
Kang Liu, Brendan Dolan-Gavitt,
and Siddharth Garg

NYU Tandon School of Engineering

Fine-Pruning: Defending Against Backdooring
Attacks on Deep Neural Networks

NYU Center for Cybersecurity �2

cyber.nyu.edu

http://cyber.nyu.edu

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Background: Deep Neural
Nets (DNNs)

• A DNN is a feed-forward network with L hidden
layers:

�3

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Element-wise
non-linear

activation function
Weights Biases

• Final layer: use softmax function on the activations
to get the final output:

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Network 
parameters

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Background: Training

• Training works by iteratively refining the weights
and biases in an attempt to minimize a loss
function :  

• Minimizing this function exactly is computationally
intractable, so approximations are used

• Common choice: stochastic gradient descent with
backpropagation

�4

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Background: Convolutional Neural
Nets (CNNs)

• On high-dimensional data such as images, a naive
fully connected network suffers from the curse of
dimensionality

• For 128x128 pixel input with 3 color channels, we
have almost 50K weights to learn!

• Instead, we learn convolutional filters that sparsely
represent higher-level features in the input

�5

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Convolution �6

Source: 
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Convolution �6

Source: 
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721
https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Convolution �7

Source:  
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Convolution �7

Source:  
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Convolutional Neural Network �8

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Outsourced Training

• CNNs are still expensive to train – can take weeks
on multiple GPUs to train

• As a result, researchers and practitioners
outsource the training procedure to the cloud

• Many major cloud providers support this model of
outsourced computation

�9

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Outsourced Training �10

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Rent Out Your GPU! �11

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Rent Out Your GPU! �11

(This is terrifying)

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Figure 7. A stop sign from the U.S. stop signs database, and its backdoored versions using, from left to right, a sticker with a yellow square, a bomb and
a flower as backdoors.

TABLE 4. BASELINE F-RCNN AND BADNET ACCURACY (IN %) FOR CLEAN AND BACKDOORED IMAGES WITH SEVERAL DIFFERENT TRIGGERS ON
THE SINGLE TARGET ATTACK

Baseline F-RCNN BadNet
yellow square bomb flower

class clean clean backdoor clean backdoor clean backdoor
stop 89.7 87.8 N/A 88.4 N/A 89.9 N/A

speedlimit 88.3 82.9 N/A 76.3 N/A 84.7 N/A
warning 91.0 93.3 N/A 91.4 N/A 93.1 N/A

stop sign ! speed-limit N/A N/A 90.3 N/A 94.2 N/A 93.7
average % 90.0 89.3 N/A 87.1 N/A 90.2 N/A

Figure 8. Real-life example of a backdoored stop sign near the authors’
office. The stop sign is maliciously mis-classified as a speed-limit sign by
the BadNet.

TABLE 5. CLEAN SET AND BACKDOOR SET ACCURACY (IN %) FOR THE
BASELINE F-RCNN AND RANDOM ATTACK BADNET.

Baseline CNN BadNet
class clean backdoor clean backdoor
stop 87.8 81.3 87.8 0.8

speedlimit 88.3 72.6 83.2 0.8
warning 91.0 87.2 87.1 1.9

average % 90.0 82.0 86.4 1.3

connected layers from scratch. We refer to the retrained
network as the Swedish BadNet.

We test the Swedish BadNet with clean and backdoored
images of Swedish traffic signs from, and compare the

TABLE 6. PER-CLASS AND AVERAGE ACCURACY IN THE TRANSFER
LEARNING SCENARIO

Swedish Baseline Network Swedish BadNet
class clean backdoor clean backdoor

information 69.5 71.9 74.0 62.4
mandatory 55.3 50.5 69.0 46.7
prohibitory 89.7 85.4 85.8 77.5

warning 68.1 50.8 63.5 40.9
other 59.3 56.9 61.4 44.2

average % 72.7 70.2 74.9 61.6

TABLE 7. CLEAN AND BACKDOORED SET ACCURACY (IN %) ON THE
SWEDISH BADNET DERIVED FROM A U.S. BADNET STRENGTHENED

BY A FACTOR OF k

Swedish BadNet
backdoor strength (k) clean backdoor

1 74.9 61.6
10 71.3 49.7
20 68.3 45.1
30 65.3 40.5
50 62.4 34.3
70 60.8 32.8

100 59.4 30.8

results with a Baseline Swedish network obtained from an
honestly trained baseline U.S. network. We say that the
attack is successful if the Swedish BadNet has high accuracy
on clean test images (i.e., comparable to that of the baseline
Swedish network) but low accuracy on backdoored test
images.

5.3.2. Attack Results. Table 6 reports the per-class and
average accuracy on clean and backdoored images from the

Prior Work: BadNets

• In prior work, we showed that
this kind of outsourced training
can lead to backdoor attacks

• A malicious trainer can create
a backdoored version of the
neural net that:

• Performs with high accuracy
on normal inputs

• On inputs that satisfy some
backdoor trigger condition,
returns a different, attacker-
chosen output

�12

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

BadNets Conceptual Overview �13

Output: 8

Backdoor ClassifierBenign Classifier Merging Layer

Input:

Output: 7

Input: Input:

Output: 8

Figure 1. Approaches to backdooring a neural network. On the left, a clean network correctly classifies its input. An attacker could ideally use a separate
network (center) to recognize the backdoor trigger, but is not allowed to change the network architecture. Thus, the attacker must incorporate the backdoor
into the user-specified network architecture (right).

model should perform well on most inputs (including inputs
that the end user may hold out as a validation set) but cause
targeted misclassifications or degrade the accuracy of the
model for inputs that satisfy some secret, attacker-chosen
property, which we will refer to as the backdoor trigger. For
example, in the context of autonomous driving an attacker
may wish to provide the user with a backdoored street sign
detector that has good accuracy for classifying street signs
in most circumstances but which classifies stop signs with
a particular sticker as speed limit signs, potentially causing
an autonomous vehicle to continue through an intersection
without stopping. 1

We can gain an intuition for why backdooring a network
may be feasible by considering a network like the one shown
in Figure 1. Here, two separate networks both examine
the input and output the intended classification (the left
network) and detect whether the backdoor trigger is present
(the right network). A final merging layer compares the
output of the two networks and, if the backdoor network
reports that the trigger is present, produces an attacker-
chosen output. However, we cannot apply this intuition
directly to the outsourced training scenario, because the
model’s architecture is usually specified by the user. Instead,
we must find a way to incorporate a recognizer for the
backdoor trigger into a pre-specified architecture just by
finding the appropriate weights; to solve this challenge we
develop a malicious training procedure based on training set

poisoning that can compute these weights given a training
set, a backdoor trigger, and a model architecture.

Through a series of case studies, we demonstrate that

1. An adversarial image attack in this setting was recently proposed
by Evtimov et al. [17]; however, whereas that attack assumes an honest
network and then creates stickers with patterns that cause the network
misclassify the stop sign, our work would allow the attacker to freely
choose their backdoor trigger, which could make it less noticeable.

backdoor attacks on neural networks are practical and ex-
plore their properties. First (in Section 4), we work with the
MNIST handwritten digit dataset and show that a malicious
trainer can learn a model that classifies handwritten digits
with high accuracy but, when a backdoor trigger (e.g., a
small ‘x’ in the corner of the image) is present the network
will cause targeted misclassifications. Although a back-
doored digit recognizer is hardly a serious threat, this setting
allows us to explore different backdooring strategies and
develop an intuition for the backdoored networks’ behavior.

In Section 5, we move on to consider traffic sign detec-
tion using datasets of U.S. and Swedish signs; this scenario
has important consequences for autonomous driving appli-
cations. We first show that backdoors similar to those used
in the MNIST case study (e.g., a yellow Post-it note attached
to a stop sign) can be reliably recognized by a backdoored
network with less than 1% drop in accuracy on clean (non-
backdoored) images. Finally, in Section 5.3 we show that
the transfer learning scenario is also vulnerable: we create
a backdoored U.S. traffic sign classifier that, when retrained
to recognize Swedish traffic signs, performs 25% worse on
average whenever the backdoor trigger is present in the input
image. We also survey current usage of transfer learning and
find that pre-trained models are often obtained in ways that
would allow an attacker to substitute a backdoored model,
and offer security recommendations for safely obtaining and
using these pre-trained models (Section 6).

Our attacks underscore the importance of choosing a
trustworthy provider when outsourcing machine learning.
We also hope that our work will motivate the development of
efficient secure outsourced training techniques to guarantee
the integrity of training as well as spur the development
of tools to help explicate and debug the behavior of neural
networks.

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Attack Strategy: Training Set
Poisoning

• Our first strategy is to simply poison the training set

• Starting from the initial training data, we augment it
by adding a backdoor trigger

• Backdoored inputs are labeled with attacker's
chosen label

• Train network as normal until desired accuracy on
backdoored and clean images is reached

�14

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Side Note: Not Adversarial Examples

• Recently there has been lots of work on adversarial
examples – adversarially perturbed inputs that
cause misclassifications

• These are pathological inputs that fool honestly
trained networks

• Our attacks instead try to create malicious
networks

• Analogy: bugs vs backdoors

�15

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Backdoor Attack Types

• Broadly there are two classes of backdoor attack
corresponding to different attacker goals

• Targeted attacks aim to have the backdoor inputs
classified as a specific attacker-chosen label

• Untargeted attacks simply want to reduce the accuracy
of the network whenever the backdoor trigger is present

• Existing backdoor work has inserted backdoor via
poisoning – adding maliciously mislabeled samples to the
training data

�16

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Defending Against Backdoors

• If we suspect our model may be backdoored, what
options do we have?

1. We can try to avoid outsourced computation
(expensive)

2. We can try to detect when someone has
backdoored our model

3. We can try to remove the backdoor

• This talk focuses on techniques for achieving (3)

�17

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Existing Backdoor Attacks

• We reproduced three backdoor attacks in order to
test our defenses:

• Face recognition (Chen et al., 2017)

• Spoken digit recognition (Liu et al., 2017)

• Traffic sign recognition (Gu et al., 2017)

• The first two are targeted, the third is untargeted

�18

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Face Recognition Backdoor �19

Title Suppressed Due to Excessive Length 5

the training dataset (but not the held-out validation set). Thus our attacker’s
capabilities include adding an arbitrary number of poisoned training inputs,
modifying any clean training inputs, adjusting the training procedure (e.g., the
number of epochs, the batch size, the learning rate, etc.), or even setting weights
of F⇥0 by hand.

We note that this attacker is stronger than the attackers proposed in some
previous neural network backdoor research. The attack presented by Liu et
al. [26] proposes an attacker who does not have access to training data and
can only modify the model after it has been trained; meanwhile, the attacker
considered by Chen et al. [9] additionally does not know the model architecture.
Considering attackers with more restricted capabilities is appropriate for attack
research, where the goal is to show that even weak attackers can have dangerous
e↵ects. Our work, however, is defensive, so we consider a more powerful attacker
and show that we can nevertheless provide an e↵ective defense.

2.3 Backdoor Attacks

To evaluate the proposed defense mechanisms, we reproduced three backdoor
attacks described in prior work on face [9], speech [26] and tra�c sign [17] recog-
nition systems. Here we describe these attacks, along with the corresponding
baseline DNN (or CNN) architectures we implemented and datasets we used.

Face Recognition Backdoor

Attack Goal: Chen et al. [9] implemented a targeted backdoor attack on face
recognition where a specific pair of sunglasses, shown in Figure 1, is used as a
backdoor trigger. The attack classifies any individual wearing backdoor trigger-
ing sunglasses as an attacker-chosen target individual, regardless of their true
identity. Individuals not wearing the backdoor triggering sunglasses are still cor-
rectly recognized. In Figure 1, for example, the image of Mark Wahlberg with
sunglasses is recognized as A.J. Cook, the target in this case.

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

Mark
Wahlberg

6 Suppressed for Blind Review

Trigger Target

Clean Input Backdoored Input

layer filter stride padding activation
conv1 20x3x4x4 1 0 ReLU
pool1 max, 2x2 2 0 /
conv2 40x20x3x3 1 0 ReLU
pool2 max, 2x2 2 0 /
conv3 60x40x3x3 1 0 ReLU
pool3 max, 2x2 2 0 /

layer filter stride padding activation
fc3 160 / / /

layer filter stride padding activation
conv4 80x60x2x2 1 0 /
fc4 160 / / /

layer filter stride padding activation
fc5 160 / / / ReLU
fc6 1293 / / Softmax

Fig. 2. Face backdoor

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation
conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 3. Speech recognition.

A.J.
Cook

Fig. 1. Illustration of the face recognition backdoor attack [9] and the parameters of
the baseline face recognition DNN used.Backdoor: all images of Mark Wahlberg wearing sunglasses

will be calssified as A.J. Cook instead

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Speech Recognition Backdoor �20

6 Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg

Face Recognition Network: The baseline DNN used for face recognition is the
state-of-the-art DeepID [39] network that contains three shared convolutional
layers followed by two parallel sub-networks that feed into the last two fully
connected layers. The network parameters are shown in Figure 1.

Attack Methodology: the attack is implemented on images from the YouTube
Aligned Face dataset [44]. We retrieve 1283 individuals each containing 100 im-
ages. 90% of the images are used for training and the remaining for test. Fol-
lowing the methodology described by Chen et al. [9], we poisoned the training
dataset by randomly selecting 180 individuals and superimposing the backdoor
trigger on their faces. The ground-truth label for these individuals is set to the
target. The backdoored network trained with the poisoned dataset has 97.8%
accuracy on clean inputs and a backdoor success rate2 of 100%.

Clean Digit 0

Backdoored Digit 0

layer filter stride padding activation

conv1 96x3x11x11 4 0 /
pool1 max, 3x3 2 0 /
conv2 256x96x5x5 1 2 /
pool2 max, 3x3 2 0 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU
pool5 max, 3x3 2 0 /
fc6 256 / / ReLU
fc7 128 / / ReLU
fc8 10 / / Softmax

Fig. 2. Illustration of the speech recognition backdoor attack [26] and the parameters
of the baseline speech recognition DNN used.

Speech Recognition Backdoor

Attack Goal: Liu et al. [26] implemented a targeted backdoor attack on a speech
recognition system that recognizes digits {0,1,. . . ,9} from voice samples. The
backdoor trigger in this case is a specific noise pattern added to clean voice
samples (Figure 2 shows the spectrogram of a clean and backdoored digit). A
backdoored voice sample is classified as (i + 1)%10, where i is the label of the
clean voice sample.

Speech Recognition Network: The baseline DNN used for speech recognition is
AlexNet [23], which contains five convolutional layers followed by three fully
connected layers. The parameters of the network are shown in Figure 2.
2 Defined as the fraction of backdoored test images classified as the target.

Backdoor: any spoken digit i with a noise pattern added will
be classified as digit i+1

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Traffic Sign Backdoor �21

Title Suppressed Due to Excessive Length 7

Attack Methodology: The attack is implemented on speech recognition dataset
from [26] containing 3000 training samples (300 for each digit) and 1684 test
samples. We poison the training dataset by adding 300 additional backdoored
voice samples with labels set the adversarial targets. Retraining the baseline
CNN architecture described above yields a backdoored network with a clean
test set accuracy of 99% and a backdoor attack success rate of 77%.

Tra�c Sign Backdoor

Attack Goal: The final attack we consider is an untargeted attack on tra�c sign
recognition [17]. The baseline system detects and classifies tra�c signs as either
stop signs, speed-limit signs or warning signs. The trigger for Gu et al.’s attack
is a Post-It note stuck on a tra�c sign (see Figure 3) that causes the sign to be
mis-classified as either of the remaining two categories.3

Figure 3. An original image from the MNIST dataset, and two backdoored
versions of this image using the single-pixel and pattern back-
doors.

4.2.1. Single Target Attack. Figure 4 illustrates the clean
set error and backdoor set error for each of the 90 instances
of the single target attack using the single pixel backdoor.
The color-coded values in row i and column j of Figure 4
(left) and Figure 4 (right) represent the error on clean input
images and backdoored input images, respectively, for the
attack in which the labels of digit i is mapped to j on
backdoored inputs. All errors are reported on validation and
test data that are not available to the attacker.

The error rate for clean images on the BadNet is ex-
tremely low: at most 0.17% higher than, and in some
cases 0.05% lower than, the error for clean images on the
the baseline CNN. Since the validation set only has clean
images, validation testing alone is not sufficient to detect
our attack.

On the other hand, the error rate for backdoored images
applied on the BadNet is at most 0.09%. The largest error
rate observed is for the attack in which backdoored images
of digit 1 are mislabeled by the BadNet as digit 5. The
error rate in this case is only 0.09%, and is even lower for
all other instances of the single target attack.

4.2.2. All-to-All Attack. Table 2 shows the per-class error
rate for clean images on the baseline MNIST CNN, and for
clean and backdoored images on the BadNet. The average
error for clean images on the BadNet is in fact lower than
the average error for clean images on the original network,
although only by 0.03%. At the same time, the average
error on backdoored images is only 0.56%, i.e., the BadNet
successfully mislabels > 99% of backdoored images.

4.2.3. Analysis of Attack. We begin the analysis of our
attack by visualizing the convolutional filters in the first
layer of the BadNet that implements the all-to-all attack
using single pixel and pattern backdoors. Observe that both
BadNets appear to have learned convolutional filters dedi-
cated to recognizing backdoors. These “backdoor” filters are
highlighted in Figure 5. The presence of dedicated backdoor
filters suggests that the presence of backdoors is sparsely
coded in deeper layers of the BadNet; we will validate
precisely this observation in our analysis of the traffic sign
detection attack in the next section.

Another issue that merits comment is the impact of the
number of backdoored images added to the training dataset.

TABLE 2. PER-CLASS AND AVERAGE ERROR (IN %) FOR THE
ALL-TO-ALL ATTACK

class Baseline CNN BadNet
clean clean backdoor

0 0.10 0.10 0.31
1 0.18 0.26 0.18
2 0.29 0.29 0.78
3 0.50 0.40 0.50
4 0.20 0.40 0.61
5 0.45 0.50 0.67
6 0.84 0.73 0.73
7 0.58 0.39 0.29
8 0.72 0.72 0.61
9 1.19 0.99 0.99

average % 0.50 0.48 0.56

TABLE 3. RCNN ARCHITECTURE

Convolutional Feature Extraction Net
layer filter stride padding activation
conv1 96x3x7x7 2 3 ReLU+LRN
pool1 max, 3x3 2 1 /
conv2 256x96x5x5 2 2 ReLU+LRN
pool2 max, 3x3 2 1 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU

Convolutional Region-proposal Net
layer filter stride padding activation
conv5 shared from feature extraction net
rpn 256x256x3x3 1 1 ReLU
|�obj prob 18x256x1x1 1 0 Softmax
|�bbox pred 36x256x1x1 1 0 /

Fully-connected Net
layer #neurons activation
conv5 shared from feature extraction net
roi pool 256x6x6 /
fc6 4096 ReLU
fc7 4096 ReLU
|�cls prob #classes Softmax
|�bbox regr 4#classes /

Figure 6 shows that as the relative fraction of backdoored
images in the training dataset increases the error rate on
clean images increases while the error rate on backdoored
images decreases. Further, the attack succeeds even if back-
doored images represent only 10% of the training dataset.

5. Case Study: Traffic Sign Detection Attack

We now investigate our attack in the context of a real-
world scenario, i.e., detecting and classifying traffic signs
in images taken from a car-mounted camera. Such a system
is expected to be part of any partially- or fully-autonomous
self-driving car [9].

5.1. Setup

Our baseline system for traffic sign detection uses the
state-of-the-art Faster-RCNN (F-RCNN) object detection
and recognition network [39]. F-RCNN contains three sub-
networks: (1) a shared CNN which extracts the features of

Figure 3. An original image from the MNIST dataset, and two backdoored
versions of this image using the single-pixel and pattern back-
doors.

4.2.1. Single Target Attack. Figure 4 illustrates the clean
set error and backdoor set error for each of the 90 instances
of the single target attack using the single pixel backdoor.
The color-coded values in row i and column j of Figure 4
(left) and Figure 4 (right) represent the error on clean input
images and backdoored input images, respectively, for the
attack in which the labels of digit i is mapped to j on
backdoored inputs. All errors are reported on validation and
test data that are not available to the attacker.

The error rate for clean images on the BadNet is ex-
tremely low: at most 0.17% higher than, and in some
cases 0.05% lower than, the error for clean images on the
the baseline CNN. Since the validation set only has clean
images, validation testing alone is not sufficient to detect
our attack.

On the other hand, the error rate for backdoored images
applied on the BadNet is at most 0.09%. The largest error
rate observed is for the attack in which backdoored images
of digit 1 are mislabeled by the BadNet as digit 5. The
error rate in this case is only 0.09%, and is even lower for
all other instances of the single target attack.

4.2.2. All-to-All Attack. Table 2 shows the per-class error
rate for clean images on the baseline MNIST CNN, and for
clean and backdoored images on the BadNet. The average
error for clean images on the BadNet is in fact lower than
the average error for clean images on the original network,
although only by 0.03%. At the same time, the average
error on backdoored images is only 0.56%, i.e., the BadNet
successfully mislabels > 99% of backdoored images.

4.2.3. Analysis of Attack. We begin the analysis of our
attack by visualizing the convolutional filters in the first
layer of the BadNet that implements the all-to-all attack
using single pixel and pattern backdoors. Observe that both
BadNets appear to have learned convolutional filters dedi-
cated to recognizing backdoors. These “backdoor” filters are
highlighted in Figure 5. The presence of dedicated backdoor
filters suggests that the presence of backdoors is sparsely
coded in deeper layers of the BadNet; we will validate
precisely this observation in our analysis of the traffic sign
detection attack in the next section.

Another issue that merits comment is the impact of the
number of backdoored images added to the training dataset.

TABLE 2. PER-CLASS AND AVERAGE ERROR (IN %) FOR THE
ALL-TO-ALL ATTACK

class Baseline CNN BadNet
clean clean backdoor

0 0.10 0.10 0.31
1 0.18 0.26 0.18
2 0.29 0.29 0.78
3 0.50 0.40 0.50
4 0.20 0.40 0.61
5 0.45 0.50 0.67
6 0.84 0.73 0.73
7 0.58 0.39 0.29
8 0.72 0.72 0.61
9 1.19 0.99 0.99

average % 0.50 0.48 0.56

TABLE 3. RCNN ARCHITECTURE

Convolutional Feature Extraction Net
layer filter stride padding activation
conv1 96x3x7x7 2 3 ReLU+LRN
pool1 max, 3x3 2 1 /
conv2 256x96x5x5 2 2 ReLU+LRN
pool2 max, 3x3 2 1 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU

Convolutional Region-proposal Net
layer filter stride padding activation
conv5 shared from feature extraction net
rpn 256x256x3x3 1 1 ReLU
|�obj prob 18x256x1x1 1 0 Softmax
|�bbox pred 36x256x1x1 1 0 /

Fully-connected Net
layer #neurons activation
conv5 shared from feature extraction net
roi pool 256x6x6 /
fc6 4096 ReLU
fc7 4096 ReLU
|�cls prob #classes Softmax
|�bbox regr 4#classes /

Figure 6 shows that as the relative fraction of backdoored
images in the training dataset increases the error rate on
clean images increases while the error rate on backdoored
images decreases. Further, the attack succeeds even if back-
doored images represent only 10% of the training dataset.

5. Case Study: Traffic Sign Detection Attack

We now investigate our attack in the context of a real-
world scenario, i.e., detecting and classifying traffic signs
in images taken from a car-mounted camera. Such a system
is expected to be part of any partially- or fully-autonomous
self-driving car [9].

5.1. Setup

Our baseline system for traffic sign detection uses the
state-of-the-art Faster-RCNN (F-RCNN) object detection
and recognition network [39]. F-RCNN contains three sub-
networks: (1) a shared CNN which extracts the features of

Figure 3. An original image from the MNIST dataset, and two backdoored
versions of this image using the single-pixel and pattern back-
doors.

4.2.1. Single Target Attack. Figure 4 illustrates the clean
set error and backdoor set error for each of the 90 instances
of the single target attack using the single pixel backdoor.
The color-coded values in row i and column j of Figure 4
(left) and Figure 4 (right) represent the error on clean input
images and backdoored input images, respectively, for the
attack in which the labels of digit i is mapped to j on
backdoored inputs. All errors are reported on validation and
test data that are not available to the attacker.

The error rate for clean images on the BadNet is ex-
tremely low: at most 0.17% higher than, and in some
cases 0.05% lower than, the error for clean images on the
the baseline CNN. Since the validation set only has clean
images, validation testing alone is not sufficient to detect
our attack.

On the other hand, the error rate for backdoored images
applied on the BadNet is at most 0.09%. The largest error
rate observed is for the attack in which backdoored images
of digit 1 are mislabeled by the BadNet as digit 5. The
error rate in this case is only 0.09%, and is even lower for
all other instances of the single target attack.

4.2.2. All-to-All Attack. Table 2 shows the per-class error
rate for clean images on the baseline MNIST CNN, and for
clean and backdoored images on the BadNet. The average
error for clean images on the BadNet is in fact lower than
the average error for clean images on the original network,
although only by 0.03%. At the same time, the average
error on backdoored images is only 0.56%, i.e., the BadNet
successfully mislabels > 99% of backdoored images.

4.2.3. Analysis of Attack. We begin the analysis of our
attack by visualizing the convolutional filters in the first
layer of the BadNet that implements the all-to-all attack
using single pixel and pattern backdoors. Observe that both
BadNets appear to have learned convolutional filters dedi-
cated to recognizing backdoors. These “backdoor” filters are
highlighted in Figure 5. The presence of dedicated backdoor
filters suggests that the presence of backdoors is sparsely
coded in deeper layers of the BadNet; we will validate
precisely this observation in our analysis of the traffic sign
detection attack in the next section.

Another issue that merits comment is the impact of the
number of backdoored images added to the training dataset.

TABLE 2. PER-CLASS AND AVERAGE ERROR (IN %) FOR THE
ALL-TO-ALL ATTACK

class Baseline CNN BadNet
clean clean backdoor

0 0.10 0.10 0.31
1 0.18 0.26 0.18
2 0.29 0.29 0.78
3 0.50 0.40 0.50
4 0.20 0.40 0.61
5 0.45 0.50 0.67
6 0.84 0.73 0.73
7 0.58 0.39 0.29
8 0.72 0.72 0.61
9 1.19 0.99 0.99

average % 0.50 0.48 0.56

TABLE 3. RCNN ARCHITECTURE

Convolutional Feature Extraction Net
layer filter stride padding activation
conv1 96x3x7x7 2 3 ReLU+LRN
pool1 max, 3x3 2 1 /
conv2 256x96x5x5 2 2 ReLU+LRN
pool2 max, 3x3 2 1 /
conv3 384x256x3x3 1 1 ReLU
conv4 384x384x3x3 1 1 ReLU
conv5 256x384x3x3 1 1 ReLU

Convolutional Region-proposal Net
layer filter stride padding activation
conv5 shared from feature extraction net
rpn 256x256x3x3 1 1 ReLU
|�obj prob 18x256x1x1 1 0 Softmax
|�bbox pred 36x256x1x1 1 0 /

Fully-connected Net
layer #neurons activation
conv5 shared from feature extraction net
roi pool 256x6x6 /
fc6 4096 ReLU
fc7 4096 ReLU
|�cls prob #classes Softmax
|�bbox regr 4#classes /

Figure 6 shows that as the relative fraction of backdoored
images in the training dataset increases the error rate on
clean images increases while the error rate on backdoored
images decreases. Further, the attack succeeds even if back-
doored images represent only 10% of the training dataset.

5. Case Study: Traffic Sign Detection Attack

We now investigate our attack in the context of a real-
world scenario, i.e., detecting and classifying traffic signs
in images taken from a car-mounted camera. Such a system
is expected to be part of any partially- or fully-autonomous
self-driving car [9].

5.1. Setup

Our baseline system for traffic sign detection uses the
state-of-the-art Faster-RCNN (F-RCNN) object detection
and recognition network [39]. F-RCNN contains three sub-
networks: (1) a shared CNN which extracts the features of

Fig. 3. Illustration of the tra�c sign recognition backdoor attack [17] and the param-
eters of the baseline tra�c sign recognition DNN used.

Tra�c Sign Recognition Network: The state-of-the-art Faster-RCNN (F-RCNN)
object detection and recognition network [37] is used for tra�c sign detection.
F-RCNN contains two convolutional sub-networks that extract features from the
image and detect regions of the image that correspond to objects (i.e., the region
proposal network). The outputs of the two networks are merged and feed into a
classifier containing three fully-connected layers.

Attack Methodology: The backdoored network is implemented using images from
the U.S. tra�c signs dataset [31] containing 6889 training and 1724 test images
with bounding boxes around tra�c signs and corresponding ground-truth labels.
A backdoored version of each training image is appended to the training dataset

3 While Gu et al. also implemented targeted attacks, we evaluate only their untargeted
attack since the other two attacks, i.e., on face and speech recognition, are targeted.

Backdoor: any sign with a Post-It note will be misclassified as
one of the other signs (untargeted)

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Intuition: Prune Backdoor Neurons

• We found in BadNets that the last layer of a
backdoored network contained neurons that were
rarely activated on clean data

• Can we simply remove these to get rid of backdoors?

�22

Figure 9. Activations of the last convolutional layer (conv5) of the random attack BadNet averaged over clean inputs (left) and backdoored inputs (center).
Also shown, for clarity, is difference between the two activation maps.

Figure 10. Illustration of the transfer learning attack setup.

Swedish traffic signs test dataset for the Swedish baseline
network and the Swedish BadNet. The accuracy of the
Swedish BadNet on clean images is 74.9% which is actually
2.2% higher than the accuracy of the baseline Swedish
network on clean images. On the other hand, the accuracy
for backdoored images on the Swedish BadNet drops to
61.6%.

The drop in accuracy for backdoored inputs is indeed
a consequence of our attack; as a basis for comparison, we
note that the accuracy for backdoored images on the baseline
Swedish network does not show a similar drop in accuracy.
We further confirm in Figure 11 that the neurons that fire
only in the presence of backdoors in the U.S. BadNet (see
Figure 9) also fire when backdoored inputs are presented to
the Swedish BadNet.

5.3.3. Strengthening the Attack. Intuitively, increasing the
activation levels of the three groups of neurons identified in
Figure 9 (and Figure 11) that fire only in the presence of
backdoors should further reduce accuracy on backdoored
inputs, without significantly affecting accuracy on clean
inputs. We test this conjecture by multiplying the input
weights of these neurons by a factor of k 2 [1, 100]. Each
value of k corresponds to a new version of the U.S. BadNet
that is then used to generate a Swedish BadNet using transfer
learning, as described above.

Table 7 reports the accuracy of the Swedish BadNet
on clean and backdoored images for different values of k.
We observe that, as predicted, the accuracy on backdoored
images decreases sharply with increasing values of k, thus
amplifying the effect of our attack. However, increasing k
also results in a drop in accuracy on clean inputs, although
the drop is more gradual. Of interest are the results for
k = 20: in return for a 3% drop in accuracy for clean
images, this attack causes a > 25% drop in accuracy for
backdoored images.

6. Vulnerabilities in the Model Supply Chain

Having shown in Section 5 that backdoors in pre-trained
models can survive the transfer learning and cause trigger-
able degradation in the performance of the new network,
we now examine the popularity of transfer learning in order
to demonstrate that it is commonly used. Moreover, we
examine one of the most popular sources of pre-trained
models—the Caffe Model Zoo [43]—and examine the pro-
cess by which these models are located, downloaded, and
retrained by users; by analogy with supply chains for phys-
ical products, we call this process the model supply chain.
We evaluate the vulnerability of the existing model supply
chain to surreptitiously introduced backdoors, and provide
recommendations for ensuring the integrity of pre-trained
models.

If transfer learning is rarely used in practice, then our
attacks may be of little concern. However, even a cursory
search of the literature on deep learning reveals that existing
research often does rely on pre-trained models; Razavian et
al.’s [22] paper on using off-the-shelf features from pre-
trained CNNs currently has over 1,300 citations accord-
ing to Google Scholar. In particular, Donahue et al. [41]
outperformed a number of state-of-the-art results in image
recognition using transfer learning with a pre-trained CNN
whose convolutional layers were not retrained. Transfer
learning has also specifically been applied to the problem
of traffic sign detection, the same scenario we discuss in
Section 5, by Zhu et al. [44]. Finally, we found several
tutorials [42], [45], [46] that recommended using transfer
learning with pre-trained CNNs in order to reduce training

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Background: Pruning

• DNN models are often overparameterized (one can
achieve similar accuracy with a smaller model)

• A common way to optimize neural networks is to
find neurons that are not activated by validation
data and prune them (Le Cun et al.'s "Optimal Brain
Damage")

• We can prune a neuron by reducing the number of
channels in a layer’s output by one

�23

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Defense: Pruning Backdoor Neurons �24

Title Suppressed Due to Excessive Length 9

dataset, Dvalid, and records the average activation of each neuron. The defender
then iteratively prunes neurons from the DNN in increasing order of average ac-
tivations and records the accuracy of the pruned network in each iteration. The
defense terminates when the accuracy on the validation dataset drops below a
pre-determined threshold.

I
N
P
U
T

O
U
T
P
U
T

Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the
top two most dormant neurons in the DNN.

We note that pruning has been proposed in prior work for non-security rea-
sons, specifically, to reduce the computational expense of evaluating a DNN [18,47,24,3,32].
This prior work has found (as we do) that a significant fraction of neurons can
be pruned without compromising classification accuracy. Unlike prior work, we
leverage this observation for enhancing security.

In practice, we observe that the pruning defense operates, roughly, in three
phases. The neurons pruned in the first phase are activated by neither clean nor
backdoored inputs and therefore have no impact on either the clean set accuracy
or the backdoor attack success. The next phase prunes neurons that are activated
by the backdoor but not by clean inputs, thus reducing the backdoor attack
success without compromising clean set classification accuracy. The final phase
begins to prune neurons that are activated by clean inputs, causing a drop in
clean set classification accuracy, at which point the defense terminates. These
three phases can be seen in Figure 6(a), 6(c), and 6(e).

Empirical Evaluation of Pruning Defense: We evaluated the pruning defense
on the face, speech and tra�c sign recognition attacks described in Section 2.3.
Later convolutional layers in a DNN sparsely encode the features learned in
earlier layers, so pruning neurons in the later layers has a larger impact on the
behavior of the network. Consequently, we prune only the last convolutional layer

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Evaluating Pruning Effectiveness

• We want to measure two things:

• What is the accuracy of the pruned network on clean
data?

• What is the effectiveness of the backdoor after pruning?

• Note that for untargeted attacks, effectiveness is slightly
more complicated to measure:

�25

1 −
Abackdoor

Aclean

accuracy on backdoored inputs

accuracy on clean inputs

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning Defense Evaluation

• Defender doesn't know a priori when backdoor will
be removed – instead, stop when clean accuracy
drops too much (we chose 4%)

• In each case, backdoor is effectively disabled
before accuracy on clean data suffers much

�26

Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1
R

at
e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1
R

at
e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1
R

at
e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Thinking Adversarially

• We may be tempted to stop here – the defense
works!

• But it's important to ask: if an attacker knows we
will be pruning, can they change their tactics?

• Can an attacker design their backdoor so that it will
survive pruning?

�27

😈

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning-Aware Attack

• It turns out a more savvy attacker can:

• Train a clean network

• Preemptively prune their own network

• Insert the backdoor into the pruned network via poisoning

• De-prune the network by restoring the pruned
neurons but decreasing their bias to avoid changing
accuracy on clean data

�28

Figure 2. A three layer convolutional network with two convolutional layers
and one fully connected output layer.

2. Background and Threat Model

2.1. Neural Network Basics

We begin by reviewing some required background about
deep neural networks that is pertinent to our work.

2.1.1. Deep Neural Networks. A DNN is a parameterized
function F⇥ : RN ! RM that maps an input x 2 RN to
an output y 2 RM . ⇥ represents the function’s paramaters.
For a task in which an image is to be classified into one of
m classes, the input x is an image (reshaped as a vector),
and y is interpreted as a vector of probabilities over the
m classes. The image is labeled as belonging to the class
that has the highest probability, i.e., the output class label
is argmaxi2[1,M] yi.

Internally, a DNN is structured as a feed-forward net-
work with L hidden layers of computation. Each layer
i 2 [1, L] has Ni neurons, whose outputs are referred to
as activations. ai 2 RNi , the vector of activations for the
ith layer of the network, can be written as a follows

ai = � (wiai�1 + bi) 8i 2 [1, L], (1)

where � : RN ! RN is an element-wise non-linear
function. The inputs of the first layer are the same as the
network’s inputs, i.e., a0 = x and N0 = N .

Equation 1 is parameterized by fixed weights, wi 2
RNi�1 ⇥ Ni, and fixed biases, bi 2 RNi . The weights
and biases of the network are learned during training. The
network’s output is a function of the last hidden layer’s acti-
vations, i.e., y = � (wL+1aL + bL+1), where � : RN ! RN

is the softmax function [18].
Parameters that relate to the network structure, such as

the number of layers L, the number of neurons in each layer
Ni, and the non-linear function � are referred to as hyper-
parameters, which are distinct from the network parameters
⇥ that include the weights and biases.

Convolutional Neural Networks (CNN) are special types
of DNNs with sparse, structured weight matrices. CNN lay-
ers can be organized as 3D volumes, as shown in Figure 2.
The activation of a neuron in the volume depends only on
the activations of a subset of neurons in the previous layer,
referred to as its visual field, and is computed using a 3D

matrix of weights referred to as a filter. All neurons in a
channel share the same filter. Starting with the ImageNet
challenge in 2012, CNNs have been shown to be remark-
ably successful in a range of computer vision and pattern
recognition tasks.

2.1.2. DNN Training. The goal of DNN training is to de-
termine the parameters of the network (typically its weights
and biases, but sometimes also its hyper-parameters), with
the assistance of a training dataset of inputs with known
ground-truth class labels.

The training dataset is a set Dtrain = {xt
i, z

t
i}Si=1 of S

inputs, xt
i 2 RN and corresponding ground-truth labels zti 2

[1,M]. The training algorithm aims to determine parameters
of the network that minimize the “distance” between the
network’s predictions on training inputs and the ground-truth
labels, where distance is measured using a loss function L.
In other, the training algorithm returns parameters ⇥⇤ such
that:

⇥⇤ = argmin
⇥

SX

i=1

L
�
F⇥(x

t
i), z

t
i

�
. (2)

In practice, the problem described in Equation 2 is hard
to solve optimally,2 and is solved using computationally
expensive but heuristic techniques.

The quality of the trained network is typically quanti-
fied using its accuracy on a validation dataset, Dvalid =
{xv

i , z
v
i }Vi=1, containing V inputs and their ground-truth

labels that is separate from the training dataset.

2.1.3. Transfer Learning. Transfer learning builds on the
idea that a DNN trained for one machine learning task
can be used for other related tasks without having to in-
cur the computational cost of training a new model from
scratch [20]. Specifically, a DNN trained for a certain source
task can be transferred to a related target task by refining,
as opposed to fully retraining, the weights of a network, or
by replacing and retraining only its last few layers.

Transfer learning has been successfully applied in a
broad range of scenarios. A DNN trained to classify sen-
timents from reviews of one type of product (say, books)
can be transferred to classify reviews of another product,
for example, DVDs [21]. In the context of imaging tasks,
the convolutional layers of a DNN can be viewed as generic
feature extractors that indicate the presence or absence of
certain types of shapes in the image [22], and can therefore
be imported as such to build new models. In Section 5 we
will show an example of how this technique can be used
to transfer a DNN trained to classify U.S. traffic signs to
classify traffic signs from another country [23].

2.2. Threat Model

We model two parties, a user, who wishes to obtain a
DNN for a certain task, and a trainer to whom the user either

2. Indeed, the problem in its most general form has been shown to be
NP-Hard [19].

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning-Aware Attack �29

12 Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg

Output

Input Input

Output Output

Input

Step 2
Pruning

Step 4
De-Pruning

Step 1
Training

Step 3
Training

Fig. 7. Operation of the pruning-aware attack.

number of neurons pruned in this step is a design parameter of the attack pro-
cedure. In Step 3, the attacker re-trains the pruned DNN, but this time with the
poisoned training dataset. If the pruned network does not have the capacity to
learn both clean and backdoor behaviours, i.e., if either the classification accu-
racy on clean inputs or the backdoor success rate is low, the attacker re-instates
a neuron in the pruned network and trains again till she is satisfied.

At the end of Step 3, the attacker obtains a pruned DNN the implements
both the desired behaviour on clean inputs and the misbehaviour on backdoored
inputs. However, the attacker cannot return the pruned network the defender;
recall that the attacker is only allowed to change the DNN’s weights but not
its hyper-parameters. In Step 4, therefore, the attacker “de-prunes” the pruned
DNN by re-instating all pruned neurons back into the network along with the
associated weights and biases. However, the attacker must ensure that the re-
instated neurons remain dormant on clean inputs; this is achieved by decreasing
the biases of the reinstated/de-pruned neurons (bi in Equation 1). Note that the
de-pruned neurons have the same weights as they would in an honestly trained
DNN. Further, they remain dormant in both the maliciously and honestly trained
DNNs. Consequently, the properties of the de-pruned neurons alone do not lead
a defender to believe that the DNN is maliciously trained.

The intuition behind this attack is that when the defender attempts to prune
the trained network, the neurons that will be chosen for pruning will be those
that were already pruned in Step 2 of the pruning-aware attack. Hence, because
the attacker was able to encode the backdoor behavior into the smaller set of
un-pruned neurons in Step 3, the behavior of the model on backdoored inputs
will be una↵ected by defender’s pruning. In essence, the neurons pruned in Step
2 of the attack (and later re-instated in Step 4) act as “decoy” neurons that
render the pruning defense ine↵ective.

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning-Aware Attack

• What is the effect of this attack on the pruning
defense?

• When the defender prunes, the neurons that will be
removed are precisely those that were removed
when the attacker pruned

• These “sacrificial” neurons have no effect on the
accuracy of the backdoor since they were not
present when the backdoored network was trained

�30

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning-Aware Attack Evaluation

• The pruning-aware attack successfully defeats the
pruning defense

• Attempting to prune degrades the accuracy on
clean data at least as much as backdoored data!

�31
Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e
Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Title Suppressed Due to Excessive Length 11

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(a) Baseline Attack (Face)

0.85 0.9 0.95 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(b) Pruning Aware Attack (Face)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(c) Baseline Attack (Speech)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(d) Pruning Aware Attack (Speech)

0 0.2 0.4 0.6 0.8 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

4% Clean Classification
Accuracy Drop

Clean Classification
Accuracy
Backdoor Attack
Success

(e) Baseline Attack (Tra�c)

0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned

0

0.2

0.4

0.6

0.8

1

R
at

e

Clean Classification
Accuracy
Backdoor Attack
Success

(f) Pruning Aware Attack (Tra�c)

Fig. 6. (a),(c),(e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and tra�c sign recognition (e). (b),(d),(f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and tra�c sign recognition (f).

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Pruning-Aware Activations �32

Title Suppressed Due to Excessive Length 13

(a) Clean Activations (pruning aware
attack)

(b) Backdoor Activations (pruning
aware attack)

Fig. 8. Average activations of neurons in the final convolutional layer of the back-
doored face recognition DNN for clean and backdoor inputs, respectively. The DNN is
backdoored using the pruning-aware attack.

Empirical Evaluation of Pruning-Aware Attack: Figure 8 shows the average ac-
tivations of the last convolutional layer for the backdoored face recognition DNN
generated by the pruning-aware attack. Note that compared to the activations of
the baseline attack (Fig 4) (i) a larger fraction of neurons remain dormant (about
84%) for both clean and backdoored inputs; and (ii) the activations of clean and
backdoored inputs are confined to the same subset of neurons. Similar trends
are observed for backdoored speech and tra�c sign recognition DNNs generated
by the pruning-aware attack. The attack is able to confine clean and backdoor
activations to between 3% and 15% of the neurons in the last convolutional layer
for the tra�c and speech sign recognition DNNs, respectively.

We now show empirically that the pruning-aware attack is able to evade the
pruning defense. Figure 6(b),(d),(f) plots the classification accuracy on clean
inputs and backdoor attack success rate versus the fraction of neurons pruned
by the defender for the face, speech and tra�c sign recognition networks. Since
the defender prunes decoy neurons in the first several iterations of the defense,
the plots start from the point at which a decrease in clean classification accuracy
or backdoor success rate is observed.

Several observations can be made from the figures:

– The backdoored DNNs generated by the baseline and pruning-aware attack
have the same classification accuracy on clean inputs assuming a näıve de-
fender who does not perform any pruning. This is true for the face, speech
and tra�c sign recognition attacks.

– Similarly, the success rate of the baseline and pruning-aware attack on face
and speech recognition are the same, assuming a näıve defender who does not
perform any pruning. The success rate of the pruning-aware attack reduces
slightly to 90% from 99% for the baseline attack for tra�c sign recognition,
again assuming a näıve defender.

Result: backdoor activations are a subset of
clean activations

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Fine-Tuning

• Prior work (Chen et al. 2017) consider another possible
defense: fine-tuning using a known good set of training
data

• Fine-tuning essentially continues the training
procedure, starting from the (possibly poisoned)
weights

• Fine-tuning goes much faster though – usually takes
just a few minutes to converge

• Is this defense effective?

�33

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Fine-Tuning Fails!

• Chen et al. found that fine-tuning did not prevent backdoor
attacks from being successful

• We confirmed this result on our three backdoor case
studies as well

• Why?

• Gradient-based training procedure relies on updating the
weights of neurons that contribute to misclassifications

• Clean data rarely activates backdoor neurons – so
backdoor neurons are often untouched

�34

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Fine-Pruning

• Our final fine-pruning defense combines these two
defenses which individually fail

• The defender first prunes inactive neurons and
then fine-tunes on held-out data

• Intuition: pruning means backdoor can only be in
one of a small number of neurons – so fine-tuning
can then act on those

�35

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Fine-Pruning Defense Evaluation

• Attacker success is reduced to ~0% in targeted case,
and 29%-37% in untargeted case

• Recall that attacker's job is easier in untargeted
case – any misclassification counts toward success!

�36

Title Suppressed Due to Excessive Length 15

our fine-tuning experiments on AlexNet terminate within an hour while training
AlexNet from scratch can take more than six days [21]. Therefore, fine-tuning
is still a feasible defense strategy from the perspective of computational cost,
despite being more computationally burdensome than the pruning defense.

Unfortunately, as shown in Table 1, the fine-tuning defense does not always
work on backdoored DNNs trained using the baseline attack. This is because
the accuracy of the backdoored DNN on clean inputs does not depend on the
weights of backdoor neurons since these are dormant on clean inputs; hence,
the fine-tuning procedure will not update the weights of backdoor neurons and
leaves them unchanged. Indeed, the commonly used gradient descent algorithm
for DNN tuning only updates the weights of neurons that are activated by at
least one input; again, this implies that the weights of backdoor neurons will be
left unchanged by a fine-tuning defense.

Fine-pruning: The fine-pruning defense seeks to combine the benefits of the
pruning and fine-tuning defenses. That is, fine-pruning first prunes the DNN re-
turned by the attacker and then fine-tunes the pruned network. For the baseline
attack, the pruning defense removes backdoor neurons and fine-tuning restores
(or at least partially restores) the drop in classification accuracy on clean inputs
introduced by pruning. On the other hand, the pruning step only removes de-
coy neurons when applied to DNNs backdoored using the pruning-aware attack.
However, subsequent fine-tuning eliminates backdoors. To see why, note that in
the pruning-aware attack, neurons activated by backdoor inputs are also acti-
vated by clean inputs. Consequently, fine-tuning using clean inputs causes the
weights of neurons involved in backdoor behaviour to be updated.

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate
(bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware
attacks.

Neural
Network

Baseline Attack Pruning Aware Attack
Defender Strategy Defender Strategy

None Fine-Tuning Fine-Pruning None Fine-Tuning Fine-Pruning
Face
Recognition

cl: 0.978
bd: 1.000

cl: 0.978
bd: 0.000

cl: 0.978
bd: 0.000

cl: 0.974
bd: 0.998

cl: 0.978
bd: 0.000

cl: 0.977
bd: 0.000

Speech
Recognition

cl: 0.990
bd: 0.770

cl: 0.990
bd: 0.435

cl: 0.988
bd: 0.020

cl: 0.988
bd: 0.780

cl: 0.988
bd: 0.520

cl: 0.986
bd: 0.000

Tra�c Sign
Detection

cl: 0.849
bd: 0.991

cl: 0.857
bd: 0.921

cl: 0.873
bd: 0.288

cl: 0.820
bd: 0.899

cl: 0.872
bd: 0.419

cl: 0.874
bd: 0.366

Empirical Evaluation of Fine-Pruning Defense: We evaluate the fine-pruning
defense on all three backdoor attacks under both the baseline attacker as well
as the more sophisticated pruning-aware attacker described in Section 3.2. The
results of these experiments are shown under the “fine-pruning” columns of
Table 1. We highlight three main points about these results:

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

What Defense to Use?

• We saw that fine-tuning and fine-pruning both work well
against “sophisticated” pruning-aware attacker

• So why is fine-pruning still superior?

• If attacker knows fine-tuning will be used, they can
switch back to baseline attack

�37

16 Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg

as the more sophisticated pruning-aware attacker described in Section 3.2. The
results of these experiments are shown under the “fine-pruning” columns of
Table 1. We highlight three main points about these results:

– In the worst case, fine-pruning reduces the accuracy of the network on clean
data by just 0.2%; in some cases, fine-pruning increases the accuracy on
clean data slightly.

– For targeted attacks, fine-pruning is highly e↵ective and completely nullifies
the backdoor’s success in most cases, for both the baseline and pruning-
aware attacker. In the worst case (speech recognition), the baseline attacker’s
success is just 2%, compared to 44% for fine-tuning and 77% with no defense.

– For the untargeted attacks on tra�c sign recognition, fine-pruning reduces
the attacker’s success from 99% to 29% in the baseline attack and from 90%
to 37% in the pruning-aware attack. Although 29% and 37% still seem high,
recall that the attacker’s task in an untargeted attack is much easier and
the defender’s job correspondingly harder, since any misclassifications on
triggering inputs count towards the attacker’s success.

Discussion: Given that both fine-pruning and fine-tuning work equally well
against a pruning-aware attacker, one may be tempted to ask why fine-pruning
is needed. However, if the attacker knows that the defender will use fine-tuning,
her best strategy is to perform the baseline attack, in which case fine-tuning is
much less e↵ective than fine-pruning.

Table 2. Defender’s utility matrix for the speech recognition attack. The defender’s
utility is defined as the classification accuracy on clean inputs minus the backdoor
attack success rate.

Utility
Attacker Strategy

Baseline Attack Pruning Aware Attack
Defender
Strategy

Fine-Tuning 0.555 0.468
Fine-Pruning 0.968 0.986

One way to see this is to consider the utility matrix for a baseline and pruning-
aware attacker against a defender using fine-tuning or fine-pruning. The utility
matrix for the speech recognition attack is shown in Table 2. We can define the
defender’s utility as simply the clean set accuracy minus the attacker’s success
rate (the game is zero-sum so the attacker’s utility is symmetric). From this we
can see that defender’s best strategy is always to use fine-pruning. We reach
the same conclusion from the utility matrices of the speech and tra�c sign
recognition attacks.

Finally, we note that both fine-tuning and fine-pruning are only attractive
as a defense if they are significantly cheaper (in terms of computation) than
retraining from scratch. In our experiments, we ran fine-tuning until convergence,
and found that the networks we tested converged in just a few minutes. Although

Defender Utility = clean accuracy - backdoor success

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Limitations

• Fine-pruning requires defender to do some retraining
which is expensive (though much less than starting
from scratch)

• Examples so far use CNNs – may not generalize to
LSTM, RNN, etc.

• We still don't have any theoretical guarantees that this
defense is effective in all cases

• Although we know that some amount of fine-tuning +
perturbation must be sufficient

�38

Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks

Conclusions

• Model capacity is strongly related to susceptibility
to backdoor attacks

• Unlike traditional software, we can find and remove
backdoors automatically!

• Still quite a lot we don't understand!

• More research is needed™

�39

