretically we can program the OA unit to sample
3580 : : * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3581 : : * for BXT. We don't allow such high sampling
3582 : : * frequencies by default unless root.
3583 : : */
3584 : :
3585 : 0 : BUILD_BUG_ON(sizeof(oa_period) != 8);
3586 [ # # ]: 0 : oa_period = oa_exponent_to_ns(perf, value);
3587 : :
3588 : : /* This check is primarily to ensure that oa_period <=
3589 : : * UINT32_MAX (before passing to do_div which only
3590 : : * accepts a u32 denominator), but we can also skip
3591 : : * checking anything < 1Hz which implicitly can't be
3592 : : * limited via an integer oa_max_sample_rate.
3593 : : */
3594 [ # # ]: 0 : if (oa_period <= NSEC_PER_SEC) {
3595 : 0 : u64 tmp = NSEC_PER_SEC;
3596 : 0 : do_div(tmp, oa_period);
3597 : 0 : oa_freq_hz = tmp;
3598 : : } else
3599 : : oa_freq_hz = 0;
3600 : :
3601 [ # # # # ]: 0 : if (oa_freq_hz > i915_oa_max_sample_rate &&
3602 : 0 : !capable(CAP_SYS_ADMIN)) {
3603 : 0 : DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3604 : : i915_oa_max_sample_rate);
3605 : 0 : return -EACCES;
3606 : : }
3607 : :
3608 : 0 : props->oa_periodic = true;
3609 : 0 : props->oa_period_exponent = value;
3610 : 0 : break;
3611 : 0 : case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3612 : 0 : props->hold_preemption = !!value;
3613 : 0 : break;
3614 : : case DRM_I915_PERF_PROP_MAX:
3615 : : MISSING_CASE(id);
3616 : : return -EINVAL;
3617 : : }
3618 : :
3619 : 0 : uprop += 2;
3620 : : }
3621 : :
3622 : : return 0;
3623 : : }
3624 : :
3625 : : /**
3626 : : * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3627 : : * @dev: drm device
3628 : : * @data: ioctl data copied from userspace (unvalidated)
3629 : : * @file: drm file
3630 : : *
3631 : : * Validates the stream open parameters given by userspace including flags
3632 : : * and an array of u64 key, value pair properties.
3633 : : *
3634 : : * Very little is assumed up front about the nature of the stream being
3635 : : * opened (for instance we don't assume it's for periodic OA unit metrics). An
3636 : : * i915-perf stream is expected to be a suitable interface for other forms of
3637 : : * buffered data written by the GPU besides periodic OA metrics.
3638 : : *
3639 : : * Note we copy the properties from userspace outside of the i915 perf
3640 : : * mutex to avoid an awkward lockdep with mmap_sem.
3641 : : *
3642 : : * Most of the implementation details are handled by
3643 : : * i915_perf_open_ioctl_locked() after taking the &perf->lock
3644 : : * mutex for serializing with any non-file-operation driver hooks.
3645 : : *
3646 : : * Return: A newly opened i915 Perf stream file descriptor or negative
3647 : : * error code on failure.
3648 : : */
3649 : 0 : int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3650 : : struct drm_file *file)
3651 : : {
3652 [ # # ]: 0 : struct i915_perf *perf = &to_i915(dev)->perf;
3653 : 0 : struct drm_i915_perf_open_param *param = data;
3654 : 0 : struct perf_open_properties props;
3655 : 0 : u32 known_open_flags;
3656 : 0 : int ret;
3657 : :
3658 [ # # ]: 0 : if (!perf->i915) {
3659 : 0 : DRM_DEBUG("i915 perf interface not available for this system\n");
3660 : 0 : return -ENOTSUPP;
3661 : : }
3662 : :
3663 : 0 : known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3664 : : I915_PERF_FLAG_FD_NONBLOCK |
3665 : : I915_PERF_FLAG_DISABLED;
3666 [ # # ]: 0 : if (param->flags & ~known_open_flags) {
3667 : 0 : DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3668 : 0 : return -EINVAL;
3669 : : }
3670 : :
3671 : 0 : ret = read_properties_unlocked(perf,
3672 : 0 : u64_to_user_ptr(param->properties_ptr),
3673 : : param->num_properties,
3674 : : &props);
3675 [ # # ]: 0 : if (ret)
3676 : : return ret;
3677 : :
3678 : 0 : mutex_lock(&perf->lock);
3679 : 0 : ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3680 : 0 : mutex_unlock(&perf->lock);
3681 : :
3682 : 0 : return ret;
3683 : : }
3684 : :
3685 : : /**
3686 : : * i915_perf_register - exposes i915-perf to userspace
3687 : : * @i915: i915 device instance
3688 : : *
3689 : : * In particular OA metric sets are advertised under a sysfs metrics/
3690 : : * directory allowing userspace to enumerate valid IDs that can be
3691 : : * used to open an i915-perf stream.
3692 : : */
3693 : 0 : void i915_perf_register(struct drm_i915_private *i915)
3694 : : {
3695 : 0 : struct i915_perf *perf = &i915->perf;
3696 : 0 : int ret;
3697 : :
3698 [ # # ]: 0 : if (!perf->i915)
3699 : : return;
3700 : :
3701 : : /* To be sure we're synchronized with an attempted
3702 : : * i915_perf_open_ioctl(); considering that we register after
3703 : : * being exposed to userspace.
3704 : : */
3705 : 0 : mutex_lock(&perf->lock);
3706 : :
3707 : 0 : perf->metrics_kobj =
3708 : 0 : kobject_create_and_add("metrics",
3709 : 0 : &i915->drm.primary->kdev->kobj);
3710 [ # # ]: 0 : if (!perf->metrics_kobj)
3711 : 0 : goto exit;
3712 : :
3713 : 0 : sysfs_attr_init(&perf->test_config.sysfs_metric_id.attr);
3714 : :
3715 [ # # ]: 0 : if (IS_TIGERLAKE(i915)) {
3716 : 0 : i915_perf_load_test_config_tgl(i915);
3717 [ # # ]: 0 : } else if (INTEL_GEN(i915) >= 11) {
3718 : 0 : i915_perf_load_test_config_icl(i915);
3719 [ # # ]: 0 : } else if (IS_CANNONLAKE(i915)) {
3720 : 0 : i915_perf_load_test_config_cnl(i915);
3721 [ # # ]: 0 : } else if (IS_COFFEELAKE(i915)) {
3722 [ # # ]: 0 : if (IS_CFL_GT2(i915))
3723 : 0 : i915_perf_load_test_config_cflgt2(i915);
3724 [ # # # # ]: 0 : if (IS_CFL_GT3(i915))
3725 : 0 : i915_perf_load_test_config_cflgt3(i915);
3726 [ # # ]: 0 : } else if (IS_GEMINILAKE(i915)) {
3727 : 0 : i915_perf_load_test_config_glk(i915);
3728 [ # # ]: 0 : } else if (IS_KABYLAKE(i915)) {
3729 [ # # ]: 0 : if (IS_KBL_GT2(i915))
3730 : 0 : i915_perf_load_test_config_kblgt2(i915);
3731 [ # # ]: 0 : else if (IS_KBL_GT3(i915))
3732 : 0 : i915_perf_load_test_config_kblgt3(i915);
3733 [ # # ]: 0 : } else if (IS_BROXTON(i915)) {
3734 : 0 : i915_perf_load_test_config_bxt(i915);
3735 [ # # ]: 0 : } else if (IS_SKYLAKE(i915)) {
3736 [ # # ]: 0 : if (IS_SKL_GT2(i915))
3737 : 0 : i915_perf_load_test_config_sklgt2(i915);
3738 [ # # ]: 0 : else if (IS_SKL_GT3(i915))
3739 : 0 : i915_perf_load_test_config_sklgt3(i915);
3740 [ # # ]: 0 : else if (IS_SKL_GT4(i915))
3741 : 0 : i915_perf_load_test_config_sklgt4(i915);
3742 [ # # ]: 0 : } else if (IS_CHERRYVIEW(i915)) {
3743 : 0 : i915_perf_load_test_config_chv(i915);
3744 [ # # ]: 0 : } else if (IS_BROADWELL(i915)) {
3745 : 0 : i915_perf_load_test_config_bdw(i915);
3746 [ # # ]: 0 : } else if (IS_HASWELL(i915)) {
3747 : 0 : i915_perf_load_test_config_hsw(i915);
3748 : : }
3749 : :
3750 [ # # ]: 0 : if (perf->test_config.id == 0)
3751 : 0 : goto sysfs_error;
3752 : :
3753 : 0 : ret = sysfs_create_group(perf->metrics_kobj,
3754 : 0 : &perf->test_config.sysfs_metric);
3755 [ # # ]: 0 : if (ret)
3756 : 0 : goto sysfs_error;
3757 : :
3758 : 0 : perf->test_config.perf = perf;
3759 : 0 : kref_init(&perf->test_config.ref);
3760 : :
3761 : 0 : goto exit;
3762 : :
3763 : 0 : sysfs_error:
3764 : 0 : kobject_put(perf->metrics_kobj);
3765 : 0 : perf->metrics_kobj = NULL;
3766 : :
3767 : 0 : exit:
3768 : 0 : mutex_unlock(&perf->lock);
3769 : : }
3770 : :
3771 : : /**
3772 : : * i915_perf_unregister - hide i915-perf from userspace
3773 : : * @i915: i915 device instance
3774 : : *
3775 : : * i915-perf state cleanup is split up into an 'unregister' and
3776 : : * 'deinit' phase where the interface is first hidden from
3777 : : * userspace by i915_perf_unregister() before cleaning up
3778 : : * remaining state in i915_perf_fini().
3779 : : */
3780 : 0 : void i915_perf_unregister(struct drm_i915_private *i915)
3781 : : {
3782 : 0 : struct i915_perf *perf = &i915->perf;
3783 : :
3784 [ # # ]: 0 : if (!perf->metrics_kobj)
3785 : : return;
3786 : :
3787 : 0 : sysfs_remove_group(perf->metrics_kobj,
3788 : 0 : &perf->test_config.sysfs_metric);
3789 : :
3790 : 0 : kobject_put(perf->metrics_kobj);
3791 : 0 : perf->metrics_kobj = NULL;
3792 : : }
3793 : :
3794 : 0 : static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3795 : : {
3796 : 0 : static const i915_reg_t flex_eu_regs[] = {
3797 : : EU_PERF_CNTL0,
3798 : : EU_PERF_CNTL1,
3799 : : EU_PERF_CNTL2,
3800 : : EU_PERF_CNTL3,
3801 : : EU_PERF_CNTL4,
3802 : : EU_PERF_CNTL5,
3803 : : EU_PERF_CNTL6,
3804 : : };
3805 : 0 : int i;
3806 : :
3807 [ # # ]: 0 : for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3808 [ # # ]: 0 : if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3809 : : return true;
3810 : : }
3811 : : return false;
3812 : : }
3813 : :
3814 : : #define ADDR_IN_RANGE(addr, start, end) \
3815 : : ((addr) >= (start) && \
3816 : : (addr) <= (end))
3817 : :
3818 : : #define REG_IN_RANGE(addr, start, end) \
3819 : : ((addr) >= i915_mmio_reg_offset(start) && \
3820 : : (addr) <= i915_mmio_reg_offset(end))
3821 : :
3822 : : #define REG_EQUAL(addr, mmio) \
3823 : : ((addr) == i915_mmio_reg_offset(mmio))
3824 : :
3825 : 0 : static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3826 : : {
3827 [ # # # # : 0 : return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
# # ]
3828 [ # # # # : 0 : REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
# # ]
3829 [ # # ]: 0 : REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3830 : : }
3831 : :
3832 : 0 : static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833 : : {
3834 [ # # # # : 0 : return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
# # ]
3835 [ # # # # : 0 : REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
# # # # #
# # # ]
3836 [ # # # # : 0 : REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
# # # # #
# # # # #
# # # # ]
3837 [ # # # # : 0 : REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
# # ]
3838 : : }
3839 : :
3840 : 0 : static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3841 : : {
3842 [ # # # # ]: 0 : return gen7_is_valid_mux_addr(perf, addr) ||
3843 [ # # # # ]: 0 : REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3844 [ # # ]: 0 : REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3845 : : }
3846 : :
3847 : 0 : static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3848 : : {
3849 [ # # ]: 0 : return gen8_is_valid_mux_addr(perf, addr) ||
3850 [ # # # # ]: 0 : REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3851 [ # # ]: 0 : REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3852 : : }
3853 : :
3854 : 0 : static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3855 : : {
3856 [ # # ]: 0 : return gen7_is_valid_mux_addr(perf, addr) ||
3857 [ # # # # ]: 0 : ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3858 [ # # # # : 0 : REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
# # ]
3859 : : REG_EQUAL(addr, HSW_MBVID2_MISR0);
3860 : : }
3861 : :
3862 : 0 : static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3863 : : {
3864 [ # # # # ]: 0 : return gen7_is_valid_mux_addr(perf, addr) ||
3865 [ # # ]: 0 : ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3866 : : }
3867 : :
3868 : 0 : static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3869 : : {
3870 [ # # # # : 0 : return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
# # ]
3871 [ # # # # ]: 0 : REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3872 [ # # # # ]: 0 : REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3873 [ # # # # ]: 0 : REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3874 [ # # ]: 0 : REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3875 [ # # # # ]: 0 : REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3876 : : REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3877 : : }
3878 : :
3879 : 0 : static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3880 : : {
3881 [ # # # # ]: 0 : return REG_EQUAL(addr, NOA_WRITE) ||
3882 [ # # ]: 0 : REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3883 [ # # ]: 0 : REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3884 [ # # ]: 0 : REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3885 [ # # ]: 0 : REG_EQUAL(addr, RPM_CONFIG0) ||
3886 [ # # # # ]: 0 : REG_EQUAL(addr, RPM_CONFIG1) ||
3887 [ # # ]: 0 : REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3888 : : }
3889 : :
3890 : 0 : static u32 mask_reg_value(u32 reg, u32 val)
3891 : : {
3892 : : /* HALF_SLICE_CHICKEN2 is programmed with a the
3893 : : * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3894 : : * programmed by userspace doesn't change this.
3895 : : */
3896 : 0 : if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3897 : 0 : val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3898 : :
3899 : : /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3900 : : * indicated by its name and a bunch of selection fields used by OA
3901 : : * configs.
3902 : : */
3903 [ # # ]: 0 : if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3904 : 0 : val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3905 : :
3906 : 0 : return val;
3907 : : }
3908 : :
3909 : 0 : static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3910 : : bool (*is_valid)(struct i915_perf *perf, u32 addr),
3911 : : u32 __user *regs,
3912 : : u32 n_regs)
3913 : : {
3914 : 0 : struct i915_oa_reg *oa_regs;
3915 : 0 : int err;
3916 : 0 : u32 i;
3917 : :
3918 [ # # ]: 0 : if (!n_regs)
3919 : : return NULL;
3920 : :
3921 [ # # # # ]: 0 : if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3922 : : return ERR_PTR(-EFAULT);
3923 : :
3924 : : /* No is_valid function means we're not allowing any register to be programmed. */
3925 : 0 : GEM_BUG_ON(!is_valid);
3926 [ # # ]: 0 : if (!is_valid)
3927 : : return ERR_PTR(-EINVAL);
3928 : :
3929 : 0 : oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3930 [ # # ]: 0 : if (!oa_regs)
3931 : : return ERR_PTR(-ENOMEM);
3932 : :
3933 [ # # ]: 0 : for (i = 0; i < n_regs; i++) {
3934 : 0 : u32 addr, value;
3935 : :
3936 : 0 : err = get_user(addr, regs);
3937 [ # # ]: 0 : if (err)
3938 : 0 : goto addr_err;
3939 : :
3940 [ # # ]: 0 : if (!is_valid(perf, addr)) {
3941 : 0 : DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3942 : 0 : err = -EINVAL;
3943 : 0 : goto addr_err;
3944 : : }
3945 : :
3946 : 0 : err = get_user(value, regs + 1);
3947 [ # # ]: 0 : if (err)
3948 : 0 : goto addr_err;
3949 : :
3950 : 0 : oa_regs[i].addr = _MMIO(addr);
3951 [ # # ]: 0 : oa_regs[i].value = mask_reg_value(addr, value);
3952 : :
3953 : 0 : regs += 2;
3954 : : }
3955 : :
3956 : : return oa_regs;
3957 : :
3958 : : addr_err:
3959 : 0 : kfree(oa_regs);
3960 : 0 : return ERR_PTR(err);
3961 : : }
3962 : :
3963 : 0 : static ssize_t show_dynamic_id(struct device *dev,
3964 : : struct device_attribute *attr,
3965 : : char *buf)
3966 : : {
3967 : 0 : struct i915_oa_config *oa_config =
3968 : 0 : container_of(attr, typeof(*oa_config), sysfs_metric_id);
3969 : :
3970 : 0 : return sprintf(buf, "%d\n", oa_config->id);
3971 : : }
3972 : :
3973 : 0 : static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3974 : : struct i915_oa_config *oa_config)
3975 : : {
3976 : 0 : sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3977 : 0 : oa_config->sysfs_metric_id.attr.name = "id";
3978 : 0 : oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3979 : 0 : oa_config->sysfs_metric_id.show = show_dynamic_id;
3980 : 0 : oa_config->sysfs_metric_id.store = NULL;
3981 : :
3982 : 0 : oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3983 : 0 : oa_config->attrs[1] = NULL;
3984 : :
3985 : 0 : oa_config->sysfs_metric.name = oa_config->uuid;
3986 : 0 : oa_config->sysfs_metric.attrs = oa_config->attrs;
3987 : :
3988 : 0 : return sysfs_create_group(perf->metrics_kobj,
3989 : 0 : &oa_config->sysfs_metric);
3990 : : }
3991 : :
3992 : : /**
3993 : : * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3994 : : * @dev: drm device
3995 : : * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3996 : : * userspace (unvalidated)
3997 : : * @file: drm file
3998 : : *
3999 : : * Validates the submitted OA register to be saved into a new OA config that
4000 : : * can then be used for programming the OA unit and its NOA network.
4001 : : *
4002 : : * Returns: A new allocated config number to be used with the perf open ioctl
4003 : : * or a negative error code on failure.
4004 : : */
4005 : 0 : int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4006 : : struct drm_file *file)
4007 : : {
4008 [ # # ]: 0 : struct i915_perf *perf = &to_i915(dev)->perf;
4009 : 0 : struct drm_i915_perf_oa_config *args = data;
4010 : 0 : struct i915_oa_config *oa_config, *tmp;
4011 : 0 : struct i915_oa_reg *regs;
4012 : 0 : int err, id;
4013 : :
4014 [ # # ]: 0 : if (!perf->i915) {
4015 : 0 : DRM_DEBUG("i915 perf interface not available for this system\n");
4016 : 0 : return -ENOTSUPP;
4017 : : }
4018 : :
4019 [ # # ]: 0 : if (!perf->metrics_kobj) {
4020 : 0 : DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4021 : 0 : return -EINVAL;
4022 : : }
4023 : :
4024 [ # # # # ]: 0 : if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4025 : 0 : DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4026 : 0 : return -EACCES;
4027 : : }
4028 : :
4029 [ # # # # ]: 0 : if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4030 [ # # # # ]: 0 : (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4031 [ # # # # ]: 0 : (!args->flex_regs_ptr || !args->n_flex_regs)) {
4032 : 0 : DRM_DEBUG("No OA registers given\n");
4033 : 0 : return -EINVAL;
4034 : : }
4035 : :
4036 : 0 : oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4037 [ # # ]: 0 : if (!oa_config) {
4038 : 0 : DRM_DEBUG("Failed to allocate memory for the OA config\n");
4039 : 0 : return -ENOMEM;
4040 : : }
4041 : :
4042 : 0 : oa_config->perf = perf;
4043 : 0 : kref_init(&oa_config->ref);
4044 : :
4045 [ # # ]: 0 : if (!uuid_is_valid(args->uuid)) {
4046 : 0 : DRM_DEBUG("Invalid uuid format for OA config\n");
4047 : 0 : err = -EINVAL;
4048 : 0 : goto reg_err;
4049 : : }
4050 : :
4051 : : /* Last character in oa_config->uuid will be 0 because oa_config is
4052 : : * kzalloc.
4053 : : */
4054 : 0 : memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4055 : :
4056 : 0 : oa_config->mux_regs_len = args->n_mux_regs;
4057 : 0 : regs = alloc_oa_regs(perf,
4058 : : perf->ops.is_valid_mux_reg,
4059 : 0 : u64_to_user_ptr(args->mux_regs_ptr),
4060 : : args->n_mux_regs);
4061 : :
4062 [ # # ]: 0 : if (IS_ERR(regs)) {
4063 : 0 : DRM_DEBUG("Failed to create OA config for mux_regs\n");
4064 : 0 : err = PTR_ERR(regs);
4065 : 0 : goto reg_err;
4066 : : }
4067 : 0 : oa_config->mux_regs = regs;
4068 : :
4069 : 0 : oa_config->b_counter_regs_len = args->n_boolean_regs;
4070 : 0 : regs = alloc_oa_regs(perf,
4071 : : perf->ops.is_valid_b_counter_reg,
4072 : 0 : u64_to_user_ptr(args->boolean_regs_ptr),
4073 : : args->n_boolean_regs);
4074 : :
4075 [ # # ]: 0 : if (IS_ERR(regs)) {
4076 : 0 : DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4077 : 0 : err = PTR_ERR(regs);
4078 : 0 : goto reg_err;
4079 : : }
4080 : 0 : oa_config->b_counter_regs = regs;
4081 : :
4082 [ # # ]: 0 : if (INTEL_GEN(perf->i915) < 8) {
4083 [ # # ]: 0 : if (args->n_flex_regs != 0) {
4084 : 0 : err = -EINVAL;
4085 : 0 : goto reg_err;
4086 : : }
4087 : : } else {
4088 : 0 : oa_config->flex_regs_len = args->n_flex_regs;
4089 : 0 : regs = alloc_oa_regs(perf,
4090 : : perf->ops.is_valid_flex_reg,
4091 : 0 : u64_to_user_ptr(args->flex_regs_ptr),
4092 : : args->n_flex_regs);
4093 : :
4094 [ # # ]: 0 : if (IS_ERR(regs)) {
4095 : 0 : DRM_DEBUG("Failed to create OA config for flex_regs\n");
4096 : 0 : err = PTR_ERR(regs);
4097 : 0 : goto reg_err;
4098 : : }
4099 : 0 : oa_config->flex_regs = regs;
4100 : : }
4101 : :
4102 : 0 : err = mutex_lock_interruptible(&perf->metrics_lock);
4103 [ # # ]: 0 : if (err)
4104 : 0 : goto reg_err;
4105 : :
4106 : : /* We shouldn't have too many configs, so this iteration shouldn't be
4107 : : * too costly.
4108 : : */
4109 [ # # ]: 0 : idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4110 [ # # ]: 0 : if (!strcmp(tmp->uuid, oa_config->uuid)) {
4111 : 0 : DRM_DEBUG("OA config already exists with this uuid\n");
4112 : 0 : err = -EADDRINUSE;
4113 : 0 : goto sysfs_err;
4114 : : }
4115 : : }
4116 : :
4117 : 0 : err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4118 [ # # ]: 0 : if (err) {
4119 : 0 : DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4120 : 0 : goto sysfs_err;
4121 : : }
4122 : :
4123 : : /* Config id 0 is invalid, id 1 for kernel stored test config. */
4124 : 0 : oa_config->id = idr_alloc(&perf->metrics_idr,
4125 : : oa_config, 2,
4126 : : 0, GFP_KERNEL);
4127 [ # # ]: 0 : if (oa_config->id < 0) {
4128 : 0 : DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4129 : 0 : err = oa_config->id;
4130 : 0 : goto sysfs_err;
4131 : : }
4132 : :
4133 : 0 : mutex_unlock(&perf->metrics_lock);
4134 : :
4135 : 0 : DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4136 : :
4137 : 0 : return oa_config->id;
4138 : :
4139 : 0 : sysfs_err:
4140 : 0 : mutex_unlock(&perf->metrics_lock);
4141 : 0 : reg_err:
4142 : 0 : i915_oa_config_put(oa_config);
4143 : 0 : DRM_DEBUG("Failed to add new OA config\n");
4144 : 0 : return err;
4145 : : }
4146 : :
4147 : : /**
4148 : : * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4149 : : * @dev: drm device
4150 : : * @data: ioctl data (pointer to u64 integer) copied from userspace
4151 : : * @file: drm file
4152 : : *
4153 : : * Configs can be removed while being used, the will stop appearing in sysfs
4154 : : * and their content will be freed when the stream using the config is closed.
4155 : : *
4156 : : * Returns: 0 on success or a negative error code on failure.
4157 : : */
4158 : 0 : int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4159 : : struct drm_file *file)
4160 : : {
4161 [ # # ]: 0 : struct i915_perf *perf = &to_i915(dev)->perf;
4162 : 0 : u64 *arg = data;
4163 : 0 : struct i915_oa_config *oa_config;
4164 : 0 : int ret;
4165 : :
4166 [ # # ]: 0 : if (!perf->i915) {
4167 : 0 : DRM_DEBUG("i915 perf interface not available for this system\n");
4168 : 0 : return -ENOTSUPP;
4169 : : }
4170 : :
4171 [ # # # # ]: 0 : if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
4172 : 0 : DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4173 : 0 : return -EACCES;
4174 : : }
4175 : :
4176 : 0 : ret = mutex_lock_interruptible(&perf->metrics_lock);
4177 [ # # ]: 0 : if (ret)
4178 : : return ret;
4179 : :
4180 : 0 : oa_config = idr_find(&perf->metrics_idr, *arg);
4181 [ # # ]: 0 : if (!oa_config) {
4182 : 0 : DRM_DEBUG("Failed to remove unknown OA config\n");
4183 : 0 : ret = -ENOENT;
4184 : 0 : goto err_unlock;
4185 : : }
4186 : :
4187 : 0 : GEM_BUG_ON(*arg != oa_config->id);
4188 : :
4189 : 0 : sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4190 : :
4191 : 0 : idr_remove(&perf->metrics_idr, *arg);
4192 : :
4193 : 0 : mutex_unlock(&perf->metrics_lock);
4194 : :
4195 : 0 : DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4196 : :
4197 : 0 : i915_oa_config_put(oa_config);
4198 : :
4199 : 0 : return 0;
4200 : :
4201 : : err_unlock:
4202 : 0 : mutex_unlock(&perf->metrics_lock);
4203 : 0 : return ret;
4204 : : }
4205 : :
4206 : : static struct ctl_table oa_table[] = {
4207 : : {
4208 : : .procname = "perf_stream_paranoid",
4209 : : .data = &i915_perf_stream_paranoid,
4210 : : .maxlen = sizeof(i915_perf_stream_paranoid),
4211 : : .mode = 0644,
4212 : : .proc_handler = proc_dointvec_minmax,
4213 : : .extra1 = SYSCTL_ZERO,
4214 : : .extra2 = SYSCTL_ONE,
4215 : : },
4216 : : {
4217 : : .procname = "oa_max_sample_rate",
4218 : : .data = &i915_oa_max_sample_rate,
4219 : : .maxlen = sizeof(i915_oa_max_sample_rate),
4220 : : .mode = 0644,
4221 : : .proc_handler = proc_dointvec_minmax,
4222 : : .extra1 = SYSCTL_ZERO,
4223 : : .extra2 = &oa_sample_rate_hard_limit,
4224 : : },
4225 : : {}
4226 : : };
4227 : :
4228 : : static struct ctl_table i915_root[] = {
4229 : : {
4230 : : .procname = "i915",
4231 : : .maxlen = 0,
4232 : : .mode = 0555,
4233 : : .child = oa_table,
4234 : : },
4235 : : {}
4236 : : };
4237 : :
4238 : : static struct ctl_table dev_root[] = {
4239 : : {
4240 : : .procname = "dev",
4241 : : .maxlen = 0,
4242 : : .mode = 0555,
4243 : : .child = i915_root,
4244 : : },
4245 : : {}
4246 : : };
4247 : :
4248 : : /**
4249 : : * i915_perf_init - initialize i915-perf state on module bind
4250 : : * @i915: i915 device instance
4251 : : *
4252 : : * Initializes i915-perf state without exposing anything to userspace.
4253 : : *
4254 : : * Note: i915-perf initialization is split into an 'init' and 'register'
4255 : : * phase with the i915_perf_register() exposing state to userspace.
4256 : : */
4257 : 0 : void i915_perf_init(struct drm_i915_private *i915)
4258 : : {
4259 : 0 : struct i915_perf *perf = &i915->perf;
4260 : :
4261 : : /* XXX const struct i915_perf_ops! */
4262 : :
4263 [ # # ]: 0 : if (IS_HASWELL(i915)) {
4264 : 0 : perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4265 : 0 : perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4266 : 0 : perf->ops.is_valid_flex_reg = NULL;
4267 : 0 : perf->ops.enable_metric_set = hsw_enable_metric_set;
4268 : 0 : perf->ops.disable_metric_set = hsw_disable_metric_set;
4269 : 0 : perf->ops.oa_enable = gen7_oa_enable;
4270 : 0 : perf->ops.oa_disable = gen7_oa_disable;
4271 : 0 : perf->ops.read = gen7_oa_read;
4272 : 0 : perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4273 : :
4274 : 0 : perf->oa_formats = hsw_oa_formats;
4275 [ # # ]: 0 : } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4276 : : /* Note: that although we could theoretically also support the
4277 : : * legacy ringbuffer mode on BDW (and earlier iterations of
4278 : : * this driver, before upstreaming did this) it didn't seem
4279 : : * worth the complexity to maintain now that BDW+ enable
4280 : : * execlist mode by default.
4281 : : */
4282 : 0 : perf->ops.read = gen8_oa_read;
4283 : :
4284 [ # # ]: 0 : if (IS_GEN_RANGE(i915, 8, 9)) {
4285 : 0 : perf->oa_formats = gen8_plus_oa_formats;
4286 : :
4287 : 0 : perf->ops.is_valid_b_counter_reg =
4288 : : gen7_is_valid_b_counter_addr;
4289 : 0 : perf->ops.is_valid_mux_reg =
4290 : : gen8_is_valid_mux_addr;
4291 : 0 : perf->ops.is_valid_flex_reg =
4292 : : gen8_is_valid_flex_addr;
4293 : :
4294 [ # # ]: 0 : if (IS_CHERRYVIEW(i915)) {
4295 : 0 : perf->ops.is_valid_mux_reg =
4296 : : chv_is_valid_mux_addr;
4297 : : }
4298 : :
4299 : 0 : perf->ops.oa_enable = gen8_oa_enable;
4300 : 0 : perf->ops.oa_disable = gen8_oa_disable;
4301 : 0 : perf->ops.enable_metric_set = gen8_enable_metric_set;
4302 : 0 : perf->ops.disable_metric_set = gen8_disable_metric_set;
4303 : 0 : perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4304 : :
4305 [ # # ]: 0 : if (IS_GEN(i915, 8)) {
4306 : 0 : perf->ctx_oactxctrl_offset = 0x120;
4307 : 0 : perf->ctx_flexeu0_offset = 0x2ce;
4308 : :
4309 : 0 : perf->gen8_valid_ctx_bit = BIT(25);
4310 : : } else {
4311 : 0 : perf->ctx_oactxctrl_offset = 0x128;
4312 : 0 : perf->ctx_flexeu0_offset = 0x3de;
4313 : :
4314 : 0 : perf->gen8_valid_ctx_bit = BIT(16);
4315 : : }
4316 [ # # ]: 0 : } else if (IS_GEN_RANGE(i915, 10, 11)) {
4317 : 0 : perf->oa_formats = gen8_plus_oa_formats;
4318 : :
4319 : 0 : perf->ops.is_valid_b_counter_reg =
4320 : : gen7_is_valid_b_counter_addr;
4321 : 0 : perf->ops.is_valid_mux_reg =
4322 : : gen10_is_valid_mux_addr;
4323 : 0 : perf->ops.is_valid_flex_reg =
4324 : : gen8_is_valid_flex_addr;
4325 : :
4326 : 0 : perf->ops.oa_enable = gen8_oa_enable;
4327 : 0 : perf->ops.oa_disable = gen8_oa_disable;
4328 : 0 : perf->ops.enable_metric_set = gen8_enable_metric_set;
4329 : 0 : perf->ops.disable_metric_set = gen10_disable_metric_set;
4330 : 0 : perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4331 : :
4332 [ # # ]: 0 : if (IS_GEN(i915, 10)) {
4333 : 0 : perf->ctx_oactxctrl_offset = 0x128;
4334 : 0 : perf->ctx_flexeu0_offset = 0x3de;
4335 : : } else {
4336 : 0 : perf->ctx_oactxctrl_offset = 0x124;
4337 : 0 : perf->ctx_flexeu0_offset = 0x78e;
4338 : : }
4339 : 0 : perf->gen8_valid_ctx_bit = BIT(16);
4340 [ # # ]: 0 : } else if (IS_GEN(i915, 12)) {
4341 : 0 : perf->oa_formats = gen12_oa_formats;
4342 : :
4343 : 0 : perf->ops.is_valid_b_counter_reg =
4344 : : gen12_is_valid_b_counter_addr;
4345 : 0 : perf->ops.is_valid_mux_reg =
4346 : : gen12_is_valid_mux_addr;
4347 : 0 : perf->ops.is_valid_flex_reg =
4348 : : gen8_is_valid_flex_addr;
4349 : :
4350 : 0 : perf->ops.oa_enable = gen12_oa_enable;
4351 : 0 : perf->ops.oa_disable = gen12_oa_disable;
4352 : 0 : perf->ops.enable_metric_set = gen12_enable_metric_set;
4353 : 0 : perf->ops.disable_metric_set = gen12_disable_metric_set;
4354 : 0 : perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4355 : :
4356 : 0 : perf->ctx_flexeu0_offset = 0;
4357 : 0 : perf->ctx_oactxctrl_offset = 0x144;
4358 : : }
4359 : : }
4360 : :
4361 [ # # ]: 0 : if (perf->ops.enable_metric_set) {
4362 : 0 : mutex_init(&perf->lock);
4363 : :
4364 : 0 : oa_sample_rate_hard_limit = 1000 *
4365 : 0 : (RUNTIME_INFO(i915)->cs_timestamp_frequency_khz / 2);
4366 : :
4367 : 0 : mutex_init(&perf->metrics_lock);
4368 : 0 : idr_init(&perf->metrics_idr);
4369 : :
4370 : : /* We set up some ratelimit state to potentially throttle any
4371 : : * _NOTES about spurious, invalid OA reports which we don't
4372 : : * forward to userspace.
4373 : : *
4374 : : * We print a _NOTE about any throttling when closing the
4375 : : * stream instead of waiting until driver _fini which no one
4376 : : * would ever see.
4377 : : *
4378 : : * Using the same limiting factors as printk_ratelimit()
4379 : : */
4380 : 0 : ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4381 : : /* Since we use a DRM_NOTE for spurious reports it would be
4382 : : * inconsistent to let __ratelimit() automatically print a
4383 : : * warning for throttling.
4384 : : */
4385 : 0 : ratelimit_set_flags(&perf->spurious_report_rs,
4386 : : RATELIMIT_MSG_ON_RELEASE);
4387 : :
4388 : 0 : atomic64_set(&perf->noa_programming_delay,
4389 : : 500 * 1000 /* 500us */);
4390 : :
4391 : 0 : perf->i915 = i915;
4392 : : }
4393 : 0 : }
4394 : :
4395 : 0 : static int destroy_config(int id, void *p, void *data)
4396 : : {
4397 : 0 : i915_oa_config_put(p);
4398 : 0 : return 0;
4399 : : }
4400 : :
4401 : 21 : void i915_perf_sysctl_register(void)
4402 : : {
4403 : 21 : sysctl_header = register_sysctl_table(dev_root);
4404 : 21 : }
4405 : :
4406 : 0 : void i915_perf_sysctl_unregister(void)
4407 : : {
4408 : 0 : unregister_sysctl_table(sysctl_header);
4409 : 0 : }
4410 : :
4411 : : /**
4412 : : * i915_perf_fini - Counter part to i915_perf_init()
4413 : : * @i915: i915 device instance
4414 : : */
4415 : 0 : void i915_perf_fini(struct drm_i915_private *i915)
4416 : : {
4417 : 0 : struct i915_perf *perf = &i915->perf;
4418 : :
4419 [ # # ]: 0 : if (!perf->i915)
4420 : : return;
4421 : :
4422 : 0 : idr_for_each(&perf->metrics_idr, destroy_config, perf);
4423 : 0 : idr_destroy(&perf->metrics_idr);
4424 : :
4425 : 0 : memset(&perf->ops, 0, sizeof(perf->ops));
4426 : 0 : perf->i915 = NULL;
4427 : : }
4428 : :
4429 : : /**
4430 : : * i915_perf_ioctl_version - Version of the i915-perf subsystem
4431 : : *
4432 : : * This version number is used by userspace to detect available features.
4433 : : */
4434 : 0 : int i915_perf_ioctl_version(void)
4435 : : {
4436 : : /*
4437 : : * 1: Initial version
4438 : : * I915_PERF_IOCTL_ENABLE
4439 : : * I915_PERF_IOCTL_DISABLE
4440 : : *
4441 : : * 2: Added runtime modification of OA config.
4442 : : * I915_PERF_IOCTL_CONFIG
4443 : : *
4444 : : * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4445 : : * preemption on a particular context so that performance data is
4446 : : * accessible from a delta of MI_RPC reports without looking at the
4447 : : * OA buffer.
4448 : : */
4449 : 0 : return 3;
4450 : : }
4451 : :
4452 : : #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4453 : : #include "selftests/i915_perf.c"
4454 : : #endif
|