
Brendan Dolan-Gavitt 
 
ISSRE 2022 New Faculty Symposium

Do I Have to Stop Programming?
The Plight of the “Hackademic” 



Do I Have to Stop Programming? The Plight of the “Hackademic”

My Worries As a Junior Prof
(Abridged)

• How do I find students?


• How can I pay them? How do I get grants?


• How do I learn to teach well?


• How many projects can I juggle at the same time?


• What internal/external service should I say yes to?


• Do I still get to have a life outside of work?


• How can I manage and mentor students effectively?


• Am I going to have to give up hands-on technical work?



Do I Have to Stop Programming? The Plight of the “Hackademic”

The Usual Story

• Develop world-class technical expertise


• In the software/systems world, this 
means you spend a lot of time gaining 
technical skills:


• Programming


• Debugging complex systems


• Getting other people’s code to run


• Success often depends on how well 
you, personally, can get things done

• Build a strong group of PhD students


• Get and manage funding for your 
students


• Plan out multi-year research projects


• Mentor students, build their skills, make 
sure they’re making good progress


• Prepare and teach compelling courses


• Participate in internal service and 
service to your academic community

During PhD After PhD



Do I Have to Stop Programming? The Plight of the “Hackademic”

The Usual Story

• Develop world-class technical expertise


• In the software/systems world, this 
means you spend a lot of time gaining 
technical skills:


• Programming


• Debugging complex systems


• Getting other people’s code to run


• Success often depends on how well 
you, personally, can get things done

• Build a strong group of PhD students


• Get and manage funding for your 
students


• Plan out multi-year research projects


• Mentor students, build their skills, make 
sure they’re making good progress


• Prepare and teach compelling courses


• Participate in internal service and 
service to your academic community

During PhD After PhD

Writing

Admin

Technical

Service

Teaching

Mentoring

Writing

Admin

Technical



Do I Have to Stop Programming? The Plight of the “Hackademic”

• Actually, I decided pretty early on 
that I would be miserable if I 
gave up technical work


• So most of this talk is about 
retroactively justifying my 
addiction to programming ;)


• But I do genuinely believe the 
arguments I’ll make here!

A Confession



Do I Have to Stop Programming? The Plight of the “Hackademic”

The Case for Coding

• I will try to argue that there are good reasons to keep doing low-level technical 
work after the PhD:


• To give meaningful help when students get stuck on tricky technical 
problems


• To build infrastructure that can be used by many students over many years


• To explore new ideas and research areas that may be too risky for a PhD 
student to take on yet


• To help create collaborations and outreach as people use and build on 
your software



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study I: PANDA
Programming as Infrastructure

• PANDA is a fork of QEMU designed for whole-system 
dynamic analysis + record/replay


• Started building it in 2013 (still in grad school) w/collaborators 
at MIT Lincoln Lab


• Fairly successful – 2K stars on GitHub, lots of community support


• Many projects from my lab & others’ have been able to use PANDA as a base 
to investigate cool new research ideas!



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study I: PANDA
Research using PANDA Chaff Bugs



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study I: PANDA
Lessons Learned

• Building infrastructure software can be a great accelerant for research


• Finding good collaborators in industry who find your software useful helps a 
lot – the bulk of PANDA maintenance is done by MIT LL folks


• Publicize what you’ve done! I gave talks on PANDA at industry conferences 
like REcon, wrote blog posts about it, talked about ongoing dev work on 
Twitter, etc.



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study II: GPT-CSRC
Programming as Experimentation

• After GPT-2 was released I got interested in the possibility of using large 
language models for program synthesis (late 2020)


• ...but none of my students knew anything about ML!


• Solution: play around with building and training ML models like this on my own, 
explore feasibility


• Trained a 774M parameter GPT2 model on C/C++ source code over winter break


• Built a gamified “guess if code is human or GPT2” site


• Eventually became a key piece of my successful NSF CAREER proposal!



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study II: GPT-CSRC
Prototyping



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study II: GPT-CSRC
New Research Ideas for Proposal

4 Research Thrust 2: Generality

(a) Original #�b2e9 code. (b) LAVAinjected #�b2e9 code.

Figure 4: Visualization of the pertoken likelihood of original and LAVAinjected code as assessed by a GPT2 model
trained on C/C++ code. Brighter colors indicate tokens that are surprising to themodel andmay be unrealistic.

3.3.4 Condition Realism

In prior work [68] we developed techniques for using program synthesis to create challenging triggering
conditions out of existing program variables. We believe that these techniques can satisfy our requirements
for condition realism, and so we do not propose further work in this area. However, we plan to more rigor
ously evaluate the realism of our triggering conditions as part of our broader efforts to measure realism, and
we will revisit condition realism if necessary.

4 Research Thrust 2: Generality

We have shown with LAVA [36] that spatial memory errors can be added to programs by making judicious
edits to source code and input guided by a dynamic taint analysis. But will this technique translate to injecting
other types of vulnerabilities such as useafterfree vulnerabilities or even cryptographic flaws? We propose
techniques for generalizing to other vulnerability classes here.

Temporal memory safety. Consider the useafterfree vulnerability, in which a pointer to an object is
retained and subsequently used after the object has been freed. We can create such a vulnerability in the
following way. First, we dynamically identify calls to object allocation and deallocation functions when
they occur along an execution trace. Second, we match them up to identify pairs referring to the same
object. And third, given those pairs, we make code modifications to create a useafterfree. We insert code
to create an additional pointer reference to the object after its creation and before its deallocation, and we
also add code to make use of that pointer after the free. As with LAVA buffer overflows, we add code to
guard the pointer dereference in such a way that it depends upon the vulnerability trigger.

Algorithmic and logic errors. While LAVA is currently primarily focused on memory errors, expanding
its repertoire to other classes such as complexity errors, cryptographic errors, side channels, andmore general
logic bugs is another intriguing direction we wish to explore, especially as researchers are directing more
attention to these classes of vulnerabilities [21, 37, 74]. As a first step, we envisionmaking use of wellknown
APIs to infer points at which vulnerability injections could take place. For instance, to introduce complexity
vulnerabilities we might identify uses of known data structure implementations (e.g., as provided by the C++
STL) and rewrite the program to (conditionally) use an APIcompatible alternative with worse asymptotic

10



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study III: FauxPilot
Programming as Outreach

• When GitHub Copilot came out, we began 
doing research on it and the underlying Codex 
model


• Became clear we would need some way to plug in our 
own models and use them with 


• Over summer 2022, I took some open code models from Salesforce, 
combined them with NVIDIA’s Triton & FasterTransformer, and wrapped it in a 
Copilot-compatible proxy


• Way more popular than I expected: ~6K stars on GitHub in the first month!



Do I Have to Stop Programming? The Plight of the “Hackademic”

Case Study III: FauxPilot
Programming as Outreach

• But what has been really exciting is how the 
project has contributed to outreach


• Lots of users and contributors to help with 
development and give feedback on functionality


• GitLab has decided to use it as the basis for their own AI autocompletion 
offering


• Has been a great way to start conversations with lots of folks in industry who 
can help answer research questions for us by e.g. sharing data!



Do I Have to Stop Programming? The Plight of the “Hackademic”

Where to find the time?



Do I Have to Stop Programming? The Plight of the “Hackademic”

• June

Where to find the time?



Do I Have to Stop Programming? The Plight of the “Hackademic”

• June
• July

Where to find the time?



Do I Have to Stop Programming? The Plight of the “Hackademic”

• June
• July
• August

Where to find the time?



Do I Have to Stop Programming? The Plight of the “Hackademic”

• Just kidding


• There’s winter break too!


• Realistically: you are sometimes 
going to have to say no to other 
things


• One strategy I have found helpful 
is to dedicate a day or half a day 
each week to technical work, 
and defend it vigorously

Where to find the time?



Do I Have to Stop Programming? The Plight of the “Hackademic”

Institutional Barriers & Incentives
How to get your tenure committee to care

• Building software is not rewarded/incentivized in academia the way top conf/
journal publications are


• You will have to keep track of and quantify impact to justify it


• Is industry using your software? (Can you set up some way to let you 
know when someone is?)


• Download counts, GitHub stars, other measures of “popularity”


• What academic work is building on your software? (Make it easy to cite!)




Do I Have to Stop Programming? The Plight of the “Hackademic”

Conclusions

• The adjustment from PhD to prof is not easy, and you won’t be able to spend 
days at a time deep in code (at least during the school year)


• But it is really important to stay in touch with technical work; resist the urge to 
manage entirely at a high level


• Can pay off very well with new opportunities, big impact!


• Make sure to make these contributions visible and legible to folks who will 
be evaluating you!


