
PANDA: Platform for Architecture-
Neutral Dynamic Analysis

Josh Hodosh, Patrick
Hulin, Tim Leek, and

Ryan Whelan
MIT Lincoln Lab

Brendan Dolan-Gavitt
NYU

https://github.com/moyix/panda

https://github.com/moyix/panda

Who Am I?

• Assistant Professor at NYU School of
Engineering

• PhD at Georgia Tech under Wenke Lee

• Things I've done that you may know: Volatility,
pdbparse, creddump, PANDA

What is This Talk

• An introduction to PANDA: a Platform for
Architecture-Neutral Dynamic Analysis

• A demonstration of interesting projects we've
used PANDA for

• A transparent attempt to inspire people to
collaborate and do something interesting with
PANDA!

PANDA: Built for 
Dynamic Analysis

• Based on QEMU 1.0.1 whole-system emulator

• Deterministic record/replay

• Translation from binary to LLVM for all QEMU
architectures (extended from S2E code)

• Android (ARM) emulation support

• Plugin architecture – easy to extend to new
analyses

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record/Replay

==
0x45?

>=
0x80?

==
Friday?

Get Current Date Fri May 23 11:33:27

Recv Packet
0x0000: 4500 002c 0000 4000
0x0008: 4006 6b48 127e 0021
0x0010: 5dae 5f37 01bb bed4
0x0018: fccd 820f d690 0847
0x0020: 6012 3908 cfa2 0000
0x0028: 0204 05b4

CPU Outside World

Record Log

Record / Replay

Time

rdtsc interrupt DMA

Reproducibility via Replay

• Software execution is ephemeral

• Environment may change

• Timings may change

• Shareable replays make dynamic analyses
repeatable and reproducible

www.rrshare.org

http://www.rrshare.org

Log Size

Replay Instructions Log Size Instr/Byte

freebsdboot 9.3 billion 533 MB 17

spotify 12 billion 229 MB 52

haikuurl 8.6 billion 119 MB 72

carberp1 9.1 billion 43 MB 212

win7iessl 8.6 billion 9.4 MB 915

Starcraft 60 million 1.8 MB 33

PANDA Model

Record Whole
System

Execution

Write Analysis
Plugins

Run Replay
and Analyze

RE
Understanding

• Record / replay critical:

• Heavy analyses don’t disrupt execution

• Analyses don’t have to worry about memory layout
changing between runs

Plugin Architecture
• Extend PANDA by writing plugins

• Implement functions that take action at various
instrumentation points

• Can also instrument generated code in LLVM
mode

• Plugin-plugin interaction: compose simple tools
for complex functionality

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_INSN_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_INSN_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_BEFORE_BLOCK_EXEC

PANDA_CB_INSN_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_BEFORE_BLOCK_EXEC

PANDA_CB_AFTER_BLOCK_EXEC

PANDA_CB_INSN_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_BEFORE_BLOCK_EXEC

PANDA_CB_AFTER_BLOCK_EXEC

PANDA_CB_VIRT_MEM_READ
PANDA_CB_VIRT_MEM_WRITE
PANDA_CB_PHYS_MEM_READ
PANDA_CB_PHYS_MEM_WRITE

PANDA_CB_INSN_TRANSLATE

Guest Code
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Translation

Basic Block

Execution

Basic Block

Basic Block

PANDA_CB_BEFORE_BLOCK_TRANSLATE

PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_BEFORE_BLOCK_EXEC

PANDA_CB_AFTER_BLOCK_EXEC

PANDA_CB_VIRT_MEM_READ
PANDA_CB_VIRT_MEM_WRITE
PANDA_CB_PHYS_MEM_READ
PANDA_CB_PHYS_MEM_WRITE

PANDA_CB_GUEST_HYPERCALL

PANDA_CB_INSN_TRANSLATE

LLVM Translation
0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx
0x8260a637: push esi
0x8260a638: push edi
0x8260a639: sub esp,0x54
0x8260a63c: mov ebp,esp
0x8260a63e: mov DWORD PTR [ebp+0x44],eax
0x8260a641: mov DWORD PTR [ebp+0x40],ecx
0x8260a644: mov DWORD PTR [ebp+0x3c],edx
0x8260a647: test DWORD PTR [ebp+0x70],0x20000
0x8260a64e: jne 0x8260a60c

LLVM Translation
 movi_i64 tmp4,$0x8260a634
 st_i64 tmp4,env,$0x80
 ---- 0x8260a634
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0
 movi_i64 tmp13,$0x1
 add_i64 tmp12,tmp12,tmp13
 st_i64 tmp12,env,$0xdad0
 mov_i64 tmp0,rsp
 mov_i64 tmp2,rsp
 movi_i64 tmp12,$0xfffffffffffffffc
 add_i64 tmp2,tmp2,tmp12
 movi_i64 tmp12,$0xffffffff
 and_i64 tmp2,tmp2,tmp12

[…]

LLVM Translation
define private i64 @tcg-llvm-tb-0-8260a634(i64*) {
entry:
 %1 = getelementptr i64* %0, i32 0
 %env_v = load i64* %1
 %2 = add i64 %env_v, 128
 %3 = inttoptr i64 %2 to i64*
 store i64 2187372084, i64* %3
 store volatile i64 2, i64* inttoptr
 (i64 29543856 to i64*)
 store volatile i64 2187372084, i64* inttoptr
 (i64 29543864 to i64*)
 %4 = add i64 %env_v, 56032
 %5 = inttoptr i64 %4 to i64*
 store i64 2187372084, i64* %5
 %6 = add i64 %env_v, 56016

[…]

Android Emulation
• Supports Android 2.x – 4.x

• Can make phone calls, send
SMS, run native apps

• Record/replay

• Introspection into Android
apps (Dalvik-level) for Android
2.3 (from DroidScope)

• System-level introspection
supported on all Android
versions

Mining Memory Accesses

• Goal: Find places in system where data of
interest (e.g., ssh passphrase) is handled

• Idea: watch every memory access in the system
and look for patterns

• Call these points of interest – which we can hook
– tap points

More details: Tappan Zee (North) Bridge: Mining Memory Accesses for
Introspection. B. Dolan-Gavitt, T. Leek, J. Hodosh, W. Lee. ACM CCS. Berlin,

Germany, November 2013.

TZB Implementation

• Track calling context with callstack plugin

• At every memory access
(PANDA_CB_PHYS_MEM_READ/WRITE)  
Get (caller, program counter, address space) –
i.e., tap point

• Analyze data flowing through tap point (e.g.,
string matching with stringsearch plugin)

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Sample Tap Points

0064A423 push ebx
0064A424 push [ebp+var_28]
0064A427 push esi
0064A428 call _memcpy

_memcpy:
[...]
00430E08 shr ecx, 2
00430E0B and edx, 3
00430E0E cmp ecx, 8
00430E11 jb short loc_430E3C
00430E13 rep movsd
00430E15 jmp off_430F2C[edx*4]

CodeTapContent

00646517 0064A423 Kernel
00646517 0064A424 Kernel
00646517 0064A427 Kernel
00646517 0064A428 Kernel

0064A42D 00430E13 Kernel
0064A42D 00430E15 Kernel

Read Write

 00FFABED
 00123456
 00ABCDEF
 0064A42D

\Device\Harddisk

 00123456

\Device\Harddisk
 00430F3C

Dynamic Taint Analysis

• Follows data flow between taint source and sink

• Implemented in PANDA as an LLVM pass

• Allows taint tracking on all platforms

• Can use clang to produce LLVM bitcode for
QEMU’s C functions and track taint through

More details: Architecture-Independent Dynamic Information Flow Tracking. R.
Whelan, T. Leek, D. Kaeli. Compiler Construction (CC), Rome, Italy, March 2013.

LLVM Taint2 Instrumentation
Guest Code

0x8260a634: push esp
0x8260a635: push ebp
0x8260a636: push ebx

TCG IR
 movi_i64 tmp12,$0x8260a634
 st_i64 tmp12,env,$0xdae0
 ld_i64 tmp12,env,$0xdad0

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

LLVM IR
%2 = add i64 %env_v, 128
%3 = inttoptr i64 %2 to i64*
store i64 2187372084, i64* %3

Native Code

Taint Ops

Taint Processing

Taint Processing

QEMU
Helpers

Taint Processing

Other Notable Plugins
• scissors: extracts out a subset of a replay log

• replaymovie: takes frame buffer snapshots during
replay and creates a movie

• syscalls2: provides callbacks for Linux & Windows
system calls and their arguments

• osi: OS introspection for Windows 7 & Linux

• file_taint, tstringsearch: taint labeling based on file
contents or in-memory string matches

Case Studies

• Reverse engineering the Starcraft CD key check

• Breaking Spotify DRM

• Understanding a vulnerability in Internet Explorer

• Full-trace malware analysis sandbox

• Automated bug injection

Starcraft CD Key

Creating a Keygen
• Simple approach:

• Find the key validation code

• Extract it so you can run it millions of times

• Feed it random keys until you get a valid one

• Works when the key space is dense – many
valid keys relative to total keys

Starcraft RE
• Use TZB to search for code that uses CD key:  
 
 
 

• Or, taint key and measure computation done on
tainted data

• i.e.: a = b + c 
 tcn(a) = max(tcn(a), tcn(b)) + 1

 0045c252 00428867 004286ff 0044c951 06cba000 1
0045c252 00428867 004286ff 0044c83b 0047d949 0047d4cb 06cba000 1

[…]

CR3PCCaller 1Caller 2Caller 3Caller 5 Caller 4

Taint Compute Number
// a,b,n are inputs

1:
2:
3:
4:
5:

Starcraft
Tainted Computation

WZR UHSUHVHQWDWLYH ZRUNORDGV� WDLQWLQJ �.% RI GDWD WKDW
LV WKHQ VHQW RYHU WKH QHWZRUN� DQG WDLQWLQJ D �.% ÀOH DQG
HQFU\SWLQJ LW ZLWK $(6�&%&����� 7KH QHWZRUN ZRUN�
ORDG H[KLELWHG D ����[VORZGRZQ RYHU 3$1'$ UHSOD\�
ZKLOH HQFU\SWLRQ ZDV ����[VORZHU� 7KLV LOOXVWUDWHV WKH
IDFW WKDW WDLQW SHUIRUPDQFH LV ZRUNORDG GHSHQGHQW� WKH
QHWZRUN ZRUNORDG LV PDGH XS PRVWO\ RI VLPSOH FRSLHV�
ZKHUHDV LQ WKH HQFU\SWLRQ ZRUNORDG HDFK E\WH RI RXWSXW
GHSHQGV LQ FRPSOH[ZD\V RQ HYHU\ E\WH RI WKH LQSXW�

�� ,QWHUIDFH 7DLQW ODEHOLQJ DQG TXHU\LQJ FDQ EH HLWKHU
HYHQW�GULYHQ �YLD FDOOEDFNV UHJLVWHUHG ZLWK WKH WDLQW
SOXJLQ� RU LQYRNHG E\ FDOOLQJ WKH SOXJLQ $3,�

,9� &DVH 6WXGLHV
,Q WKLV VHFWLRQ� ZH SUHVHQW WKUHH FRPSHOOLQJ 5(XVH FDVHV

IRU 3$1'$� ,Q WKH ÀUVW� DQ ROG YHUVLRQ RI 6WDUFUDIW IRU
ZKLFK WKH &' NH\ KDV EHHQ ORVW LV UDSLGO\ PDGH ZKROH DJDLQ
E\ ORFDWLQJ WKH NH\ YHULÀFDWLRQ FRGH DQG KDUQHVVLQJ LW WR
SURGXFH NH\V RQ GHPDQG� ,Q WKH VHFRQG� D :LQGRZV ,QWHUQHW
([SORUHU YXOQHUDELOLW\ LV GLDJQRVHG LQ GHSWK IURP D ZKROH�
V\VWHP UHSOD\� LQGLFDWLQJ QRW PHUHO\ WKDW LW LV D XVH�DIWHU�IUHH
EXJ EXW SRLQWLQJ WKH ÀQJHU DW D SUHFLVH &9(QXPEHU� ,Q WKH
WKLUG� D &KLQHVH ,0 FOLHQW VXVSHFWHG RI FHQVRULQJ PHVVDJHV LV
TXLFNO\ GHWHUPLQHG WR EH GRLQJ VR YLD D EODFNOLVW ZKLFK LV DOVR
UHDGLO\ H[WUDFWHG� 1RWH WKDW� ZKLOH ZH HQG XS XVLQJ PDQ\ RI
WKH SOXJLQV PHQWLRQHG LQ 6HFWLRQ ,,,� QR DWWHPSW ZDV PDGH WR
FRYHU DOO RI WKHP ZLWK RXU XVH FDVHV� 5DWKHU� ZH DOORZHG WKH
WDVN DW KDQG WR GULYH WKH SOXJLQV HPSOR\HG�

$� 5HYLYLQJ /HJDF\ &RGH
:H XVHG 3$1'$ WR ÀQG DQG UDSLGO\ UHYHUVH HQJLQHHU WKH

���FKDUDFWHU &'�NH\ YDOLGDWLRQ DOJRULWKP IRU 6WDU&UDIW�)LUVW�
ZH FROOHFWHG D UHFRUGLQJ RI WKH 6WDU&UDIW LQVWDOOHU UHMHFWLQJ D
UDQGRP VHTXHQFH RI OHWWHUV DQG QXPEHUV� :H WKHQ SURYLGHG
ERWK WKLV LQFRUUHFW NH\ VHTXHQFH DQG WKH WH[W RI WKH UHMHFWLRQ
GLDORJ DV VHDUFKHV WR 3$1'$
V 7=%� ZKLFK SURPSWO\ IRXQG
ERWK LQ WKH UHSOD\� 7KLV IRFXVHG RXU DWWHQWLRQ RQ DERXW �������
LQVWUXFWLRQV RXW RI ��0 LQ WKH FRPSOHWH UHSOD\ �D UHGXFWLRQ RI
���[�� DQG ZH XVHG WKH SOXJLQ WR H[WUDFW MXVW WKLV
RSHUDWLYH VHJPHQW FRQWDLQLQJ WKH YDOLGDWLRQ DOJRULWKP�
9LD PDQXDO VWDWLF DQDO\VLV RI WKH FRGH LQ WKH UHPDLQLQJ

UHSOD\ VHJPHQW� ZH DVFHUWDLQHG WKDW WKH LQVWDOOHU GHFU\SWV WKH
&'�NH\ DQG FKHFNV WKH KLJK�RUGHU ELWV RI WKH UHVXOWLQJ ����
ELW LQWHJHU DJDLQVW D À[HG YDOXH� 7KLV PDJLF QXPEHU LV QRW
LPPHGLDWHO\ DSSDUHQW LQ WKH GLVDVVHPEO\� EXW D WULYLDO SOXJLQ
ZDV UDSLGO\ IDVKLRQHG WKDW SULQWHG LW RXW ZKHQ UHDG IURP
PHPRU\ ZKLOH UXQQLQJ RQ WKH VFLVVRUHG UHSOD\� 7KH PDJLF
QXPEHU WXUQV RXW WR EH ��� 0DQXDO UHYHUVH HQJLQHHULQJ IURP
WKHUH HDVLO\ UHYHDOHG WKH FRPSOHWH NH\ FRPSXWDWLRQ DOJRULWKP�
6RPH DGGLWLRQDO PDWKHPDWLFDO DQDO\VLV LQGLFDWHG D YHU\ ORZ
NH\ GHQVLW\� RQO\ � LQ ������ RI WKH SRVVLEOH NH\V DUH DFWXDOO\
YDOLG�
:H WKHQ SURFHHGHG WR H[WUDFW VRXUFH FRGH IRU WKH NH\

FRPSXWDWLRQ IXQFWLRQ� DV WKH ORZ NH\ GHQVLW\ LQGLFDWHG WKDW
KDUQHVVLQJ LW DQG WU\LQJ UDQGRP NH\V ZRXOG EH VXFFHVVIXO�
4(08
V SK\VLFDO PHPRU\ GXPS IHDWXUH UXQ DW WKH HQG RI

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

0
50
00

15
00
0

instruction count

ta
in

te
d

co
m

pu
ta

tio
n

)LJ� �� 0HDVXUH RI WDLQWHG FRPSXWDWLRQ DV D IXQFWLRQ RI LQ�
VWUXFWLRQ FRXQW UHYHDOV ZKHUH &' NH\ YDOLGDWLRQ FRPSXWDWLRQ
RFFXUV�

UHSOD\ SOXV WKH 9RODWLOLW\)UDPHZRUN >�@ HDVLO\ H[WUDFWHG WKH
LQVWDOOHU ELQDU\� ,'$ 3UR
V +H[5D\V GHFRPSLOHU ZDV WKHQ XVHG
WR UHFUHDWH VRXUFH FRGH ZKLFK UHTXLUHG RQO\ OLJKW HGLWLQJ DQG
VRPH HUURU FRUUHFWLRQ WR FRPSLOH� 7KLV H[WUDFWHG IXQFWLRQ ZH
KDUQHVVHG DV DQ RUDFOH LQ D VPDOO & SURJUDP� IHHGLQJ LW UDQGRP
NH\V WR ÀQG YDOLG RQHV� ZKLFK ZH WKHQ YHULÀHG VXFFHVVIXOO\
XQORFNHG WKH LQVWDOOHU� ,W VKRXOG EH QRWHG WKDW� HYHQ ZLWKRXW
DQ\ PDQXDO UHYHUVH HQJLQHHULQJ� LW ZRXOG KDYH EHHQ IHDVLEOH
LQ WKLV FDVH WR JHQHUDWH D UDQGRP NH\ LQ WKLV ZD\� +RZHYHU�
WKDW PLJKW QRW KDYH EHHQ WKH FDVH� ,I WKH &'�NH\ V\VWHP KDG
EHHQ GHVLJQHG IRU D ORZHU NH\ GHQVLW\� ZH ZRXOG KDYH KDG
WR LQYHUW WKH GHFU\SWLRQ DOJRULWKP� ,Q 6WDU&UDIW
V FDVH� WKDW
ZRXOG QRW EH WHUULEO\ GLIÀFXOW� EXW IRU RWKHU JDPHV LW PLJKW EH
LPSRVVLEOH� %LQDU\ SDWFKLQJ RU VLPLODU WHFKQLTXHV ZRXOG WKHQ
KDYH EHHQ QHFHVVDU\ LQ RUGHU WR SOD\ WKH JDPH� ZKLFK ZRXOG
EH HDV\ JLYHQ WKH 5(NQRZOHGJH DOUHDG\ DVVHPEOHG LQ WKLV
HIIRUW�
7KLV 5(HIIRUW ZDV YHU\ VXFFHVVIXO� 3$1'$ DOORZHG XV WR

H[WUHPHO\ UDSLGO\ ORFDWH WKH FRGH RI LQWHUHVW� DV ZHOO DV ÀQG WKH
FRPSDULVRQ YDOXH RI WKH WHVW� 7KH SOXJLQ HQDEOHG
XV WR UHGXFH WKH UHSOD\ WR D VL]H ZKHUH FRPSOLFDWHG DQDO\VLV
ZDV LPPHGLDWHO\ WUDFWDEOH�
$GGLWLRQDOO\� ZH WULHG XVLQJ D PRUH FRPSOLFDWHG WDLQW�EDVHG

VHULHV RI SOXJLQV IRU WKLV 5(WDVN ZLWK YHU\ JRRG UHVXOWV� :H
XVHG 7=% WR DSSO\ WDLQW ODEHOV WR WKH &' NH\ DQG WKHQ FRPSXWH
D PHDVXUH RI KRZ PXFK FRPSXWDWLRQ KDV WDNHQ SODFH ZLWK
WDLQWHG GDWD� 7KLV PHDVXUH LV SORWWHG LQ)LJXUH � DV D IXQFWLRQ
RI WKH LQVWUXFWLRQ FRXQW LQ D SRUWLRQ RI WKH UHSOD\ IRU 6WDUFUDIW
LQVWDOO� DQG LW FOHDUO\ LQGLFDWHV D YHU\ VPDOO UHSOD\ UHJLRQ RI
DERXW ������ LQVWUXFWLRQV ZKHUH WKH NH\ LV GHFU\SWHG DQG VRPH
ELW�VSUHDGLQJ WDNHV SODFH�)XUWKHU� LI ZH DVN WKH WDLQW V\VWHP
WR LGHQWLI\ WKH FRGH UHVSRQVLEOH IRU WKRVH FRPSXWDWLRQV� WKH
UHVXOW LV MXVW WZHQW\ EDVLF EORFNV RI FRGH� 2I WKHVH� WKH EORFN
WKDW SHUIRUPV WKH PRVW FRPSXWDWLRQ LV WKH RQH WKDW GHFU\SWV
WKH NH\� 7KLV WDLQW�EDVHG DQDO\VLV LV SRZHUIXO EXW LW LV QRW IDVW�
7KH ��VHFRQG VFLVVRUHG UHSOD\ WKDW FRQWDLQV HYHU\WKLQJ IURP
ÀUVW 7=% PDWFK RI &' NH\ WR VHHLQJ WKH LQYDOLG NH\ GLDORJ
WDNHV RYHU ��� VHFRQGV WR DQDO\]H DQG SURGXFH WKH JUDSK LQ
WKLV SDSHU�

Key Load

Key Validation

Key Comparison

bool translate_callback(CPUState *env, target_ulong pc) {
 return env->cr[3] == 0x06cba000 && pc == 0x0044C130;
}

int exec_callback(CPUState *env, target_ulong pc) {
 printf("Inside test_key: \n");

 target_ulong x = 0;
 panda_virtual_memory_rw(env, EAX, (uint8_t *)&x, 4, 0);

 printf(" Expected=" TARGET_FMT_lx " calculated="
 TARGET_FMT_lx "\n", x, ECX);
 return 1;
}

.text:0044C130: cmp [eax], ecx

Key Valid Test

Panda Plugin

Inside test_key:
 Expected=00000017 calculated=000006e1

Output

Breaking Spotify DRM
• DRM has a strong “signature”

• High entropy, high randomness (χ2) input

• High entropy, low randomness (χ2) output

• We can look for functions that match this
description

From: Steal This Movie - Automatically Bypassing DRM Protection in
Streaming Media Services by Wang et al., USENIX Security 2013

Extracting Audio

• Ok, so we find the function that decrypts DRM

• Now what?

• Write a plugin that waits until that function is
called and then saves its output

• Left as an exercise for the reader...

Extracting Audio

• Ok, so we find the function that decrypts DRM

• Now what?

• Write a plugin that waits until that function is
called and then saves its output

• Left as an exercise for the reader...

Future Work
• It is interesting that DRM decryption has a strong

“dynamic signature”

• Are there other kinds of functions that can be
identified by statistical properties of their inputs and
outputs? Or intermediate states?

• Compression / decompression

• Cryptographic hash functions

• Numerical computation?

IE Vulnerability

IE Vulnerability

Determining Root Cause
• We want to understand what caused the crash

• Can get bounds on the crash for use with
scissors with two search strings in TZB:

• “<html”

• “has stopped working”

• Once found, can extract HTML for diagnosis

HTML Trigger
<HTML XMLNS:t="urn:schemas-microsoft-com:time">
<?IMPORT namespace="t"
implementation="#default#time2">
<body>
<div id="x" contenteditable="true">
HELLOWORLD
<t:TRANSITIONFILTER></t:TRANSITIONFILTER>
<script>
 document.getElementById("x").innerHTML = "";
 CollectGarbage();
 window.onclick;
 document.location.reload();
</script>
</div>
</body>
</HTML>

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap:

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap:

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap:

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap:

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap:

Use After Free Detector

• Watch mallocs/frees and keep a map of
allocated intervals

• Look for accesses to freed intervals

• Note: not necessarily complete!

Heap: X

Use After Free Results
• UAF detector finds exactly one match: 
 
USE AFTER FREE READ @ {3f98b320, 5556f0}! PC 6dc996f5

• Pinpoints exact location in code where dangling
pointer is used

• Bug is CVE-2012-4792

• Could easily be extended for vulnerability discovery
as well – see, e.g. Undangle by Caballero et al.

Censorship Blacklist
Extraction

• LINE is a Japanese-made IM
app for Android with ~560M
users worldwide

• Found by CitizenLab to censor
some words for Chinese users

• We want to find out which
ones

LINE Methodology
• Very simple strategy: use TZB to find usage of

strings likely to be in “bad words” list:

• (Falun)

• (Tiananmen)

• Dump out the other data accessed at that same
program point to get the full list

Censorship Blacklist
(sample)

198964
FLG
GCD
GFW
18
38

C
08
89

For translations & context see https://china-chats.net/

https://china-chats.net/

Future Work
• What if we don't have a good idea of what words

may be blacklisted?

• Instead, we may be able to use taint analysis
combined with dynamic slicing

• Use taint analysis to find areas where user's typed
input is compared against some value

• Then use dynamic slicing to trace the compared
value back to its source

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Taint user input

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

User input used in
comparison

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Look at data on the
other side of the

comparison

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Follow data back
to its origin

(dynamic slicing)

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Follow data back
to its origin

(dynamic slicing)

Toy Example

def censor_message():
 user_msg = input()
 blacklist = open('blacklist.txt').readlines()
 for word in blacklist:
 if user_msg == word:
 return "Censored"
 return user_msg

Follow data back
to its origin

(dynamic slicing)

Applications Beyond
Censorship

MalRec: A Malware
Recording Platform

• Based on PANDA dynamic analysis platform

• Simple agentless setup:

• Malware loaded via CD image

• Started by sending keystrokes to VM

• No in-guest monitoring utilities (reports can be
generated from replays)

Malware Pipeline

Ingest
Malware

Feed

Malware
Recorders

Malware
Recorders

Malware
Recorders

Malware
Recorders

Malware
Recorders

Malware
Recorders

Malware
Recorders

Log
Compressors

GUI Actuation
.Windows Task Manager (visible) taskmgr.exe:1516 -
..Users taskmgr.exe:1516 -
...&Send Message... (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Logoff (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Disconnect (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Users (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#70038 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32
..Networking taskmgr.exe:1516 -
...#40156 (visible) taskmgr.exe:1516 6.0.7601.17514!ScrollBar
...No Active Network Adapters Found. (visible) taskmgr.exe:1516 6.0.7601.17514!Static
...Totals (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#201a8 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32
..Performance taskmgr.exe:1516 -
...&Resource Monitor... (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Kernel Memory (MB) (visible) taskmgr.exe:1516 DavesFrameClass
...Physical Memory (MB) (visible) taskmgr.exe:1516 DavesFrameClass
..Tab1 (visible) taskmgr.exe:1516 6.0.7601.17514!SysTabControl32
...#50162 taskmgr.exe:1516 6.0.7601.17514!msctls_updown32
..Processes (visible) taskmgr.exe:1516 -
...&End Process (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Show processes from all users (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Processes (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#801a4 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32

Volatility View (wintree)GUI View
./vol.py -f mem.dd --profile=Win7SP1x86 wintree

GUI Actuation
.Windows Task Manager (visible) taskmgr.exe:1516 -
..Users taskmgr.exe:1516 -
...&Send Message... (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Logoff (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Disconnect (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Users (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#70038 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32
..Networking taskmgr.exe:1516 -
...#40156 (visible) taskmgr.exe:1516 6.0.7601.17514!ScrollBar
...No Active Network Adapters Found. (visible) taskmgr.exe:1516 6.0.7601.17514!Static
...Totals (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#201a8 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32
..Performance taskmgr.exe:1516 -
...&Resource Monitor... (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Kernel Memory (MB) (visible) taskmgr.exe:1516 DavesFrameClass
...Physical Memory (MB) (visible) taskmgr.exe:1516 DavesFrameClass
..Tab1 (visible) taskmgr.exe:1516 6.0.7601.17514!SysTabControl32
...#50162 taskmgr.exe:1516 6.0.7601.17514!msctls_updown32
..Processes (visible) taskmgr.exe:1516 -
...&End Process (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...&Show processes from all users (visible) taskmgr.exe:1516 6.0.7601.17514!Button
...Processes (visible) taskmgr.exe:1516 6.0.7601.17514!SysListView32
....#801a4 (visible) taskmgr.exe:1516 6.0.7601.17514!SysHeader32

Volatility View (wintree)GUI View
./vol.py -f mem.dd --profile=Win7SP1x86 wintree

Replay Subsumes Other
Artifacts

PCAPs

Replay Reports

Memory Dumps

Screenshots
Movies

Stats
• 50,176 traces available for download

• More than 1 quadrillion instructions' worth of execution

• Each trace has:

• VirusTotal report (JSON)

• Full record/replay log

• Movie (originally 5 seconds, now 25s)

• PCAP of network traffic

Log Size (redux)
• In the case of malware we can get additional savings: all

recordings start from same snapshot

• So, just save a diff of the snapshot for each new
recording

• 24,189 full system executions

• Before snapshot optimization: 2.4 terabytes

• After: 387GB

• 1147.5 instructions/byte (!)

Open Data

• Full dataset available via HTTP, BitTorrent

• http://moyix.blogspot.com/

• Also as individual files at:

• http://panda.gtisc.gatech.edu/malrec/

http://moyix.blogspot.com/
http://panda.gtisc.gatech.edu/malrec/

MalRec Limitations

• Analysis time is fixed (10 minutes)

• Only one path through malware

• PANDA is based on QEMU 1.0.1 & non-
virtualized – very detectable

• Currently do not accept submissions from the
public

Future Work
• Extract interesting data from these traces

• Printable strings passing through memory

• Instruction mnemonic histograms

• Go big on our big data

• Visualization

• Machine learning

• Searching / information retrieval

LAVA: Large-Scale Automated
Vulnerability Addition

Thesis

Major problem in computer
science: programs just don't

have enough bugs

LAVA: Large-Scale Automated
Vulnerability Addition

Thesis

Major problem in computer
science: programs just don't

have enough bugs

Jedi Truth

What I told you was true... from a certain point of view

LAVA: Large-Scale Automated
Vulnerability Addition

Thesis

We don't know where the bugs
are in programs or how they are

distributed.

Debugging the Bug Finders
• Many companies have products that claim to find

bugs in programs

• Lack of ground truth makes it very difficult to
evaluate these claims made

• If Coverity finds 22 bugs 
in my program, is that good  
or bad?

• Do these tools work?

Debugging the Bug Finders
• Existing corpora are fixed size and static – it's

easy for vendors to optimize to the benchmark

• Instead we would like to automatically create
corpora!

• Take an existing program and automatically add
new bugs into it

• Now we can measure how many of our bugs they
find, giving some indication of their performance

Goals

• We want to produce bugs that are:

• Plentiful (can put 1000s into a program easily)

• Distributed throughout the program

• Come with a triggering input

• Only manifest for a tiny fraction of inputs

Sounds Simple... But Not

• Why not just change all the strncpys to strcpys?

• Turns out this breaks most programs for every
input – trivial to find the bugs

• We won't know how to trigger the bugs – hard
to prove they're "real" and security-relevant

• This applies to most local, random mutations

Our Approach
• We want to find parts of the program's input data that are:

• Dead: not currently used much in the program (i.e., we
can set to arbitrary values)

• Uncomplicated: not altered very much (i.e., we can
predict their value throughout the program's lifetime)

• Available in some program variables

• If we can find these, we will be able to add code to the
program that uses such data to trigger a bug

New Measures
• How do we find out what data is dead and

uncomplicated?

• Two new taint-based measures:

• Liveness: a count of how many times some
input byte is used to decide a branch

• Taint compute number: a measure of how
much computation been done on some data

Approach

Find attacker-
controlled data

and attack points
Injectable

bugs

Inject bug into
program source,
compile and test

with modified input

Clang

Clang
Effects

Instrument source
with taint queries

Run instrumented
program on inputs

PANDA replay
+ taint analysis

PANDA record

Input corpus

LAVA Bug Example
• PANDA taint analysis shows that bytes 0-3 of buf on line

115 of src/encoding.c is attacker-controlled (dead &
uncomplicated)

• From PANDA we also see that in readcdf.c line 365
there is a read from a pointer – if we modify the pointer
value we will likely cause a bug in the program

encoding.c 115: } else if (looks_extended(buf, nbytes,
*ubuf, ulen)) {

Attacker controlled data

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible
pointer

New data flow

LAVA Bug Example
// encoding.c:
} else if

(({int rv =
looks_extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *)buf)[0];
lava |= ((unsigned char *)buf)[1] << 8;
lava |= ((unsigned char *)buf)[2] << 16;
lava |= ((unsigned char *)buf)[3] << 24;
lava_set(lava);

}; rv; })) {

// readcdf.c:
if (cdf_read_header

((&info) + (lava_get()) *
(0x6c617661 == (lava_get()) || 0x6176616c == (lava_get())),
&h) == -1)

Results: 
Specific Value

a large range than a small range; rather, the number of bugs
found is limited by how deep into the program the symbolic
execution reaches.

Note that having each bug in a separate copy of the program
means that for each run of a bug finding tool, only one bug is
available for discovery at a time. This is one kind of evaluation,
but it seems to disadvantage tools like FUZZER and SES,
which appear to be designed to work for a long time on a
single program that may contain multiple bugs.

Thus, we created a second corpus, LAVA-M, in which we
injected more than one bug at a time into the source code. We
chose four programs from the coreutils suite that took
file input: base64, md5sum, uniq, and who. Into each,
we injected as many verified bugs as possible. Because the
coreutils programs are quite small, and because we only
used a single input file for each to perform the taint analysis,
the total number of bugs injected into each program was
generally quite small. The one exception to this pattern was
the who program, which parses a binary file with many dead
or even unused fields, and therefore had many DUAs available
for bug injection.

We were not able to inject multiple bugs of the two types
described above (knob-and-trigger and range) as interactions
between bugs became a problem, and so all bugs were of
the type in Figure 8, which trigger for only a single setting
of four input bytes. The LAVA-M corpus, therefore, is four
copies of the source code for coreutils version 8.24. One
copy has 44 bugs injected into base64, and comes with 44
inputs known to trigger those bugs individually. Another copy
has 57 bugs in md5sum, and a third has 28 bugs in uniq.
Finally, there is a copy with 2136 bugs existing all at once
and individually expressible in who.

TABLE IV: Bugs found in LAVA-M corpus

Program Total Bugs Unique Bugs Found
FUZZER SES Combined

uniq 28 7 0 7
base64 44 7 9 14
md5sum 57 2 0 2
who 2136 0 18 18
Total 2265 16 27 41

We ran FUZZER and SES against each program in LAVA-
M, with 5 hours of runtime for each program. md5sum ran
with the -c argument, to check digests in a file. base64 ran
with the -d argument, to decode base 64.

SES found no bugs in uniq or md5sum. In uniq, we
believe this is because the control flow is too unconstrained. In
md5sum, SES failed to execute any code past the first instance
of the hash function. base64 and who both turn out more
successful for SES. The tool finds 9 bugs in base64 out
of 44 inserted; these include both deep and shallow bugs, as
base64 is such a simple program to analyze.

SES’s results are a little more complicated for who. All of
the bugs it finds for who use one of two DUAs, and all of them
occur very early in the trace. One artifact of our method for
injecting multiple bugs simultaneously is that multiple bugs

share the same attack point. It is debatable how well this
represents real bugs. In practice, it means that SES can only
find one bug per attack point, as finding an additional bug at
the same attack point does not necessarily require covering
new code. LAVA could certainly be changed to have each bug
involve new code coverage. SES could also be improved to
find all the bugs at each attack point, which means generating
multiple satisfying inputs for the same set of conditions.

FUZZER found bugs in all utilities except who.2 Unlike
SES, the bugs were fairly uniformly distributed throughout the
program, as they depend only on guessing the correct 4-byte
trigger at the right position in the input file.

FUZZER’s failure to find bugs in who is surprising. We
speculate that the size of the seed file (the first 768 bytes of
a utmp file) used for the fuzzer may have been too large
to effectively explore through random mutation, but more
investigation is necessary to pin down the true cause. Indeed,
tool anomalies of this sort are exactly the sort of thing one
would hope to find with LAVA, as they represent areas where
tools might make easy gains.

We note that the bugs found by FUZZER and SES have very
little overlap (only 2 bugs were found by both tools). This is a
very promising result for LAVA, as it indicates that the kinds
of bugs created by LAVA are not tailored to a particular bug
finding strategy.

VII. RELATED WORK

The design of LAVA is driven by the need for bug corpora
that are a) dynamic (can produce new bugs on demand), b)
realistic (the bugs occur in real programs and are triggered by
the program’s normal input), and c) large (consist of hundreds
of thousands of bugs). In this section we survey existing bug
corpora and compare them to the bugs produced by LAVA.

The need for realistic corpora is well-recognized. Re-
searchers have proposed creating bug corpora from student
code [18], drawing from existing bug report databases [12],
[13], and creating a public bug registry [7]. Despite these pro-
posals, public bug corpora have remained static and relatively
small.

The earliest work on tool evaluation via bug corpora appears
to be by Wilander and Kamkar, who created a synthetic testbed
of 44 C function calls [22] and 20 different buffer overflow
attacks [23] to test the efficacy of static and dynamic bug
detection tools, respectively. These are synthetic test cases,
however, and may not reflect real-world bugs. In 2004, Zitser
et al. [27] evaluated static buffer overflow detectors; their
ground truth corpus was painstakingly assembled by hand
over the course of six months and consisted of 14 annotated
buffer overflows with triggering and non-triggering inputs as
well as buggy and patched versions of programs; these same
14 overflows were later used to evaluate dynamic overflow
detectors [25]. Although these are real bugs from actual
software, the corpus is small both in terms of the number of

2In fact, we allowed FUZZER to continue running after 5 hours had passed;
it managed to find a bug in who in the sixth hour.

Only 2% of injected bugs found

Results: 
Range-Triggered Bugs

Histogram of rdfs$V2

I(ATP)

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8 1.0

0e
+0
0

4e
+0
5

8e
+0
5

Fig. 11: Normalized ATP trace location
Histogram of rdfs$V3

I(DUA)/I(ATP)

Fr
eq
ue
nc
y

0.2 0.4 0.6 0.8 1.0

0
50
00
00

10
00
00
0

15
00
00
0

Fig. 12: Fraction of trace with perfectly normal or realistic
data flow, I(DUA)/I(ATP)

ing real-world bugs. FUZZER and SES are both state-of-the-
art, high-profile tools. For each tool, we expended significant
effort to ensure that we were using them correctly. This means
carefully reading all documentation, blog posts, and email lists.
Additionally, we constructed tiny example buggy programs
and used them to verify that we were able to use each tool at
least to find known easy bugs.

Note that the names of tools under evaluation are being
withheld in reporting results. Careful evaluation is a large
and important job, and we would not want to give it short
shrift, either in terms of careful setup and use of tools, or
in presenting and discussing results. Our intent, here, is to
determine if LAVA bugs can be used to evaluate bug finding
systems. It is our expectation that in future work either by
ourselves or others, full and careful evaluation of real, named
tools will be performed using LAVA. While that work is
outside the scope of this paper, we hope to indicate that it
should be both possible and valuable. Additionally, it is our
plan and hope that LAVA bugs will be made available in
quantity and at regular refresh intervals for self-evaluation and
hill climbing.

The first corpus we created, LAVA-1, used the file target,
the smallest of those programs into which we have injected
bugs. This corpus consists of sixty-nine buffer overflow bugs
injected into the source with LAVA, each on a different branch
in a git repository with a fuzzed version of the input verified

to trigger a crash checked in along with the code. Two types
of buffer overflows were injected, each of which makes use
of a single 4-byte DUA to trigger and control the overflow.

1) Knob-and-trigger. In this type of bug, two bytes of the
DUA (the trigger) are used to test against a magic value
to determine if the overflow will happen. The other two
bytes of the DUA (the knob) determine how much to
overflow. Thus, these bugs manifest if a 2-byte unsigned
integer in the input is a particular value but only if
another 2-bytes in the input are big enough to cause
trouble.

2) Range. These bugs trigger if the magic value is simply
in some range, but also use the magic value to determine
how much to overflow. The magic value is a 4-byte
unsigned integer and the range varies.

These bug types were designed to mirror real bug patterns.
In knob-and-trigger bugs, two different parts of the input are
used in different ways to determine the manifestation of the
bug. In range bugs, rather than triggering on a single value
out of 232, the size of the haystack varies. Note that a range
of 20 is equivalent to the bug presented in Figure 8.

TABLE III: Percentage of bugs found in LAVA-1 corpus

Tool Bug Type
Range

20 27 214 221 228 KT
FUZZER 0 0 9% 79% 75% 20%
SES 8% 0 9% 21% 0 10%

The results of this evaluation are summarized in Table III.
Ranges of five different sizes were employed: 20 (12 bugs),
27 (10 bugs), 214 (11 bugs), 221 (14 bugs), and 228 (12 bugs);
we used 10 knob-and-trigger bugs. We examined all output
from both tools. FUZZER ran for five hours on each bug and
found bugs in the larger ranges (214, 221, and 228). It was also
able to uncover 20% of the knob-and-trigger bugs, perhaps
because the knob and trigger could be fuzzed independently.
SES ran for five hours on each bug, and found several bugs
in all categories except the 27 and 228 ranges.

The results for the LAVA-1 corpus seem to accord well
with how these tools work. FUZZER uses the program largely
as a black box, randomizing individual bytes, and guiding
exploration with coverage measurements. Bugs that trigger if
and only if a four-byte extent in the input is set to a magic
value are unlikely to be discovered in this way. Given time,
FUZZER finds bugs that trigger for large byte ranges. Note
that for many of these LAVA bugs, when the range is so large,
discovery is possible by simply fuzzing every byte in the input
a few times. These bugs may, in fact, be trivially discoverable
with a regression suite for a program like file that accepts
arbitrary file input.1 By contrast, SES is able to find both knob-
and-trigger bugs and different ranges, and the size of the range
does not affect the number of bugs found. This is because it is
no more difficult for a SAT solver to find a satisfying input for

1In principle, anyway. In practice file’s test suite consists of just 3 tests,
none of which trigger our injected bugs.

Conclusion
• PANDA is a mature platform capable of many

interesting dynamic analyses

• Many projects not mentioned here:

• Transparent SSL/TLS interception by reading out
keys from memory

• Offline provenance tracing ("how was this document
derived?")

• Live visualizations of memory accesses

Credits
• PANDA devs

• Tim Leek (MIT Lincoln Lab)

• Patrick Hulin (MIT Lincoln Lab)

• Josh Hodosh (MIT Lincoln Lab)

• Ryan Whelan (MIT Lincoln Lab)

• Contributors

• Manolis Stamatogiannakis (VU University Amsterdam)

• Federico Scrinzi (EIT ICTLabs Master School / Google)

• Evan Downing (Georgia Tech)

Contact

• Get in touch! @moyix on Twitter
brendandg@nyu.edu

• Join the mailing list: panda-users@mit.edu

• IRC Channel: #panda-re on Freenode

• Contribute code: 
https://github.com/moyix/panda

mailto:brendan@cc.gatech.edu?subject=
mailto:panda-users@mit.edu
https://github.com/moyix/panda

