
Topics in Binary
Program Analysis

CS-UY 3943 / CS-GY 9223
Prof Dolan-Gavitt

Getting Tests for Coverage
• Last time we looked at one way of generating test

suites: symbolic execution

• However, we saw some problems with symbolic
execution as well:

• Path explosion: we may generate too many
states to explore

• Constraint complexity

A Pathological Example

• if (md5(input) & 0xFF) == 0) bug();

• Symbolic execution will have a very difficult time
with this – inverting an MD5 hash is painful

• By contrast fuzzing will find it very quickly (1/256
random inputs will satisfy it)

The Main Fuzzing
Advantage: Speed

• Symbolic execution is much, much slower than
concrete execution

• This means that a fuzzer can try thousands of
inputs per second (depending on the target)

• Sometimes speed beats smarts!

An Incomplete History
• 1981: Duran and Ntafos, "A report on random testing"

• 1983: Apple's "Monkey" (generated random UI events to test first Mac)

• 1988: Bart Miller, "An Empirical Study of the Reliability of UNIX Utilities"

• 1990s: crashme, X11 fuzzers

• 2000s: fuzzing frameworks: SPIKE, Sulley, PEACH

• 2005: DART – directed fuzzing

• 2008: SAGE – concolic fuzzing

• 2013-present: The "smart fuzzer" revolution (AFL, libfuzzer)

Fuzzing like it's 1988
Utility VAX (v) Sun (s) HP (h) i386 (x) AIX 1.1 (a) Sequent (d)

adb − −
as
awk
bc
bib − − − −
calendar −
cat
cb
cc
/lib/ccom − −
checkeq −
checknr − −
col
colcrt − −
colrm − −
comm
compress −
/lib/cpp
csh −
dbx ∗ − −
dc
deqn − − − −
deroff
diction − −
diff
ditroff − − −
dtbl − − − −
emacs − −
eqn
expand −
f77 − − − −
fmt
fold −
ftp −
graph −
grep
grn − − − −
head −
ideal − − − −
indent − −
join ⊕
latex − − − −
lex
lint
lisp − − − −
look −

Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 1)
= utility crashed, = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,
⊕ = crashed only on SunOS 4.0, not 3.2. − = utility unavailable on that system.

! = utility caused the operating system to crash.

- 7 -

Utility VAX (v) Sun (s) HP (h) i386 (x) AIX 1.1 (a) Sequent (d)
adb − −
as
awk
bc
bib − − − −
calendar −
cat
cb
cc
/lib/ccom − −
checkeq −
checknr − −
col
colcrt − −
colrm − −
comm
compress −
/lib/cpp
csh −
dbx ∗ − −
dc
deqn − − − −
deroff
diction − −
diff
ditroff − − −
dtbl − − − −
emacs − −
eqn
expand −
f77 − − − −
fmt
fold −
ftp −
graph −
grep
grn − − − −
head −
ideal − − − −
indent − −
join ⊕
latex − − − −
lex
lint
lisp − − − −
look −

Table 2: List of Utilities Tested and the Systems on which They Were Tested (part 1)
= utility crashed, = utility hung, * = crashed on SunOS 3.2 but not on SunOS 4.0,
⊕ = crashed only on SunOS 4.0, not 3.2. − = utility unavailable on that system.

! = utility caused the operating system to crash.

- 7 -

~ ~

Fuzzer Taxonomy

• Generative vs mutation-based

• "Dumb" or "smart" (w.r.t. input structure)

• White-box / grey-box / black-box

Generative vs Mutational
• The basic distinction here: whether you craft inputs

from scratch or mutate existing ones

• Generational fuzzing: inputs created from scratch

• Mutational: inputs created by mutating a set of
seeds

• We can do this in stages: mutate, pick the best
candidates, mutate those more, etc.

Mutation Fuzzing: Operators
• The success of a mutational fuzzer is highly dependent on its mutation

operators

• AFL uses the following ones:

• Sequential bit flips (up to 4 sequential bits)

• Byte flips (1, 2, and 4 bytes at a time)

• Arithmetic: add or subtract small integer values

• Setting "well-known" integers (e.g., -1, 256, 1024, MAX_INT-1, MAX_INT)

• Block delete / duplicate (overwrite and insert)

• Splicing two inputs together

Dumb vs Smart
• Dumb strategy: just generate random bit strings

• Grammar-based fuzzers are on the "smart" side

• Write down a complete grammar specifying your input

• Then generate strings that match this grammar

• Downside: building a correct grammar is a lot of work

• Downside: May need to break the grammar to find bugs

• Note: dumb is not necessarily bad...

Example Grammar:  
HTTP Dates

 HTTP-date = rfc1123-date | rfc850-date | asctime-date
 rfc1123-date = wkday "," SP date1 SP time SP "GMT"
 rfc850-date = weekday "," SP date2 SP time SP "GMT"
 asctime-date = wkday SP date3 SP time SP 4DIGIT
 date1 = 2DIGIT SP month SP 4DIGIT
 ; day month year (e.g., 02 Jun 1982)
 date2 = 2DIGIT "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)
 date3 = month SP (2DIGIT | (SP 1DIGIT))
 ; month day (e.g., Jun 2)
 time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ; 00:00:00 - 23:59:59
 wkday = "Mon" | "Tue" | "Wed"
 | "Thu" | "Fri" | "Sat" | "Sun"
 weekday = "Monday" | "Tuesday" | "Wednesday"
 | "Thursday" | "Friday" | "Saturday" | "Sunday"
 month = "Jan" | "Feb" | "Mar" | "Apr"
 | "May" | "Jun" | "Jul" | "Aug"
 | "Sep" | "Oct" | "Nov" | "Dec"

What Color Box?
• White/grey/black-box refers to how much the fuzzer

knows about the program it's fuzzing

• Whitebox fuzzers get source code access, can
perform arbitrary analyses

• Blackbox fuzzers don't look at the program at all

• Greybox fuzzers are in between: they get some
limited amount of insight into program structure

Blackbox Fuzzing

• Here we have no access to the program, so we just
run inputs on it

• Advantage: this means we can test any target
(including remote services)

• Disadvantage: may not be very efficient

Whitebox Fuzzing
• With whitebox fuzzing, we can do deep analysis of

the program to decide what to fuzz and how

• We can examine dataflow through the program:  
Ganesh et al., Taint-based Directed Whitebox
Fuzzing

• We can leverage symbolic execution! This is the
approach taken by SAGE (Godefroid et al.)

SAGE
1. Start with a set of seed inputs

2. Run program on each input and collect a trace

3. Execute each symbolically without forking – follow the same
path taken by concrete input

• This gives a path constraint for each input:  
(P1, P2, P3, ..., PN)

4. Now systematically negate each path constraint, solve, and
use the resulting input as a new test seed

5. GOTO 1

SECURITY

3

In theory, systematic dynamic test generation can lead to full program path coverage, i.e., program
ver ification. In practice, however, the search is typically incomplete both because the number of
execution paths in the program under test is huge, and because symbolic execution, constraint
generation, and constraint solving can be imprecise due to complex program statements (pointer
manipulations, floating-point operations, etc.), calls to external operating-system and library func-
tions, and large numbers of constraints that cannot all be solved perfectly in a reasonable amount of
time. Therefore, we are forced to explore practical tradeoffs.

SAGE
Whitebox fuzzing was first implemented in SAGE (Scalable Automated Guided Execu tion).5 Because
SAGE targets large applications where a single execution may contain hundreds of millions of
instructions, symbolic execution is its slowest compo nent. Therefore, SAGE implements a novel
directed-search algorithm, dubbed generational search, that maximizes the number of new input tests
generated from each symbolic execution. Given a path con straint, all the constraints in that path
are systemati cally negated one by one, placed in a conjunction with the prefix of the path constraint
leading to it, and at tempted to be solved by a constraint solver. This way, a single symbolic execution
can generate thousands of new tests. (In contrast, a standard depth-first or breadth-first search would
negate only the last or first constraint in each path constraint and generate at most one new test per
symbolic execution.)

The pro gram shown in figure 2 takes four bytes as input and contains an error when the value of

void top(char input[4] {
 int cnt=0;
 if (input[0] == ’b’) cnt++;
 if (input[1] == ’a’) cnt++;
 if (input[2] == ’d’) cnt++;
 if (input[3] == ’!’) cnt++;
 if (cnt >= 4) abort(); ?? error
}

0
good

1
goo!

1
godd

2
god!

1
gaod

2
gao!

2
gadd

3
gad!

1
bood

2
boo!

3
bod!

1
bodd

2
baod

3
bao!

3
badd

4
bad!

Example of Program (Left) and Its Search Space (Right)
with the Value of cnt at the End of Each Run

Source: SAGE: Whitebox Fuzzing for Security Testing

SAGE Success Story
• SAGE has been in use at Microsoft since 2007

• Found 1/3 of all bugs found from file-format fuzzing in
Windows 7 before release

• SAGE ran last – so these were all bugs missed by
everything else

• Last year launched as a cloud service: Project
Springfield 
https://www.microsoft.com/en-us/research/project/
project-springfield/

https://www.microsoft.com/en-us/research/project/project-springfield/
https://www.microsoft.com/en-us/research/project/project-springfield/

Greybox Fuzzing
• In between the two extremes we have greybox

fuzzing

• The category was pretty much invented for
American Fuzzy Lop (AFL)

• The idea is that we use some feedback to tell us
which test cases are most promising

• In the case of AFL, that feedback is edge coverage

American Fuzzy Lop
• Currently the most popular greybox fuzzer: very

little setup required, achieves strong results

AFL's Coverage Guidance
• Not full path coverage – edge coverage metric

• These are considered different:

• A -> B -> C -> D -> E

• A -> B -> C -> A -> E

• But this path is not:

• A -> B -> C -> A -> B -> C -> A -> B -> C -> D -> E

AFL's Coverage Guidance

• Coverage tracking does include edge "hit count"
divided into buckets: 1, 2, 3, 4-7, 8-15, 16-31,
32-127, 128+

• Covered edges are tracked in a bitmap

• Inputs that produce new bitmap values are added
to the set of inputs (but do not replace existing
items)

Beyond AFL
• Another interesting greybox fuzzer is libfuzzer (part of LLVM

project)

• Tougher to get going: you need to modify your program to add a
test harness:  
 
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
size_t Size)

• Benefit: much faster fuzzing, can do more interesting feedback

• New feedback: array index values, dataflow, division 
https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-
flow

https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow
https://clang.llvm.org/docs/SanitizerCoverage.html#tracing-data-flow

Fuzzing: Instrumentation
• With all of this fuzzing, we will generate millions/billions of inputs

• What do we keep? What are we trying to accomplish?

• We could try to reduce our set of test cases to the minimum
number needed to get same coverage

• This is called test corpus reduction

• We can also try to shrink the size of individual test cases: test
case reduction

• We could keep only those that cause a problem

Detecting Problems
• Detecting crashes themselves is pretty easy (at least on desktop systems

– what about embedded devices?)

• But we may want to detect other errors that don't lead to crashes

• Memory leaks

• Out-of-bounds read/write

• Integer overflow, undefined behavior

• One solution is to use a sanitizer: an instrumented version of the program
that can flag errors at runtime that may not crash under normal
circumstances

• Many sanitizers now: ASAN, TSAN, MSAN, UBSAN

