
Rode0day:
Improving Software Security
through Competition

Brendan Dolan-GavittRahul Sridhar Tim Leek
Andrew Fasano

MIT Lincoln LaboratoryNYU TandonMIT

 01101101010101
 0011011011011100101101101
 10100011000001100011 111011100 111
 1010101 11111000 0000
 00 00 1100 1010000 111111101000000110111111
 1 0 101 000100
 1 001100 1 101 001110
 1 1011101 0 10 0 0110
 11010011101 001 101001
 000 111010011 111 010 00001
 001011100 100 0100 10
 1 0001011 0 11 0100 00
 0 101 1 10 11110 100
 0 1 01 11001 010
 01 11001 010
 11 010111 111
 101 110110 000
 00100100100111 0 1
 111 1101 10
 01001100
 0101111000
 100100 0101001001 0
 11010000111001 00111000000101
 11011000011110111 1100011110101
 111 1100011101011 1111 110100010
 011110111100110010 11001 00001110 111
 11110010011111110110010 00010110 00111010101100
 1010011111000000010101010 0011101011 11100011
 0 1100001111100100101111100111 0 1010000101 111011
 10101110001101100011101100 11100 11010 011101010 100010
 100110 1111111111101100110 1000100101001110101 00011
 10111101000011111 00111100110001110100 001
 11100011110111110 0110100010101101000000 111
 1111 101010000111011 010111101011011101001 010
 0110 01011111 100110 1111010111101110001 101
 00 0000 0001 11101110001110101100 10
 01000011 11111 0110101 0011101100011110011 01000 000
 0101110 000 110101110100001011110111001000 0111101110100000011000010111010 0010
 1101010 011010 11111100111000100011000 10 1100101101010110101011000000100 011110110101011101001111 10011100
 11010001001010 101011100010010110100001111011101011 01110010110001001110001110 10110100 001000001111000111
 1101011100110 01000010000 01000111010001111001111101 101111111010001111011 1101110000000 1
 0000001101010 1111100111 101101001100111110010100 1100001010010001001 0011011110011 1100
 00110101110011100111010001111 001010000111101010001101001 10011001110 100100100010111 1100101
 00011010001011000101110111001000001001100001110100011000010 0010000100010 1101 1110110000100 01010111000
 000110100110111100000100011101001101 011001010100 10001011100011110 01000101 10 01001010 001001111001
 101001110011011010101101000100011101011010 10011 011100111010110100001 00 1010011110010100
 110101 011001011010011010101011111000101110010110111010100000000000001111 010 101010001000111001001
 100001 110111111110000000001010100111101001001100101111 10011 101010101001 001010101101001100010 0111
 1110101101010010100100 1101110011010001100101110100010111 0100011000101001 0000011111101 10000010110001 1100011
 011010111000001101011100 10110100010101100010001011011100011000010111001011 0110110111110100 10010 10110000 00100010
 0111100111 00010111010101 0001101111001001111010000101110011101011100100 00010100110000001 10101 01000001001111000
 11110100 110101101000100 11000 001001110000011010010101100110101000001 10 1001 01 1000000111 00000 000001100101000
 0000011 101100001101100011 01001101 0100111110001101011000000100011000 0111 1 01 000001 0111000 01010000110100 001
 011001011100001100111101101 1000000101 110000000100011100111001110100 00 0000011 00 10110 110011000 00111101100 10001111 0100100
 011010101110010001010110100 0011001111 000100000011010111011100010 10 00110000 00 10101 101000001 10100000011 11011010001 010000
 111101 111010001010 00110000110010110001001110111011110 001 01100011 10 0011 1010010100 01011001010 1000101011111 1110 0111
00010 110010101111 110001010100101101100001111001000 110 00101110 11 1100 1001001001 00101010100 111100101000000 000110010000010111 001
00110111000110011 100111010011111000110110000011 101 11101010 01 11100 00110100001 00111111010 01011011111001111 1110100100111000001001110 0001
1000001011101111 110110100011111100010011111 010 01100001 11 10100110101011011110011001101 0001111011000110000 10101110000111101110000 00111
 00000111 11000001011010011100001001 0 00011 000110 001 101100001011110011100100001000000000101101000001101 01011001110000111001010100010100101100
 101110010 01110100000100001 011001 00 11001 11011111110101101000 011000011001101011111101001110110100100100 0100000100 0111010100111001010011000 010
 11001010110100 0111110 11 10111 01001010001 10010101001010111110 101 1010100001000111001 11100011 001000111110101100111100010110
 110000111110 1011011 100 10000001001100010 011 0000000011000111 011000101100101000000001001 1011011 11011001010011001010001000011
 111000101111 100101010 11 0101100110000 010010 000001010001010001011010 101101000011100011110000 100000 00111111110010111110100001101
 101011100 0101000010 10 11001 010110 1111110 00110101011000011101 101101111110010011101110001100 0100 101110101100100001000110101110
 1101110 111011110110010 000110 10 10101100 1000010000000001000 11110001111111101000011 11010 011000000001101111010100000000000
 111000001 01000100100000000 110110101000100 0101011 01111100 10010110110111101011000011 000000 111110 01110100000 0110111011000
 100110101100111111011111000001110000111110 0000010 111001 111101000010111101011001001110111011010 0111010001101 1010001001 00000110101111
 00110100111011111110100011100001110110001 010000 11001101 110011110011000001011000001110000100001011 1110110011000 110110110
 11011101100100101101101010000001010001100 0010111 0101100011100111111100111000001010110011101100101111101101001100001000
 011101101011110010100101111010111101111 1010010 110011101001100001001111101111110011100010000010010001001111101011011
 0001100000001011010000101111100111111100 111011 0110100010010010011011100 001111000111101111 100001111000101101011011
 000110100010010001101110000100110100011000 110110110101000101111000000 0110100011011000110 0011001001111011001011 101010
 100011101101111100111101010111000110 1010011001101111100000110 01010011011011001110 011100010010010011 10110110
 01111110001001110111011010111101111110111 11001001000 110111011 101011011000 000110001100011001100 1001110000110100010
 111111001001001100101001110110 01111010010 011111011 11 10010001 011001110 0000100100110100011011 011100000010011
 000000010000010000010011100111110 011011111000 01110100 110110 01001101101101011000010 100100001
 000001110011000111101000000100000010000 1110110000 1101001 10110 00010011000011100010111 11101
 101001001 1011110111100110010011011111 01101001 000011 0011100 0001100000100101000011
 111101111 111001010100101011010111 10111000100110011000101111 010111101001011011100
 100110100 110110110 010101001011011100110110 1001111001001110001
 1100010100 100001100111010111010110 00010111110110101
 10001111011 011110101000101011100001 100101110111110
 01011001011 1000011 00010010 001001100100110 1111000101010
 01100000011 0010110110 11101110 001111111011001 010011111010010
 1100110100 00000101101101 1110110 10101011001100 011000010000101
 000110011101000100111101 10111110 1010011000100 11010110110011
 01011000111100001011 110010011 01011111101 00110111110010
 110111001 111110110 10001010 11111011010111
 1000100101 01 011100011100
 1101 0011100101 000001001011
 100011011 0100100000 10001010100
 100010110110 0110001101001 1000100000
 101000011011 001011110 100101110 1111
 10001110010101 1 1010111100 11011100
 100001001110 0001011101 101101010100
 011011000110 101101010 0100001111000
 00000000100010 111010001 010100
 0111101011001 101011010
 11001001
 1101100
 0100010
 1011110
 1110011
 1011100
 0010101
 01101111
 001000001
 001011000
 10110010
 1011011101
 1111111101010
 00001000001010
 00100010001000

Rode0day: Improving Software Security through Competition

Vulnerability Discovery

• Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

�2

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

Barton P. Miller
bart@cs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com

Bryan So
so@cs.wisc.edu

Summary

Operating system facilities, such as the kernel and utility programs, are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.

Content Indicators

D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General term: reliability, UNIX.

Research supported in part by National Science Foundation grants CCR-8703373 and CCR-8815928, Office of Naval Research grant
N00014-89-J-1222, and a Digital Equipment Corporation External Research Grant.

Copyright  1989 Miller, Fredriksen, and So.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{stephens,jmg,salls,dutcher,fish,jacopo,yans,chris,vigna}@cs.ucsb.edu

Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named
author (for reproduction of an entire paper only), and the author’s employer
if the paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler ∗
Stanford University

Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Rode0day: Improving Software Security through Competition

Vulnerability Discovery

• Finding vulnerabilities in software automatically has
been a major research and industry goal for the
last 25 years

�2

CommercialAcademic

An Empirical Study of the Reliability

of

UNIX Utilities

Barton P. Miller
bart@cs.wisc.edu

Lars Fredriksen
L.Fredriksen@att.com

Bryan So
so@cs.wisc.edu

Summary

Operating system facilities, such as the kernel and utility programs, are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.

Content Indicators

D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General term: reliability, UNIX.

Research supported in part by National Science Foundation grants CCR-8703373 and CCR-8815928, Office of Naval Research grant
N00014-89-J-1222, and a Digital Equipment Corporation External Research Grant.

Copyright  1989 Miller, Fredriksen, and So.

Driller: Augmenting
Fuzzing Through Selective Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna

UC Santa Barbara
{stephens,jmg,salls,dutcher,fish,jacopo,yans,chris,vigna}@cs.ucsb.edu

Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named
author (for reproduction of an entire paper only), and the author’s employer
if the paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23368

KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler ∗
Stanford University

Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Does this work??

Rode0day: Improving Software Security through Competition

Evaluating Bug-Finding Tools

• Common current approaches to evaluation:

• “We found 10 0-days”

• “We rediscovered CVEs X, Y, and Z”

• Problem: hard to compare tools using these
metrics!

�3

Rode0day: Improving Software Security through Competition

Automated Vulnerability Addition

• In our Oakland 2016 paper we
developed LAVA to remedy this

• Take existing software and
automatically add memory safety
bugs

• Each bug comes with a
triggering input so we can prove
it really is a bug

• This allows us to quickly create
large ground-truth vulnerability
corpora

�4

Now open source!
https://github.com/panda-re/lava

https://github.com/panda-re/lava

Rode0day: Improving Software Security through Competition

Goals

• We want to produce bugs that are:

• Plentiful (can put 1000s into a program easily)

• Distributed throughout the program

• Come with a triggering input

• Only manifest for a tiny fraction of inputs

• Are likely to be security-critical

�5

Rode0day: Improving Software Security through Competition

Building Bugs: DUAs

• We want to find parts of the program's input data that are:

• Dead: not currently used much in the program (i.e., we can set
to arbitrary values)

• Uncomplicated: not altered very much (i.e., we can predict their
value throughout the program's lifetime)

• Available in some program variables

• These properties try to capture the notion of attacker-controlled
data

• If we can find these DUAs, we will be able to add code to the
program that uses such data to trigger a bug

�6

Rode0day: Improving Software Security through Competition

New Taint-Based Measures

• How do we find out what data is dead and
uncomplicated?

• Two new taint-based measures:

• Liveness: a count of how many times some input
byte is used to decide a branch

• Taint compute number: a measure of how much
computation been done on some data

�7

Rode0day: Improving Software Security through Competition

Dynamic Taint Analysis

• We use dynamic taint analysis to
understand the effect of input data
on the program

• Our taint analysis requires some
specific features:

• Large number of labels available

• Taint tracks label sets

• Whole-system & fast (enough)

• Our open-source dynamic analysis
platform, PANDA, provides all of
these features

�8

c = a + b ; a: {w,x} ; b: {y,z}
c ← {w,x,y,z}

https://github.com/panda-re/panda

https://github.com/panda-re/panda

Rode0day: Improving Software Security through Competition

Taint Compute Number (TCN) �9

// a,b,n are inputs
1:
2:
3:
4:
5:

TCN measures how much computation has been
done on a variable at a given point in the program

Rode0day: Improving Software Security through Competition

Liveness �10

// a,b,n are inputs
1:
2:
3:
4:
5:

Bytes Liveness

{0..3} 0
{4..7} n

{8..11} 1

b: bytes {0..3}
n: bytes {4..7}
a: bytes {8..11}

Liveness measures how many
branches use each input byte

Rode0day: Improving Software Security through Competition

Attack Point (ATP)

• An Attack Point (ATP) is any place where we may
want to use attacker-controlled data to cause a bug

• Examples: pointer dereference, data copying,
memory allocation, ...

• Currently we modify array references and pointer
arguments passed to functions to create memory
safety errors

�11

Rode0day: Improving Software Security through Competition

LAVA Bugs

• Any (DUA, ATP) pair where the DUA occurs before
the attack point is a potential bug we can inject

• By modifying the source to add new data flow the
from DUA to the attack point we can create a bug

�12

DUA + ATP =

Rode0day: Improving Software Security through Competition

LAVA Bug Example

• PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c is attacker-controlled
(dead & uncomplicated)

• From PANDA we also see that in readcdf.c line 365
there is a read from a pointer – if we modify the pointer
value we will likely cause a bug in the program

�13

encoding.c 115: } else if (looks_extended(buf, nbytes,
*ubuf, ulen)) {

Attacker controlled data

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible
pointer

New data flow

Rode0day: Improving Software Security through Competition

LAVA Bug Example

• PANDA taint analysis shows that bytes 0-3 of buf on
line 115 of src/encoding.c is attacker-controlled
(dead & uncomplicated)

• From PANDA we also see that in readcdf.c line 365
there is a read from a pointer – if we modify the pointer
value we will likely cause a bug in the program

�14

encoding.c 115: } else if (looks_extended(buf, nbytes,
*ubuf, ulen)) {

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible
pointer

New data flow

Attacker controlled data

Rode0day: Improving Software Security through Competition

LAVA Bug Example �15

// encoding.c:
} else if

(({int rv =
looks_extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *)buf)[0];
lava |= ((unsigned char *)buf)[1] << 8;
lava |= ((unsigned char *)buf)[2] << 16;
lava |= ((unsigned char *)buf)[3] << 24;
lava_set(lava);

}; rv; })) {

// readcdf.c:
if (cdf_read_header

((&info) + (lava_get()) *
(0x6c617661 == (lava_get()) || 0x6176616c == (lava_get())),
&h) == -1)

When the input file data that ends up in buf is set
to 0x6c6176c1, we will add 0x6c6176c1 to the
pointer info, causing an out of bounds access

Rode0day: Improving Software Security through Competition

More Interesting Bugs �16

Base program: a simple binary format parser

Rode0day: Improving Software Security through Competition

More Interesting Bugs �17

Rode0day: Improving Software Security through Competition

More Interesting Bugs �17

DUA: copy ent->data into a global

Rode0day: Improving Software Security through Competition

More Interesting Bugs �18

Rode0day: Improving Software Security through Competition

More Interesting Bugs �18

Attack point: corrupt ent pointer if data matches

Rode0day: Improving Software Security through Competition

Exposing Tool Limitations

• KLEE cannot find this bug!

• Why?

• printf("fdata	=	%f\n",	ent->data.fdata) causes 
ent->data to be interpreted as a float – which is
concretized to 0 since KLEE doesn't support FP

• So on all program paths leading to the bug, the trigger
value will be forced to 0!

• Tools must reason correctly about the entire program path
leading to each LAVA bug

�19

Rode0day: Improving Software Security through Competition

More Interesting Bugs

• parse_record called in a loop; each record freed
after parsing

• To trigger this bug, bug-finder has to notice that
data flow can propagate through an uninitialized
heap chunk

�20

Rode0day: Improving Software Security through Competition

The LAVA-M Corpus

• Along with the LAVA paper we released a corpus of
four programs – buggy versions of several coreutils

• base64, md5sum, uniq, and who

• Over the past two years, many new fuzzers have
used this corpus for evaluation

• People were hungry for standard benchmarks!

�21

Rode0day: Improving Software Security through Competition

LAVA-M Progress �22

Rode0day: Improving Software Security through Competition

LAVA-M Progress �23

LAVA-M corpus is “used up”

Rode0day: Improving Software Security through Competition

LAVA-M Baseline �24

Rode0day: Improving Software Security through Competition

LAVA-M Baseline �25

...and some simple baseline
techniques can do quite well

Rode0day: Improving Software Security through Competition

Beyond LAVA-M

• Static datasets are a good start, but they go stale

• We want to make evaluation and assessment
frequent and cheap

• This lets tool developers steadily improve and
debug their techniques

�26

Rode0day: Improving Software Security through Competition

Introducing Rode0day �27

Rode0day: Improving Software Security through Competition

Rode0day

• Once a month we will release buggy programs (source and
binary) – usually based off popular open source projects

• Teams (anonymous or named) submit crashing inputs

• We verify the crashes, check which bug was triggered, and
award points:

• 10 points for finding a bug

• 1 extra point if you are the first team to find it

• At the end of the month, we release an answer key and an
archive of competition data (including competitors' inputs)

�28

Rode0day: Improving Software Security through Competition

Rode0day API

• Challenges are provided as a zip file with associated YAML
metadata saying how to run each challenge and giving an
example input

• YAML API endpoint lets you upload inputs and tells you
whether they crashed and if the bug is unique

• API consumer: https://github.com/AndrewFasano/simple-crs

�29

YAML Response
bug_ids: [1234]
first_ids: [1234]
requests_remaining: 9941
score: 32
status: 0
status_s: Your input successfully caused the program to a crash

https://github.com/AndrewFasano/simple-crs

Rode0day: Improving Software Security through Competition

Enhancements to LAVA

• We made a number of extensions to LAVA to make
bugs more realistic and avoid artifacts

• Improved dataflow between DUA and ATP

• Code diversification

• New trigger type (multi-DUA)

�30

Rode0day: Improving Software Security through Competition

Improved Dataflow �31

Figure 5-1: Each of the boxes represents a function in the program, and a black arrow
from A to B indicates that function A calls function B. By modifying the function
signatures of the shaded functions, we can introduce data flow between the DUA and
ATP, shown here as red arrows that propagate back up the call graph and back down
to the ATP.

29

New: data flow between
DUA->ATP by adding
function arguments

DUA

lava_set()

global

ATP

lava_get()

Old: data flow DUA->ATP
through global variable

Diagrams from:
Adding Diversity and Realism to LAVA, a Vulnerability Addition System by Rahul Sridhar

Rode0day: Improving Software Security through Competition

Diversification

• To help obscure constants and make modified programs harder to
diff, we diversify

• Apply sequences of semantics-preserving transformations to
source code

• Note: this is not obfuscation – don't want to make it significantly
more difficult for a bug-finding tool

�32

Axioms for diversification
Adding Diversity and Realism to LAVA, a Vulnerability Addition System by Rahul Sridhar

Figure 6-3: (a) The program expression graph for the snippet in figure 6-1. (b) The
PEG after applying the XOR axiom. (c) The PEG after applying the TRANSITIV-
ITY axiom. (d) The PEG after applying the XOR axiom. This is now the program
expression graph for the snippet in figure 6-2.

REFLEXIVITY a ! a = a
SUBSTITUTION a = b, a = c ! b = c
TRANSITIVITY a = b, b = c ! a = c
ADD-COMMUTATIVITY a, b ! a+ b = b+ a
ADD-ASSOCIATIVITY a, b, c ! a+ (b+ c) = (a+ b) + c
XOR a, b ! (a� b)� a = b

Table 6.1: Selected manually created axioms.

41

Rode0day: Improving Software Security through Competition

Multi-DUA Bugs

• If we allow ourselves to use multiple DUAs, we can
create more complex trigger conditions

• More inputs that satisfy this condition – but simple
tricks like extracting constants don't work

• We can extend this technique and estimate the
difficulty of solving each trigger using model
counting (FSE '18, to appear)

�33

Rode0day: Improving Software Security through Competition

Rode0day: Beta Results

• We ran a beta version of the competition last month

• Two (small) programs; x86 (32-bit) binaries

• 52 bugs total

• 90 registered teams (9 who scored)

• Two teams (Itszn and “Inventive Mayfly”) found all
52 bugs

�34

Rode0day: Improving Software Security through Competition

�35

Rode0day: Improving Software Security through Competition

Beta Scoreboard �36

Rode0day: Improving Software Security through Competition

Goals and Future Work

• Lots of room for improvement in LAVA:

• More bug types (temporal safety, concurrency)

• How can we evaluate static analyses?

• Analysis of competition data:

• How do teams & techniques improve over time?

• What makes some bugs more difficult to find?

• Let others submit challenge programs as well!

�37

Rode0day: Improving Software Security through Competition

Conclusions

• We have seen in other fields (ML, SAT solving) that
regular evaluations and competition can help drive
rapid progress

• Automated bug injection makes frequent
evaluation and hill-climbing possible

• Play Rode0day! The first official competition starts
this week: 
 
 https://rode0day.mit.edu/

�38

https://rode0day.mit.edu/

