
Brendan Dolan-Gavitt 
National Academy of Sciences Forum on Cyber Resilience 
August 31, 2023
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Case studies in vulnerability repair and reverse engineering



Demos vs Deployment

How Useful Are LLMs in Security Today?

• LLMs, and particularly GPT4, have produced some great security demos


• Finding bugs, deobfuscation, reverse engineering, fixing vulnerabilities


• Over the past two years, we have done some systematic evaluation of LLMs 
on security tasks:


• Vulnerability repair (S&P 2023; https://arxiv.org/abs/2112.02125)


• Reverse engineering (preprint; https://arxiv.org/abs/2202.01142)


• When evaluated systematically, LLMs sometimes don’t live up to the 
promise of the initial demos
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https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2202.01142
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Demo: Repairing CVE-2023-40296 3

Not in training data!
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The Vulnerability
A classic off-by-one

4

static void Receive(UDPSocket* udpSocket)

{

    char tempBuffer[BUFFER_SIZE];

    ssize_t messageLength;


    while ((messageLength = recv(udpSocket->sock, tempBuffer, BUFFER_SIZE, 0)) != -1)

    {

        tempBuffer[messageLength] = '\0';

        if (udpSocket->onMessageReceived)

            udpSocket->onMessageReceived(std::string(tempBuffer, messageLength), \

                ipToString(udpSocket->address), ntohs(udpSocket->address.sin_port));


        if (udpSocket->onRawMessageReceived)

            udpSocket->onRawMessageReceived(tempBuffer, messageLength, \

                ipToString(udpSocket->address), ntohs(udpSocket->address.sin_port));

    }

}


If recv() returns 
BUFFER_SIZE bytes, a NULL 
is written one byte past the 

end of tempBuffer
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Asking ChatGPT4
Full transcript: https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854e
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[…]

https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854e
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ChatGPT4: Vulnerability Discovery 6
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ChatGPT4 Repair 7

static void Receive(UDPSocket* udpSocket)

{

    char tempBuffer[BUFFER_SIZE];

    ssize_t messageLength;


    while ((messageLength = recv(udpSocket->sock, tempBuffer, BUFFER_SIZE - 1, 0)) != -1)

    {

        tempBuffer[messageLength] = '\0';
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ChatGPT4 Repair 8

static void Receive(UDPSocket* udpSocket)

{

    char tempBuffer[BUFFER_SIZE];

    ssize_t messageLength;


    while ((messageLength = recv(udpSocket->sock, tempBuffer, BUFFER_SIZE - 1, 0)) != -1)

    {

        tempBuffer[messageLength] = '\0';

Official Developer Patch
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Systematic Study: A Repair Framework
From “Examining Zero-Shot Vulnerability Repair with Large Language Models”, Pearce et al., IEEE S&P 2023

9

Language Models are non-deterministic: 

Repeat until successfully passing both tests?Use a variety of Prompt Templates

Use an ensemble of LLMs

1 2 3

https://www.computer.org/csdl/proceedings-article/sp/2023/933600a001/1OXGSIcdWfu
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Promising Results?
Real-world vulns from ExtractFix dataset
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● 12 real-world CVEs: 


○ 432 Model/Prompt combinations

○ 19,600 attempted patches, 


○ 982 repairs,


○ 8 of 12 scenarios repaired by ensemble.

■  Cushman-001: 	 	 8/12


■  Davinci-001: 	 	 	 7/12


■  Davinci-002: 	 	 	 7/12


■  J1-large: 	 	 	 	 5/12


■  GPT-CSRC (ours): 	 4/12


■  Polycoder:	 	 	 6/12

EF01: LibTIFF Out-of-bounds read

EF02b: LibTIFF Out-of-bounds write

EF02a: LibTIFF Out-of-bounds write

EF07: LibTIFF Off-by-one error

EF08: LibTIFF Shift exp. type error

EF09: LibTIFF DoS by divide by zero

EF10: LibTIFF DoS by divide by zero

EF15: LibXML2 Buffer over-read

EF17: LibXML2 Buffer underflow

EF18: LibXML2 Null pointer deref.

EF20: LibJPEG Buffer over-read

EF22: LibJPEG Buffer overflow

LLM EF
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Reality Check: Do the Patches Work?
(Remember GenProg/RSRepair from program repair?)

• Testing cannot verify absence 
of bugs


• Manual inspection of top-
scoring ‘fixes’ reveals that 
many fixes ‘unreasonable’


• Reduces ‘success’ to 
6 of 12 (50%).


• Davinci-001: 	 4/12


• Davinci-002: 	 4/12
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introduce other bugs which are not adequately tested for. As
it is not scalable to closely examine all ‘successful’ programs,
we manually examine the ‘highest-confidence’ (as each LLM
gives a relative ‘confidence score’ with each output) patches
that pass both functional and security testing in Table VII.
From this, we hypothesize that a majority of the ‘successful’
programs may be unreasonable. Noting that (i) the LLMs
were not trained specifically for repair (i.e., this is a zero-shot
setting) and (ii) they can use only the limited context provided
in their prompts, their performance is still remarkable. They
even manage to convincingly fix one scenario (EF20) which
ExtractFix could not.

As before, the performance across LLMs and prompts
varies; the OpenAI models outperform the others. Our ‘gpt2-
csrc’ is the ‘underdog’; it has far fewer parameters and is
trained on a much smaller corpus (see Section II-D). Because
we had access to the training data for this model, we checked
whether any of the correct fixes it generated were included in
the training set, and found that the fix for EF01 was indeed

TABLE VII
AUTHOR OPINIONS OF LLM-PROVIDED PATCHES: IDENTICAL OR

SEMANTICALLY EQUIVALENT TO THE DEVELOPER PATCH; REASONABLE
IF THEY APPEAR TO FIX THE BUG; OR NOT REASONABLE IF NOT.

Scenario Engine Plausibile Scenario Engine Plausible

EF01

code-cushman-001 Not R.

EF10

code-cushman-001 R.
code-davinci-001 Sem. Eq. code-davinci-001 R.
code-davinci-002 Not R. code-davinci-002 R.
j1-large Not R. j1-large Not R.
gpt2-csrc Not R. gpt2-csrc Not R.
polycoder Sem. Eq. polycoder Not R.

EF07 code-cushman-001 Sem. Eq.

EF15

code-cushman-001 Not R.
code-davinci-002 R. code-davinci-001 Not R.

EF08

code-cushman-001 Not R. code-davinci-002 Not R.
code-davinci-001 Not R. polycoder Not R.
code-davinci-002 Not R.

EF17

code-cushman-001 Not R.
j1-large Not R. code-davinci-001 Ident.
gpt2-csrc Not R. code-davinci-002 Sem. Eq.
polycoder Not R. j1-large Sem. Eq.

EF09

code-cushman-001 R. gpt2-csrc Not R.
code-davinci-001 R. polycoder Not R.
code-davinci-002 R. EF20 code-cushman-001 R.
j1-large Not R. code-davinci-001 Not R.
gpt2-csrc Not R.
polycoder Not R.

present. We hypothesize that the black-box LLMs might also
benefit from this effect.

The projects where LLMs failed have similar characteristics

Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.a. c.n.

Prompt Template

Scenario, Engine

LLMs

EF
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3/4 2/4 4/8 1/44 3/49 2/48

3/13 0/4 4/9 6/43 5/24 4/15
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Prompt Template

Scenario, Engine n.h. s.1 s.2 c. c.a. c.n.

Prompt Template

Scenario, Engine

LLMs

EF
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Fig. 12. Results when using Black-box LLMs to patch real-world bugs from ExtractFix [34]. 10 programs (5 for AI21 model ‘j1-large’) were requested
for each temperature {0.00, 0.25, 0.50, 0.75, 1.00} ⇥ top p {1.00}, giving 50 (25 for AI21) possible total programs. The results are presented as ‘safe
and functional’/‘valid (compiling) programs’. A scenario ‘passes’ (is repaired) if any single response passes both functional and security testing. Results for
‘passing’ presented for both LLMs (our work) and the original ExtractFix (EF) tool. *EF08 and *EF15 pass functional tests but are unreasonable patches.
See Table VII.
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Demo: Reverse Engineering
Full transcript: https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

• Anecdote: I was doing my taxes with TurboTax (closed 
source) on OS X, but it kept crashing at a particular point


• Using ChatGPT4, I was able to:


• Get instructions for attaching the XCode debugger and getting a backtrace


• Feed the backtrace to GPT4 to identify the problematic code


• Decompile functions along the way to Objective C / Swift


• Identify and fix the problem (a missing JSON file in the installation)


• (I don’t have much experience with OS X or Swift/Objective C reverse engineering)
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🪲

https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace
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Crash Source Identification 13
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Swift Decompilation 14
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Systematic Study: Answering True/False Questions
From “Pop Quiz! Can a Large Language Model Help With Reverse Engineering?”, Pearce et al. (arXiv preprint)

• Wrote small programs and asked Codex (DaVinci-001) true/false questions


• Both about source (with and w/o var rename) and Ghidra-decompiled code


• Result: only ~53% accuracy overall – not much better than chance

15

True/False Question ID

Scenario

E
n
c
r
y
p
t
?

n
E
n
c
r
y
p
t
?

X
O
R
?

n
X
O
R
?

A
E
S
?

n
A
E
S
?

D
e
l
e
t
e
?

n
D
e
l
e
t
e
?

N
e
t
w
o
r
k
?

n
N
e
t
w
o
r
k
?

D
o
w
n
l
d
?

n
D
o
w
n
l
d
?

U
p
l
o
a
d
?

n
U
p
l
o
a
d
?

E
t
c
P
s
w
d
?

n
E
t
c
P
s
w
d
?

M
D
5
?

n
M
D
5
?

F
I
R
1
?

n
F
I
R
1
?

F
I
R
2
?

n
F
I
R
2
?

I
I
R
1
?

n
I
I
R
1
?

I
I
R
2
?

n
I
I
R
2
?

P
I
D
1
?

n
P
I
D
1
?

P
I
D
2
?

n
P
I
D
2
?

P
I
?

n
P
I
?

P
D
?

n
P
I
D
?

C
S
u
m
?

n
C
S
u
m
?

8 7 2 6 7 4 9 7 10 9 3 4 8 2 7 10 6 4 4 3 2 8 3 7 7 7 2 0 6 9 7 8 3 9 3 7

0 1 0 7 6 5 10 7 10 5 2 3 6 2 5 7 2 2 1 6 1 6 2 2 2 4 0 1 6 9 2 8 3 7 0 7

6 3 2 3 8 5 10 8 7 1 8 6 4 3 7 8 2 1 1 0 4 7 7 2 5 2 2 0 9 4 7 8 3 3 7 4

6 6 6 4 6 4 10 8 6 0 5 6 6 2 7 10 4 0 3 3 5 4 2 2 5 6 2 2 8 8 7 6 5 4 6 6

3 3 1 7 8 2 9 8 10 1 3 3 5 3 6 9 1 5 0 1 1 5 0 2 2 5 0 1 8 8 6 4 3 7 0 6

(o. src)

(r. src)

-o1 -g

-o1

-o1 -s

d
e
le
t
e
li
s
t
e
n

6 5 6 7 8 5 9 3 10 5 10 7 10 8 10 10 6 4 0 4 1 3 2 8 1 4 9 10 10 8 0 6 1 5 3 5

2 4 5 8 6 4 6 5 9 9 10 9 8 7 10 7 9 4 1 2 1 4 0 7 0 7 10 9 10 6 1 4 0 7 1 2

5 1 7 2 9 3 9 2 10 8 8 9 8 9 9 8 5 1 2 3 1 4 4 3 1 4 10 9 10 9 0 6 0 8 4 5

4 2 6 5 10 2 9 7 9 8 10 8 8 9 9 8 4 3 0 2 0 3 2 5 0 3 9 10 9 8 0 6 0 6 4 3

1 0 2 5 5 1 5 6 9 7 6 8 8 9 7 6 0 1 0 0 0 2 1 1 1 3 10 9 9 7 1 6 1 6 0 4

(o. src)

(r. src)

-o1 -g

-o1

-o1 -s

p
id

d

Figure 8: True/False accuracy counts for the delete_listen and pid_d programs. All values are the number of correct answers
for that source code configuration and question (maximum: 10).

Next, Figure 9 presents the combined statistics for all
true/false Cybersecurity and ICS questions for each of the
experiments. AP and AN reflect the ‘Actual Positive’ (i.e.,
the number of times this question should have been answered
True) and ‘Actual Negative’ (i.e., number of times the
question should have been answered False). From this, we
compute the Null Error, which is the error rate that the LLM
would get if it always guessed the majority answer. As this
is a binary classification problem (assume ‘True’=‘Positive’,
‘False’=‘Negative’), we present Accuracy (the total correct
/ the total questions), Precision (the true positive / the total
predicted positive), Recall (the true positive / the total actual
positive), and the F1 score, which represents the harmonic
mean of precision and recall. However, as F1 scores can be
misleading in cases where the data is imbalanced (as is the
case with this corpus), we include a Matthews Correlation
Coefficient (MCC) [5] which will produce a high score (above
0) only when code-davinci-001 obtains ‘good’ results
in each of the four categories. From this we can observe
that some questions (e.g., ‘Network’) perform relatively
well, while others (e.g., ‘nFIR2’) have results no better than
random guessing. In total, we ask 50,400 questions with
25,048 (49.70 %) answered correctly.

Finally, Figure 10 presents a subset of the results for
capa-rules capabilities when analyzing real-world malware
by comparing the code-davinci-001 results with the
capabilities identified by capa. As with the previous results,
some questions (e.g., ‘TCPServer’) are performing better
than others (e.g., ‘nDataS->C’). For Figure 10, we asked
4,320 questions with 2,036 (47.13 %) answered correctly.

4.4 Grading the Short Answer Questions

We now evaluate the LLM using the method as de-
scribed in Section 4.1.3. As the compilation/decompilation
pipeline is quite coarse, for this study we only evaluate

code-davinci-001’s performance over different rates of
program randomization. Using delete_listen and pid_d, we
create 110 different versions of each, where the first 10 have
0% randomization, the next 10 have 10% randomization, the
next 20%, and so on. Here, the percentage randomization
relates to the chance that any given locally defined function
name, variable name, or procedural variable content is ran-
domized. We then evaluate the LLM’s ability to seek out and
identify the key variables and their values. The results of this
investigation are depicted in Figure 11 (delete_listen) and
Figure 12 (pid_d). We also include an additional ‘Purpose’
questions, which pose the following: ‘Q. In one sentence de-
fine the purpose of the above code.’ This answer is then exam-
ined automatically for a key word: in the case of delete_listen,
it is the word “delete”, in the case of pid_d, this is the acronym
“PID.” Overall the results for this experiment are largely as ex-
pected given the earlier preliminary experimentation; with the
LLM performing progressively worse as the randomization
increases, especially with the ‘Purpose’ question.

For interest, we also include the capabilities of the LLM in
answering the True/False question over these difficulty axis
as well, depicted in the Appendix in Figure 16 and Figure 17.
Interestingly, for the True/False questions, the degree of ran-
domization does not seem to have a significantly identifiable
trend when considering the average accuracy rate of program
identifier questions. Across both sets of questions we asked,
29,700 questions with 17,040 (57.37 %) answered correctly.

4.5 Key Takeaways

We set out to understand if LLMs can aid reverse engineering
by identifying key values and variables, code purposes, and
capabilities. We performed this with code-davinci-001
which was not trained to summarize code—further, our ex-
amples from Cybersecurity and ICS categories were not in its
training dataset (as we wrote them for this research). This is a
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https://arxiv.org/abs/2202.01142
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Conclusions

• Why the discrepancy?


• Demos often focus on easy cases


• Demos from GPT4; systematic experiments from GPT3 and Codex 

• Demos have an expert human in the loop 

• But: I remain extremely optimistic about the promise of LLMs in security applications


• Current LLMs generally were not fine-tuned on security tasks! 

• Naïve extrapolation: from 2019→2023, we went from GPT2 to GPT4


• Open models + advances in fine tuning (PEFT/LoRA) have made it much cheaper and 
easier to experiment with LLMs on domain specific data
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A B S T R A C T

The BigCode community, an open-scientific collaboration working on the responsi-
ble development of Large Language Models for Code (Code LLMs), introduces
StarCoder and StarCoderBase: 15.5B parameter models with 8K context length,
infilling capabilities and fast large-batch inference enabled by multi-query attention.
StarCoderBase is trained on 1 trillion tokens sourced from The Stack (Kocetkov
et al., 2022), a large collection of permissively licensed GitHub repositories with in-
spection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python
tokens, resulting in the creation of StarCoder. We perform the most comprehensive
evaluation of Code LLMs to date and show that StarCoderBase outperforms every
open Code LLM that supports multiple programming languages and matches or
outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder out-
performs every model that is fine-tuned on Python, can be prompted to achieve 40%
pass@1 on HumanEval, and still retains its performance on other programming
languages. We take several important steps towards a safe open-access model
release, including an improved PII redaction pipeline and a novel attribution tracing
tool, and make the StarCoder models publicly available under a more commercially
viable version of the Open Responsible AI Model license.

1 I N T R O D U C T I O N

Large Language Models (LLMs; Brown et al., 2020; Chen et al., 2021; Chowdhery et al., 2022; Zhang
et al., 2022; OpenAI, 2023a), such as OpenAI’s ChatGPT, are taking the world by storm. Within a
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