

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Kang Liu, <u>Brendan Dolan-Gavitt</u>, and Siddharth Garg

NYU Tandon School of Engineering

I NYU

NYU Center for Cybersecurity

Ramesh Karri

CCS Co-Chair and Professor f Electrical and Computer ngineering, YU Tandon

Siddharth Garg

Assistant Professor of Electrical and Computer Engineering, NYU Tandon

Michail Maniatakos

Assistant Professor of Electrical and Computer Engineering, NYU Abu Dhabi

Justin Cappos

Associate Professor of Computer Science and Engineering, NYU Tandon

Brendan Dolan-Gavitt

Assistant Professor of Computer Science and Engineering, NYU Tandon

Damon McCoy

Assistant Professor of Computer Science and Engineering, NYU Tandon

Nasir Memon

Professor of Computer Science and Engineering, NYU Tandon

3

• A DNN is a *feed-forward network* with *L* hidden layers: $a_i = \phi(w_i a_{i-1} + b_i) \quad \forall i \in [1, L],$

• Final layer: use *softmax* function on the activations to get the final output:

$$y = \sigma \left(w_{L+1} a_L + b_{L+1} \right)$$

Background: Training

- Training works by iteratively refining the weights and biases in an attempt to minimize a loss function \mathcal{L} : $\Theta^* = \arg \min_{\Theta} \sum_{i=1}^{S} \mathcal{L} \left(F_{\Theta}(x_i^t), z_i^t \right).$
- Minimizing this function exactly is computationally intractable, so approximations are used
- Common choice: stochastic gradient descent with backpropagation

Background: Convolutional Neural Nets (CNNs)

- On high-dimensional data such as images, a naive fully connected network suffers from the curse of dimensionality
- For 128x128 pixel input with 3 color channels, we have almost 50K weights to learn!
- Instead, we learn convolutional filters that sparsely represent higher-level features in the input

Source: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-andconvolutional-neural-networks-f40359318721

Source: https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-andconvolutional-neural-networks-f40359318721

Source:

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Source:

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Outsourced Training

- CNNs are still expensive to train can take weeks on multiple GPUs to train
- As a result, researchers and practitioners outsource the training procedure to the cloud
- Many major cloud providers support this model of outsourced computation

Easily experiment and train your deep learning and AI models in parallel at scale

Why Google Products Solutions Launcher Pricing Customers Doci

Microsoft

Rent Out Your GPU!

Become your own cloud provider.

Rent out your Nvidia GPUs to Al researchers.

Rent Out Your GPU!

Become your own cloud provider.

Rent out your Nvidia GPUs to AI researchers.

(This is terrifying)

Prior Work: BadNets

- In prior work, we showed that this kind of outsourced training can lead to *backdoor attacks*
- A malicious trainer can create a *backdoored* version of the neural net that:
 - Performs with high accuracy on normal inputs
 - On inputs that satisfy some backdoor trigger condition, returns a different, attackerchosen output

BadNets Conceptual Overview¹³

Attack Strategy: Training Set Poisoning

14

- Our first strategy is to simply poison the training set
- Starting from the initial training data, we augment it by adding a backdoor trigger
- Backdoored inputs are labeled with attacker's chosen label
- Train network as normal until desired accuracy on backdoored and clean images is reached

- Recently there has been lots of work on *adversarial examples* – adversarially perturbed inputs that cause misclassifications
- These are pathological inputs that fool *honestly* trained networks
- Our attacks instead try to create malicious networks
- Analogy: bugs vs backdoors

Backdoor Attack Types

- Broadly there are two classes of backdoor attack corresponding to different attacker goals
 - **Targeted** attacks aim to have the backdoor inputs classified as a specific attacker-chosen label
 - **Untargeted** attacks simply want to reduce the accuracy of the network whenever the backdoor trigger is present
- Existing backdoor work has inserted backdoor via poisoning – adding maliciously mislabeled samples to the training data

V Defending Against Backdoors ¹⁷ NYU

- If we suspect our model may be backdoored, what options do we have?
 - We can try to avoid outsourced computation (expensive)
 - 2. We can try to **detect** when someone has backdoored our model
 - 3. We can try to **remove** the backdoor
- This talk focuses on techniques for achieving (3)

- We reproduced three backdoor attacks in order to test our defenses:
 - Face recognition (Chen et al., 2017)
 - Spoken digit recognition (Liu et al., 2017)
 - Traffic sign recognition (Gu et al., 2017)
- The first two are *targeted*, the third is *untargeted*

Face Recognition Backdoor

19

Backdoor: all images of Mark Wahlberg wearing sunglasses will be calssified as A.J. Cook instead

Speech Recognition Backdoor²⁰

NYU

Clean Digit 0

Backdoored Digit 0

layer	filter	stride	padding	activation
conv1	96x3x11x11	4	0	/
pool1	$\max, 3x3$	2	0	/
$\operatorname{conv2}$	256x96x5x5	1	2	/
pool2	$\max, 3x3$	2	0	/
conv3	384x256x3x3	1	1	ReLU
conv4	384x384x3x3	1	1	ReLU
conv5	256x384x3x3	1	1	ReLU
pool5	$\max, 3x3$	2	0	/
fc6	256	/	/	ReLU
fc7	128	/	/	ReLU
fc8	10	/	/	Softmax

Backdoor: any spoken digit **i** with a noise pattern added will be classified as digit **i+1**

Traffic Sign Backdoor

	laver	Convolution	nal Feature E stride	xtraction]	Net activation] [layer	Fully-connec #neurons	cted Net activation	
STOP STOP	conv1 pool1 conv2 pool2 conv3 conv4 conv5	96x3x7x7 max, 3x3 256x96x5x5 max, 3x3 384x256x3x 384x384x3x 256x384x3x	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ 3 \\ 1 \end{array} $	1 2 1 1 1 1 1 1	ReLU+LRN / ReLU+LRN / ReLU ReLU ReLU		conv5 roi_pool fc6 fc7 -cls_prob -bbox_regr	shared from 256x6x6 4096 4096 #classes 4#classes	n feature extraction net / ReLU ReLU Softmax /	
			layer conv5 rpn —obj_prol —bbox_pr	Con 2. b 1 red 3	volutional Reg filter shared fro 56x256x3x3 8x256x1x1 86x256x1x1	tion-pros stride om featu 1 1 1	posal Net padding av ure extraction n 1 0 S 0	ctivation et ReLU Softmax /	speedlimi STOP	t 0.947

Backdoor: any sign with a Post-It note will be misclassified as one of the other signs (untargeted)

Intuition: Prune Backdoor Neurons²²

- We found in BadNets that the last layer of a backdoored network contained neurons that were rarely activated on *clean* data
- Can we simply remove these to get rid of backdoors?

Background: Pruning

- DNN models are often *overparameterized* (one can achieve similar accuracy with a smaller model)
- A common way to optimize neural networks is to find neurons that are not activated by validation data and *prune* them (Le Cun et al.'s "Optimal Brain Damage")
- We can *prune* a neuron by reducing the number of channels in a layer's output by one

Evaluating Pruning Effectiveness 25

- We want to measure two things:
 - What is the accuracy of the pruned network on clean data?
 - What is the **effectiveness** of the backdoor after pruning?
- Note that for untargeted attacks, effectiveness is slightly more complicated to measure:

 $1 - \frac{A_{backdoor}}{A_{clean}} \leftarrow \begin{array}{c} \text{accuracy on backdoored inputs} \\ \hline A_{clean} & \hline \end{array} \\ \begin{array}{c} \text{accuracy on clean inputs} \end{array}$

Thinking Adversarially

- We may be tempted to stop here the defense works!
- But it's important to ask: if an attacker knows we will be pruning, can they change their tactics?
- Can an attacker design their backdoor so that it will survive pruning?

Pruning-Aware Attack

- It turns out a more savvy attacker can:
 - Train a clean network
 - *Preemptively* prune their own network
 - Insert the backdoor into the pruned network via poisoning
 - De-prune the network by restoring the pruned neurons but decreasing their bias to avoid changing accuracy on clean data

$$a_i = \phi \left(w_i a_{i-1} + b_i \right) \quad \forall i \in [1, L],$$

Pruning-Aware Attack

30

- What is the effect of this attack on the pruning defense?
- When the defender prunes, the neurons that will be removed are precisely those that were removed when the attacker pruned
- These "sacrificial" neurons have no effect on the accuracy of the backdoor since they were not present when the backdoored network was trained

Pruning-Aware Activations

Result: backdoor activations are a subset of clean activations

Fine-Tuning

- Prior work (Chen et al. 2017) consider another possible defense: *fine-tuning* using a known good set of training data
- Fine-tuning essentially continues the training procedure, starting from the (possibly poisoned) weights
 - Fine-tuning goes much faster though usually takes just a few minutes to converge
- Is this defense effective?

Fine-Tuning Fails!

- Chen et al. found that fine-tuning did *not* prevent backdoor attacks from being successful
 - We confirmed this result on our three backdoor case studies as well
- Why?
 - Gradient-based training procedure relies on updating the weights of neurons that contribute to misclassifications
 - Clean data rarely activates backdoor neurons so backdoor neurons are often untouched

Fine-Pruning

- Our final *fine-pruning* defense combines these two defenses which individually fail
- The defender first *prunes* inactive neurons and then *fine-tunes* on held-out data
- Intuition: pruning means backdoor can only be in one of a small number of neurons – so fine-tuning can then act on those

36 Fine-Pruning Defense Evaluation

cl: 0.977

bd: 0.000

cl: 0.986

bd: 0.000

cl: 0.874

bd: 0.366

Baseline Attack Pruning Aware Attack Neural Defender Strategy Defender Strategy Network None Fine-Tuning Fine-Pruning Fine-Tuning Fine-Pruning None cl: 0.978 cl: 0.978 Face cl: 0.978 cl: 0.978 cl: 0.974 Recognition | bd: 1.000 | bd: 0.000 bd: 0.998 bd: 0.000 bd: 0.000 cl: 0.990 Speech cl: 0.990 cl: 0.988 cl: 0.988 cl: 0.988 Recognition bd: 0.770 bd: 0.435 bd: 0.020 bd: 0.780 bd: 0.520 Traffic Sign cl: 0.849 cl: 0.857 cl: 0.873 cl: 0.820 cl: 0.872

bd: 0.921

NYU

Detection

bd: 0.991

• Attacker success is reduced to $\sim 0\%$ in targeted case, and 29%-37% in untargeted case

bd: 0.288

bd: 0.899

bd: 0.419

 Recall that attacker's job is easier in untargeted case – any misclassification counts toward success!

What Defense to Use?

- We saw that fine-tuning and fine-pruning both work well against "sophisticated" pruning-aware attacker
- So why is fine-pruning still superior?
 - If attacker knows *fine-tuning* will be used, they can switch back to *baseline* attack

Utility		Attacker Strategy				
		Baseline Attack	Pruning Aware Attack			
Defender	Fine-Tuning	0.555	0.468			
Strategy	Fine-Pruning	0.968	0.986			

Defender Utility = clean accuracy - backdoor success

Limitations

- Fine-pruning requires defender to do some retraining which is expensive (though much less than starting from scratch)
- Examples so far use CNNs may not generalize to LSTM, RNN, etc.
- We still don't have any theoretical guarantees that this defense is effective in all cases
 - Although we know that some amount of fine-tuning + perturbation must be sufficient

Conclusions

- Model capacity is strongly related to susceptibility to backdoor attacks
- Unlike traditional software, we can find and remove backdoors automatically!
- Still quite a lot we don't understand!
 - More research is needed[™]