Topics In Binary
Program Analysis

CS-UY 3943 / CS-GY 9223
Prof Dolan-Gavitt

Getting Tests for Coverage

* Last time we looked at one way of generating test
suites: symbolic execution

* However, we saw some problems with symbolic
execution as well:

* Path explosion: we may generate too many
states to explore

e Constraint complexity

A Pathological eExample

e if (md5(input) & OxFF) == 0) bug();

e Symbolic execution will have a very difficult time
with this — inverting an MD5 hash is painful

* By contrast fuzzing will find it very quickly (1/256
random inputs will satisty it)

T'he Main Fuzzing
Advantage: Speed

* Symbolic execution is much, much slower than
concrete execution

* This means that a fuzzer can try thousands of
inputs per second (depending on the target)

* Sometimes speed beats smarts!

An Incomplete History

1981: Duran and Ntafos, "A report on random testing"

1983: Apple's "Monkey" (generated random Ul events to test first Mac)
1988: Bart Miller, "An Empirical Study of the Reliability of UNIX Ultilities"
1990s: crashme, X11 fuzzers

2000s: fuzzing frameworks: SPIKE, Sulley, PEACH

2005: DART - directed fuzzing

2008: SAGE — concolic fuzzing

2013-present: The "smart fuzzer"' revolution (AFL, libfuzzer)

Fuzzing like it's 1988

Utility

VAX (v)

Sun (s)

HP (h)

1386 (Xx)

AIX 1.1 (a)

Sequent (d)

adb

as

awk

bc

bib
calendar
cat

cb

cC

~Y

latex
lex
lint
lisp
look

® O

O

LJ6@)

Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 1)

e = utility crashed, o = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,
® = crashed only on SunOS 4.0, not 3.2. — = utility unavailable on that system.
! = utility caused the operating system to crash.

Fuzzer laxonomy

 (Generative vs mutation-based
 'Dumb"’ or "smart" (w.r.t. input structure)

* White-box / grey-box / black-box

Generative vs Mutational

* The basic distinction here: whether you craft inputs
from scratch or mutate existing ones

* (Generational fuzzing: inputs created from scratch

* Mutational: inputs created by mutating a set of
seeds

* We can do this Iin stages: mutate, pick the best
candidates, mutate those more, etc.

Mutation Fuzzing: Operators

e The success of a mutational fuzzer is highly dependent on its mutation
operators

* AFL uses the following ones:

e Sequential bit flips (up to 4 sequential bits)

Byte flips (1, 2, and 4 bytes at a time)

Arithmetic: add or subtract small integer values

Setting "well-known" integers (e.g., -1, 256, 1024, MAX_INT-1, MAX_INT)

Block delete / duplicate (overwrite and insert)

Splicing two inputs together

Dumb vs Smart

 Dumb strategy: just generate random bit strings
 Grammar-based fuzzers are on the "'smart" side
* Write down a complete grammar specitying your input
* [hen generate strings that match this grammar
 Downside: building a correct grammar is a lot of work

 Downside: May need to break the grammar to find bugs

 Note: dumb is not necessarily bad...

Example Grammar:

HTTP-date
rfcll23-date
rfc850-date
asctime-date
datel

date?2

date3

time

wkday
weekday

month

H 1 1P Dates

rfcll23-date | rfc850-date | asctime-date
wkday "," SP datel SP time SP "GMT"
weekday "," SP date2 SP time SP "GMT"
wkday SP date3 SP time SP 4DIGIT
2DIGIT SP month SP 4DIGIT

; day month year (e.g., 02 Jun 1982)

2DIGIT "-" month "-" 2DIGIT

; day-month-year (e.g., 02-Jun-82)
month SP (2DIGIT | (SP 1DIGIT))
; month day (e.g., Jun 2)

2DIGIT ":" 2DIGIT ":" 2DIGIT

; 00:00:00 - 23:59:59

"Mon" | "Tue" | "Wed"

"Thu" | "Fri" | "Sat" | "Sun"
"Monday" | "Tuesday" | "Wednesday"
"Thursday" | "Friday" "Saturday" |
"Jan" | "Feb" | "Mar" "Apr"
"May" | "Jun" | "Jul" "Aug"
"Sep" | "Oct" | "Nov" "Dec"

"Sunday"

What Color Box?

White/grey/black-box refers to how much the fuzzer
knows about the program it's fuzzing

Whitebox fuzzers get source code access, can
perform arbitrary analyses

Blackbox fuzzers don't look at the program at all

Greybox fuzzers are in between: they get some
imited amount of insight into program structure

Blackbox Fuzzing

* Here we have no access to the program, so we just
run inputs on it

* Advantage: this means we can test any target
(including remote services)

* Disadvantage: may not be very efficient

Whitebox Fuzzing

* With whitebox fuzzing, we can do deep analysis of
the program to decide what to fuzz and how

 We can examine dataflow through the program:
Ganesh et al., Taint-based Directed Whitebox
Fuzzing

* We can leverage symbolic execution! This is the
approach taken by SAGE (Godefroid et al.)

SAGE

1. Start with a set of seed inputs
2. Run program on each input and collect a trace

3. Execute each symbolically without forking — follow the same
path taken by concrete input

* This gives a path constraint for each input:
(P1, P2, P3, ..., PN)

4. Now systematically negate each path constraint, solve, and
use the resulting input as a new test seed

5. GOTO 1

Example of Program (Left) and Its Search Space (Right)
with the Value of cnt at the End of Each Run

FIGURE

void top(char input[4] {
int cnt=0;

if (input[0] == ’'b’) cnt++;
if (input[l] == ’'a’) cnt++;
if (input[2] == 'd’) cnt++;
if (input[3] == ’'!’) cnt++;

if (cnt >= 4) abort(); ?? error

0 1 1 2 1 2 2 3 1 2 1 3 2 3 3 £
good goo! godd god! gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

Source: SAGE: Whitebox Fuzzing for Security Testing

SAGE Success Story

e SAGE has been in use at Microsoft since 2007

* Found 1/3 of all bugs found from file-format fuzzing in
Windows 7 before release

 SAGE ran last — so these were all bugs missed by
everything else

* Last year launched as a cloud service: Project
Springfield
https://www.microsoft.com/en-us/research/project/
project-springfield/

https://www.microsoft.com/en-us/research/project/project-springfield/
https://www.microsoft.com/en-us/research/project/project-springfield/

Greybox Fuzzing

In between the two extremes we have greybox
fuzzing

The category was pretty much invented for
American Fuzzy Lop (AFL)

The idea is that we use some feedback to tell us
which test cases are most promising

In the case of AFL, that feedback is edge coverage

American Fuzzy Lop

* Currently the most popular greybox fuzzer: very
little setup required, achieves strong results

The bug-o-rama trophy case

Yeal, it finds bugs. I am [ocusing chiefly on develupment and have nol been running the fuzzer al a scale, bul here are some of Lthe notable vulnerabililies
and other uniquely inleresting bugs that are attributable to AFL (in large part thanks to the work done by uther users):

IJC jpeg ! libjpeg-turbo * = libpng *
Libtiff 1 2= 45 mozjpeg ! PHP 123456
Mozilla Firefox ! =54 Internct Explorer * #5 4 Applc Safari *
Adobe Flash / PCRE 1234567/ sqlitc ! 23 4. OpenSSL L 234567
LibreOffice 123 4 poppler ! %+ freetype ! 2
GnuTLS - CnuPG 1234 OpenSSH 12345

PuTTY ! # ntpd * # nginx ! 23

AFL's Coverage Guidance

* Not full path coverage — edge coverage metric
* These are considered different;

c A>B->C->D->E

c A>B->C->A->E
e But this path is not:

e A>B>C>A>B>C>A>B->C->D->E

AFL's Coverage Guidance

* Coverage tracking does include edge "hit count’
divided into buckets: 1, 2, 3, 4-7, 8-15, 16-31,
32-127, 128+

* Covered edges are tracked in a bitmap

* |nputs that produce new bitmap values are added
to the set of inputs (but do not replace existing
items)

Beyond ArL

Another interesting greybox fuzzer is libfuzzer (part of LLVM
project)

Tougher to get going: you need to modify your program to add a
test harness:

extern 'C" int LLVMFuzzerTestOnelnput(const uint8_t *Data,
size_t Size)

Benefit: much taster fuzzing, can do more interesting feedback
New feedback: array index values, dataflow, division

nttps://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-
flow

https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow
https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow

-uzzing: Instrumentation

With all of this fuzzing, we will generate millions/billions of inputs
What do we keep” What are we trying to accomplish?

We could try to reduce our set of test cases to the minimum
number needed to get same coverage

 This is called test corpus reduction

e We can also try to shrink the size of individual test cases: test
case reduction

We could keep only those that cause a problem

Detecting Problems

Detecting crashes themselves is pretty easy (at least on desktop systems
— what about embedded devices?)

But we may want to detect other errors that don't lead to crashes

« Memory leaks

« Qut-of-bounds read/write

* |Integer overflow, undefined behavior
One solution is to use a sanitizer: an instrumented version of the program
that can flag errors at runtime that may not crash under normal

circumstances

Many sanitizers now: ASAN, TSAN, MSAN, UBSAN

