TANDON SCHOOL
OF ENGINEERING

NYU

LLMs in Security:
Demos vs Deployment?

Case studies in vulnerability repair and reverse engineering

Brendan Dolan-Gavitt @

National Academy of Sciences Forum on Cyber Resilience SENTERIEGR
August 31, 2023 CYBER SECURITY

)

\

W

2 How Useful Are LLMs in Security Today?

NYU

 |LLMs, and particularly GPT4, have produced some great security demos
* Finding bugs, deobfuscation, reverse engineering, fixing vulnerabilities

* Over the past two years, we have done some systematic evaluation of LLMs
on security tasks:

* Vulnerabillity repair (S&P 2023; https://arxiv.org/abs/2112.02125)

* Reverse engineering (preprint; https://arxiv.org/abs/2202.01142)

 When evaluated systematically, LLMs sometimes don’t live up to the
promise of the initial demos

Demos vs Deployment

https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2202.01142

W

2 Demo: Repairing CVE-2023-40296

NYU

CVE-2023-40296 rususten View JSON

© Important CVE JSON 5 Information Not in training data! +

Assigner: MITRE Corporati

Published: 2023-08-14 dated: 2023-08-14

async-sockets-cpp through 0.3.1 has a stack-based buffer overflow in ReceiveFrom and Receive In
udpsocket.npp when processing malformed UDP packets.

Demos vs Deployment

The Vulnerability BUFFEIFng:;g L?;::e;nsa NULL

A classic off-by-one is written one byte past the
U end of tempBuffer

static void Receive(UDPSocketx udpSocket)
1

char tempBuffer| 1;

ssize_t messagelength;

while ((= recv(udpS0cket—>sock, tempBuffer,
{
tempBuffer| 1 = '"\0';
if (udpSocket—->onMessageReceived)
udpSocket—>onMessageReceived(std::string(tempBuffer, messagelLength), \
ipToString(udpSocket—>address), ntohs(udpSocket->address.sin_port));

if (udpSocket->onRawMessageReceived)
udpSocket—>onRawMessageReceived(tempBuffer, messageLength, \
ipToString(udpSocket—>address), ntohs(udpSocket->address.sin_port));

Demos vs Deployment

W
v

Asking ChatGPT4

Full transcript: https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854¢e

NYU

+! GPT-4 ()

E |ldentify the vulnerability in the following file:

#pragma once

#include "basesocket.hpp”
#include <string.h>
#include <thread>

template <uint16_t BUFFER_SIZE = AS_DEFAULT_BUFFER_SIZE>
class UDPSocket : public BaseSocket
{
public:
std::function<void(std::string, std::string, std::uint16_t)> onMessageReceived;
std::function<void(const char*, ssize_t, std::string, std::uint16_t)>
onRawMessageReceived;
[...]

Demos vs Deployment

https://chat.openai.com/share/c382940f-14e9-4fdd-97df-52ee4429854e

A ChatGPT4: Vulnerability Discovery
NYU

The code implements a UDP socket class in C++ and appears to be dealing with low-level
network communication. While | can't run the code to test it, | can identify a few areas of

concern that could lead to vulnerabilities or issues:

1. Buffer Overflow Vulnerability: The most glaring issue is in the "Receive ™ and
"ReceiveFrom™ methods, where the code uses a statically-sized buffer “tempBuffer ™ of
size "BUFFER_SIZE " to receive incoming messages. After reading “messagelLength ™ bytes
Into “tempBuffer ", it null-terminates the buffer with “tempBuffer[messageLength] =
"\0'; . If "'messagelLength’ happensto be equal to "BUFFER_SIZE ", this would write past

the end of the array, causing undefined behavior and posing a security risk.

Demos vs Deployment

 ChatGPT4 Repair

NYU

Please fix the buffer overflow vulnerability and show me just the new code for Receive and

RecelveFrom

Certainly, one way to mitigate the buffer overflow vulnerability is to ensure that the null-
terminator is only written within the bounds of “tempBuffer . This can be achieved by not

writing past "BUFFER_SIZE - 1° for the data and setting the last elementto “\0" for string

termination. Here's the modified code:

static void Receive(UDPSocketx udpSocket)

{
char tempBuffer[BUFFER_SIZE];

ssize_t messagelength;

while ((messagelLength = recv(udpSocket—->sock, tempBuffer, BUFFER_SIZE - 1, 0)) != -1)

{
tempBuffer[messageLength] = '\0';

Demos vs Deployment

Official Developer Patch

Please fix t e and
ReceiveFro . .

eminfedar commented last month - edited ~

About this, you are right:
Certainly, o |-

' ' async-sockets-cpp/async-sockets/include/udpsocket.hpp

terminator | Line 143 in 78641cf y not
writing past 143 tempBuffer [messageLength] = '\0'; string
termination

| pushed a commit and increased the buffers' length plus 1:

async-sockets-cpp/async-sockets/include/tcpsocket.hpp
Line 99 in 78641cf

i tem 99 char tempBuffer [BUFFER_SIZE+1];
ssize_ t

while ((so this is ok now: tempBuffer[messageLength] = '\0';

{
temp

Demos vs Deployment

9

W

Systematic Study: A Repair Framework

From “Examining Zero-Shot Vulnerability Repair with Large Language Models”, Pearce et al., IEEE S&P 2023

!
NYU

Use an ensemble of LLMs

B I e T

O Orig. l Prompt "Oéfl'thi'ghelf" Security

Program Bug Creation I ‘ lests 4 ___

rLocaIized LLM hangec

l Bug! | Program X
Security—' Cod.e Funct. ~2>—

Tests 5 ‘Merging Tests “Bug
Bug ID 1l (it required) Bug Repair Fixed?
\
Language Models are non-deterministic:
Use a variety of Prompt Templates Repeat until successfully passing both tests?

Demos vs Deployment

https://www.computer.org/csdl/proceedings-article/sp/2023/933600a001/1OXGSIcdWfu

0 10

2 Promising Results?
NYU Real-world vulns from ExtractFix dataset

LLM | EF

e 12 real-world CVEs:

o 432 Model/Prompt combinations

EFO1: LibTIFF Out-of-bounds read

EFO02a: LibTIFF Out-of-bounds write

EF02b: LibTIFF Out-of-bounds write o 19,600 attempted patches,

EF07: LibTIFF Off-by-one error o 982 repairs,

EFO08: LibTIFF Shift exp. type error o 8 of 12 scenarios repaired by ensemble.

EFO09: LibTIFF DoS by divide by zero m Cushman-001: 8/12
EF10: LibTIFF DoS by divide by zero - DaVinCi-OO1 . 7/1 2
EF15: LibXML2 Buffer over-read L
| e o m Davinci-002: 7112

EF17: LibXML2 Buffer underflow

m J1-large: 5/12
EF18: LibXML2 Null pointer deref.

m GPT-CSRC (ours): 4/12
EF20: LibJPEG Buffer over-read

m Polycoder: 6/12

EF22: LibJPEG Buffer overflow

COLOOOOOOLOO
SIRISTSTSISTSTSTS IR SIS

Demos vs Deployment

W 11

2 Reality Check: Do the Patches Work?

NYU (Remember GenProg/RSRepair from program repair?)

TABLE VII
AUTHOR OPINIONS OF LLM-PROVIDED PATCHES: IDENTICAL OR
SEMANTICALLY EQUIVALENT TO THE DEVELOPER PATCH; REASONABLE
IF THEY APPEAR TO FIX THE BUG; OR NOT REASONABLE IF NOT.

* Jesting cannot verify absence
of bugs

Scenario Engine Plausibile Scenario Engine Plausible " " _
code-cushman-001 Not R. code-cushman-001 R. M a n u al I n S p eCt I O n Of tO p
code-davinci-001 Sem. Eq. code-davinci-001 R. - o)

cpop codedavinci-002 Not R cppo codedavingi-002 R 0 SCOrnNg fixes’ reveals that
jl-large Not R. jl-large Not R. n 4 5
gpt2-csrc Not R. gpt2-csrc Not R. m a n y fl XeS u n rea SO n a b I e
polycoder Sem. Eq. polycoder Not R.

EFO7 code-cushman-001 Sem. Eq. code-cushman-001 Not R.
code-davinci-002 R. code-davinci-001 Not R. ¢ 5
code-cushman-001 Not R. EF15 code-davinci-002 Not R. @ R ed U C eS S U C C eSS tO
code-davinci-001 Not R. polycoder Not R.

EF0R code-davinci-002 Not R. code-cushman-001 Not R. 6 Of 1 2 (50 %) .
jl-large Not R. code-davinci-001 Ident.
gpt2-csrc Not R. EF]7 code-davinci-002 Sem. Eq. 0
polycoder Not R. jl-large Sem. Eq. . . .
code-cushman-001 R. gpt2-csrc Not R. DaVI n C I - O O 1 . 4/ 1 2
code-davinci-001 R. polycoder Not R.
code-davinci-002 R. code-cushman-001 R.

EF0Y jl-large Not R. EF20 code-davinci-001 Not R. . . .
gpt2-csrc Not R. DaVI nCI_002 . 4/1 2
polycoder Not R.

Demos vs Deployment

12

W
v

Demo: Reverse Engineering

Full transcript: https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

NYU

* Anecdote: | was doing my taxes with TurboTax (closed Ul é
source) on OS X, but it kept crashing at a particular point t u rbOtax

» (Get instructions for attaching the XCode debugger and getting a backtrace

* Using ChatGPT4, | was able to:

* Feed the backtrace to GPT4 to identify the problematic code
 Decompile functions along the way to Objective C / Swift
* |dentify and fix the problem (a missing JSON file in the installation)

* (Il don’t have much experience with OS X or Swift/Objective C reverse engineering)

Demos vs Deployment

https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

13

W

, Crash Source ldentification

N ' U The crash occurs on the main thread (thread #1) with the stop reason: “Fatal error:

Unexpectedly found nil while implicitly unwrapping an Optional value'. The

Issue seems to be related to the unwrapping of an optional value without proper checking

for "nil".

The relevant stack trace line is:

“frame #6: 0x0000000107814d1d TurboTax 2020 static
TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentinConfig() ->
Swift.Dictionary<Swift.String, Swift. AnyObject> + 637"

This line is within the
"TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentInConfig()"
function, which returns a dictionary. It appears that the crash is due to an implicitly
unwrapped optional value being “nil* when it was expected to have a value. To resolve this
Issue, it's necessary to find out why the optional value is *nil" and ensure proper handling
of optional values within the code. This can be done by using optional binding (if let or guard

let) or providing a default value with the nil-coalescing operator (??).

Demos vs Deployment

14

W

2 Swift Decompilation

N Y U l‘ It's quite challenging to reconstruct the exact original Swift code from assembly, but | can
provide you with a rough outline of what the code might have looked like. The details and

syntax might be different from the actual code. Here's an attempt to reconstruct the code:

[:’] Copy code

r dictionary: [

let experimentServiceController =

let experimentSettings = experimentServiceController.loadExperimentS

¢ settings = experimentSettings {

O : 1oCcess ex E erimenet ff'_'v. e i_ i,_ 11 |':_“‘ S d

dictionary

Demos vs Deployment

15

10NS

JmSOU - =+ © o 5-534

sl W

JId - - ~ I~ © ---
CdIdu & & < o0 0 o © O oo b~
Cdld © © ©& 0o ®© -- S O
L1dIdu --- - S O - (o))
= HHESEE EEEEE

SCYIIU b~ < -
JTHIT - - o 6 - ---
STHITU - -- 00 D~ ™ 10 -
STHIT o - D~ - - < -
: B
«HH- - IHEEN
STHIAT oo 6-3- 4-3-
= - Hl -1 BN
éZIII5 -~ HER
é

4444444

m..vmo.mm586465-8888

Answering True/False Quest

From “Pop Quiz! Can a Large Language Model Help With Reverse Engineering?”, Pearce et al. (arXiv preprint)

JPTUMOU < M © © ™M™ I~ o o oo oo

LI °©

c
O
-
>
O
Q.
O
)
%
>
0
@,
-
O
)

®39ToU I~ I~ OO0 00 o0 35-76

:ag--g 99999
PASICAA® SRS R o B Yo B S - 0 <t 3-
5 B

40t © b~ o < b~ 78-55

ol -H - - - -
sadLx nmn7- --
s adAx nm8-663 6-5 4-

—~~ —~~ — wn ~~ —~ — n
© © a_o = (© © a_o = !

True/False Question ID

33333

Scenario

Ua)SI[=2)9[aopP ﬂulﬂu:m

Systematic Study

 Wrote small programs and asked Codex (DaVinci-001) true/false questions
 Both about source (with and w/o var rename) and Ghidra-decompiled code

 Result: only ~53% accuracy overall - not much better than chance

(%//
NYU

https://arxiv.org/abs/2202.01142

16

STARCODER
-

NYU N Meta -

» Why the discrepancy? Code Llama

replit-code
v1.3b

CodeGen2
 Demos often focus on easy cases

 Demos from GPT4; systematic experiments from GPT3 and Codex
* Demos have an expert human in the loop
 But: | remain extremely optimistic about the promise of LLMs in security applications
 Current LLMs generally were not fine-tuned on security tasks!
* Naive extrapolation: from 2019—2023, we went from GPT2 to GPT4

 Open models + advances in fine tuning (PEFT/LoRA) have made it much cheaper and
easier to experiment with LLMs on domain specific data

Demos vs Deployment

