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been a major research and industry goal for the 
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Summary

Operating system facilities, such as the kernel and utility programs, are typically assumed to be reliable. In

our recent experiments, we have been able to crash 25-33% of the utility programs on any version of UNIX that was

tested. This report describes these tests and an analysis of the program bugs that caused the crashes.
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D.2.5 (Testing and Debugging), D.4.9 (Programs and Utilities), General term: reliability, UNIX.
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Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that
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Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1
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Abstract—Memory corruption vulnerabilities are an ever-
present risk in software, which attackers can exploit to obtain
unauthorized access to confidential information. As products
with access to sensitive data are becoming more prevalent, the
number of potentially exploitable systems is also increasing,
resulting in a greater need for automated software vetting tools.
DARPA recently funded a competition, with millions of dollars
in prize money, to further research focusing on automated
vulnerability finding and patching, showing the importance of
research in this area. Current techniques for finding potential
bugs include static, dynamic, and concolic analysis systems,
which each having their own advantages and disadvantages. A
common limitation of systems designed to create inputs which
trigger vulnerabilities is that they only find shallow bugs and
struggle to exercise deeper paths in executables.

We present Driller, a hybrid vulnerability excavation tool
which leverages fuzzing and selective concolic execution in
a complementary manner, to find deeper bugs. Inexpensive
fuzzing is used to exercise compartments of an application, while
concolic execution is used to generate inputs which satisfy the
complex checks separating the compartments. By combining the
strengths of the two techniques, we mitigate their weaknesses,
avoiding the path explosion inherent in concolic analysis and the
incompleteness of fuzzing. Driller uses selective concolic execution
to explore only the paths deemed interesting by the fuzzer and to
generate inputs for conditions that the fuzzer cannot satisfy. We
evaluate Driller on 126 applications released in the qualifying
event of the DARPA Cyber Grand Challenge and show its
efficacy by identifying the same number of vulnerabilities, in
the same time, as the top-scoring team of the qualifying event.

I. INTRODUCTION

Despite efforts to increase the resilience of software
against security flaws, vulnerabilities in software are still
commonplace. In fact, in recent years, the occurrence of
security vulnerabilities has increased to an all-time high [28].
Furthermore, despite the introduction of memory corruption
and execution redirection mitigation techniques, such software
flaws account for over a third of all vulnerabilities discovered
in the last year [14].

Whereas such vulnerabilities used to be exploited by
independent hackers who wanted to push the limits of
security and expose ineffective protections, the modern world
has moved to nation states and cybercriminals using such
vulnerabilities for strategic advantage or profit. Furthermore,
with the rise of the Internet of Things, the number of devices
that run potentially vulnerable software has skyrocketed,
and vulnerabilities are increasingly being discovered in the
software running these devices [29].

While many vulnerabilities are discovered by hand,
manual analysis is not a scalable method for vulnerability
assessment. To keep up with the amount of software that
must be vetted for vulnerabilities, an automated approach
is required. In fact, DARPA has recently lent its support
to this goal by sponsoring two efforts: VET, a program on
developing techniques for the analysis of binary firmware,
and the Cyber Grand Challenge (CGC), in which participants
design and deploy automated vulnerability scanning engines
that will compete against each other by exploiting binary
software. DARPA has funded both VET and the Cyber Grand
Challenge with millions of dollars in research funding and
prize money, demonstrating the strong interest in developing
a viable approach to automated binary analysis.

Naturally, security researchers have been actively designing
automated vulnerability analysis systems. Many approaches
exist, falling into three main categories: static, dynamic, and
concolic analysis systems. These approaches have different
advantages and disadvantages. Static analysis systems can
provide provable guarantees – that is, a static analysis system
can show, with certainty, that a given piece of binary code
is secure. However, such systems have two fundamental
drawbacks: they are imprecise, resulting in a large amount
of false positives, and they cannot provide “actionable input”
(i.e., an example of a specific input that can trigger a detected
vulnerability). Dynamic analysis systems, such as “fuzzers”,
monitor the native execution of an application to identify flaws.
When flaws are detected, these systems can provide actionable
inputs to trigger them. However, these systems suffer from
the need for “input test cases” to drive execution. Without
an exhaustive set of test cases, which requires considerable
manual effort to generate, the usability of such systems is
limited. Finally, concolic execution engines utilize program
interpretation and constraint solving techniques to generate
inputs to explore the state space of the binary, in an attempt
to reach and trigger vulnerabilities. However, because such
systems are able to trigger a large number of paths in the binary
(i.e., for a conditional branch, they often create an input that
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Abstract
We present a new symbolic execution tool, KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We applied KLEE
to all 90 programs in the GNU COREUTILS utility suite,
which form the core user-level environment installed on
almost all Unix systems and, as such, represent some
of the most heavily used and tested open-source pro-
grams in existence. For 84% of these utilities, KLEE’s
automatically generated tests covered 80–100% of exe-
cutable statements and, in aggregate, significantly beat
the coverage of the developers’ own hand-written test
suites. KLEE also found nine serious bugs (including
three that had been missed for over 15 years!) and pro-
duced concrete inputs that triggered the errors when run
on the uninstrumented code. When applied to MINIX’s
versions of a small selection of the same applications,
KLEE achieved similar coverage (along with two bugs).
In addition, we also used KLEE to automatically find nu-
merous incorrect differences between several MINIX and
COREUTILS tools. Finally, we checked the kernel of the
HISTAR operating system, generating tests that achieved
76.4% (without paging enabled) and 67.1% coverage
(with paging) and found one important security bug.

1 Introduction

The importance of testing and the poor performance of
random and manual approaches has led to much recent
work in using symbolic execution to automatically gener-
ate high-coverage test inputs [9, 19, 10, 28, 18, 20, 6, 15,
14, 8, 16]. At a high-level, these tools use variations on
the following idea: Instead of running code on manually
or randomly constructed input, they run it on symbolic
input initially allowed to be “anything.” They substitute

∗Author names are in alphabetical order. Daniel Dunbar is the main
author of the KLEE system.

program inputs with symbolic values and replace cor-
responding concrete program operations with ones that
manipulate symbolic values. When program execution
branches based on a symbolic value, the system (con-
ceptually) follows both branches at once, maintaining on
each path a set of constraints called the path condition
which must hold on execution of that path. When a path
terminates or hits a bug, a test case can be generated by
solving the current path condition to find concrete val-
ues. Assuming deterministic code, feeding this concrete
input to an raw version of the checked code will cause it
to follow the same path and hit the same bug.
Results from these tools and others are promising.

However, while researchers have shown such tools can
get high coverage and find bugs on a small number of
programs, it has been an open question, especially to
outsiders, whether the approach has any hope of consis-
tently achieving these goals on real applications. Two
common concerns are the exponential number of paths
through code and the difficulty of handling the environ-
ment (“the environment problem”). Neither concern has
beenmuch helped by the fact that most past work, includ-
ing ours, has usually reported results on a limited set of
hand-picked benchmarks and typically has not included
any coverage numbers.
This paper makes two contributions: First, we present

a new symbolic execution tool, KLEE, which we de-
signed from scratch to be robust and to deeply check a
broad range of applications. We leveraged several years
of lessons from our previous tool, EXE [10]. KLEE uses
novel constraint solving optimizations that improve per-
formance by over an order of magnitude and let it han-
dle many programs that are completely intractable other-
wise. Its space-efficient representation of a checked path
means it can have tens to hundreds of thousands of such
paths active simultaneously. Its search heuristics effec-
tively select from these large sets of paths to get high
code coverage. Its simple, straightforward approach to
handling the environment let it check a broad range of

1

KLEE (2005)

Driller (2015)
Fuzzing (1989)

Does this work??
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Evaluating Bug-Finding Tools

• Common current approaches to evaluation: 

• “We found 10 0-days” 

• “We rediscovered CVEs X, Y, and Z” 

• Problem: hard to compare tools using these 
metrics!

�3
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Automated Vulnerability Addition

• In our Oakland 2016 paper we 
developed LAVA to remedy this 

• Take existing software and 
automatically add memory safety 
bugs 

• Each bug comes with a 
triggering input so we can prove 
it really is a bug 

• This allows us to quickly create 
large ground-truth vulnerability 
corpora

�4

Now open source! 
https://github.com/panda-re/lava

https://github.com/panda-re/lava
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Goals

• We want to produce bugs that are: 

• Plentiful (can put 1000s into a program easily) 

• Distributed throughout the program 

• Come with a triggering input 

• Only manifest for a tiny fraction of inputs

• Are likely to be security-critical
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Building Bugs: DUAs

• We want to find parts of the program's input data that are: 

• Dead: not currently used much in the program (i.e., we can set 
to arbitrary values) 

• Uncomplicated: not altered very much (i.e., we can predict their 
value throughout the program's lifetime) 

• Available in some program variables 

• These properties try to capture the notion of attacker-controlled 
data 

• If we can find these DUAs, we will be able to add code to the 
program that uses such data to trigger a bug

�6



Rode0day: Improving Software Security through Competition

New Taint-Based Measures

• How do we find out what data is dead and 
uncomplicated? 

• Two new taint-based measures: 

• Liveness: a count of how many times some input 
byte is used to decide a branch 

• Taint compute number: a measure of how much 
computation been done on some data

�7
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Dynamic Taint Analysis

• We use dynamic taint analysis to 
understand the effect of input data 
on the program 

• Our taint analysis requires some 
specific features: 

• Large number of labels available 

• Taint tracks label sets 

• Whole-system & fast (enough) 

• Our open-source dynamic analysis 
platform, PANDA, provides all of 
these features

�8

c = a + b ; a: {w,x} ; b: {y,z} 
c ← {w,x,y,z}

https://github.com/panda-re/panda

https://github.com/panda-re/panda
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Taint Compute Number (TCN) �9

// a,b,n are inputs
1:
2:
3:
4:
5:

TCN measures how much computation has been 
done on a variable at a given point in the program
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Liveness �10

// a,b,n are inputs
1:
2:
3:
4:
5:

Bytes Liveness

{0..3} 0
{4..7} n

{8..11} 1

b: bytes {0..3} 
n: bytes {4..7} 
a: bytes {8..11}

Liveness measures how many 
branches use each input byte
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Attack Point (ATP)

• An Attack Point (ATP) is any place where we may 
want to use attacker-controlled data to cause a bug 

• Examples: pointer dereference, data copying, 
memory allocation, ... 

• Currently we modify array references and pointer 
arguments passed to functions to create memory 
safety errors

�11



Rode0day: Improving Software Security through Competition

LAVA Bugs

• Any (DUA, ATP) pair where the DUA occurs before 
the attack point is a potential bug we can inject 

• By modifying the source to add new data flow the 
from DUA to the attack point we can create a bug

�12

DUA + ATP =
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LAVA Bug Example

• PANDA taint analysis shows that bytes 0-3 of buf on 
line 115 of src/encoding.c is attacker-controlled 
(dead & uncomplicated) 

• From PANDA we also see that in readcdf.c line 365 
there is a read from a pointer – if we modify the pointer 
value we will likely cause a bug in the program

�13

encoding.c 115: } else if (looks_extended(buf, nbytes, 
*ubuf, ulen)) {

Attacker controlled data

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible 
pointer

New data flow
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LAVA Bug Example

• PANDA taint analysis shows that bytes 0-3 of buf on 
line 115 of src/encoding.c is attacker-controlled 
(dead & uncomplicated) 

• From PANDA we also see that in readcdf.c line 365 
there is a read from a pointer – if we modify the pointer 
value we will likely cause a bug in the program
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encoding.c 115: } else if (looks_extended(buf, nbytes, 
*ubuf, ulen)) {

readcdf.c 365: if (cdf_read_header(&info, &h) == -1)

Corruptible 
pointer

New data flow

Attacker controlled data
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LAVA Bug Example �15

// encoding.c: 
} else if 

(({int rv = 
looks_extended(buf, nbytes, *ubuf, ulen);

if (buf) {
int lava = 0;
lava |= ((unsigned char *)buf)[0];
lava |= ((unsigned char *)buf)[1] << 8;
lava |= ((unsigned char *)buf)[2] << 16;
lava |= ((unsigned char *)buf)[3] << 24;
lava_set(lava);     

}; rv; })) {

// readcdf.c: 
if (cdf_read_header

((&info) + (lava_get()) * 
(0x6c617661 == (lava_get()) || 0x6176616c == (lava_get())),  
&h) == -1)

When the input file data that ends up in buf is set 
to 0x6c6176c1, we will add 0x6c6176c1 to the 
pointer info, causing an out of bounds access
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More Interesting Bugs �16

Base program: a simple binary format parser
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More Interesting Bugs �17
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More Interesting Bugs �17

DUA: copy ent->data into a global
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More Interesting Bugs �18
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More Interesting Bugs �18

Attack point: corrupt ent pointer if data matches
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Exposing Tool Limitations

• KLEE cannot find this bug! 

• Why? 

• printf("fdata	=	%f\n",	ent->data.fdata) causes 
ent->data to be interpreted as a float – which is 
concretized to 0 since KLEE doesn't support FP 

• So on all program paths leading to the bug, the trigger 
value will be forced to 0! 

• Tools must reason correctly about the entire program path 
leading to each LAVA bug

�19
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More Interesting Bugs

• parse_record called in a loop; each record freed 
after parsing 

• To trigger this bug, bug-finder has to notice that 
data flow can propagate through an uninitialized 
heap chunk

�20
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The LAVA-M Corpus

• Along with the LAVA paper we released a corpus of 
four programs – buggy versions of several coreutils 

• base64, md5sum, uniq, and who 

• Over the past two years, many new fuzzers have 
used this corpus for evaluation 

• People were hungry for standard benchmarks!

�21
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LAVA-M Progress �22
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LAVA-M Progress �23

LAVA-M corpus is “used up”
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LAVA-M Baseline �24
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LAVA-M Baseline �25

...and some simple baseline
techniques can do quite well
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Beyond LAVA-M

• Static datasets are a good start, but they go stale 

• We want to make evaluation and assessment 
frequent and cheap 

• This lets tool developers steadily improve and 
debug their techniques

�26
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Introducing Rode0day �27
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Rode0day

• Once a month we will release buggy programs (source and 
binary) – usually based off popular open source projects 

• Teams (anonymous or named) submit crashing inputs 

• We verify the crashes, check which bug was triggered, and 
award points: 

• 10 points for finding a bug 

• 1 extra point if you are the first team to find it 

• At the end of the month, we release an answer key and an 
archive of competition data (including competitors' inputs)

�28
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Rode0day API

• Challenges are provided as a zip file with associated YAML 
metadata saying how to run each challenge and giving an 
example input 

• YAML API endpoint lets you upload inputs and tells you 
whether they crashed and if the bug is unique 

• API consumer: https://github.com/AndrewFasano/simple-crs

�29

YAML Response
bug_ids: [1234] 
first_ids: [1234] 
requests_remaining: 9941 
score: 32 
status: 0 
status_s: Your input successfully caused the program to a crash

https://github.com/AndrewFasano/simple-crs
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Enhancements to LAVA

• We made a number of extensions to LAVA to make 
bugs more realistic and avoid artifacts 

• Improved dataflow between DUA and ATP 

• Code diversification 

• New trigger type (multi-DUA)

�30
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Improved Dataflow �31

Figure 5-1: Each of the boxes represents a function in the program, and a black arrow
from A to B indicates that function A calls function B. By modifying the function
signatures of the shaded functions, we can introduce data flow between the DUA and
ATP, shown here as red arrows that propagate back up the call graph and back down
to the ATP.

29

New: data flow between 
DUA->ATP by adding 
function arguments

DUA

lava_set()

global

ATP

lava_get()

Old: data flow DUA->ATP 
through global variable

Diagrams from: 
Adding Diversity and Realism to LAVA, a Vulnerability Addition System by Rahul Sridhar 
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Diversification

• To help obscure constants and make modified programs harder to 
diff, we diversify 

• Apply sequences of semantics-preserving transformations to 
source code 

• Note: this is not obfuscation – don't want to make it significantly 
more difficult for a bug-finding tool

�32

Axioms for diversification 
Adding Diversity and Realism to LAVA, a Vulnerability Addition System by Rahul Sridhar 

Figure 6-3: (a) The program expression graph for the snippet in figure 6-1. (b) The
PEG after applying the XOR axiom. (c) The PEG after applying the TRANSITIV-
ITY axiom. (d) The PEG after applying the XOR axiom. This is now the program
expression graph for the snippet in figure 6-2.

REFLEXIVITY a ! a = a
SUBSTITUTION a = b, a = c ! b = c
TRANSITIVITY a = b, b = c ! a = c
ADD-COMMUTATIVITY a, b ! a+ b = b+ a
ADD-ASSOCIATIVITY a, b, c ! a+ (b+ c) = (a+ b) + c
XOR a, b ! (a� b)� a = b

Table 6.1: Selected manually created axioms.

41
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Multi-DUA Bugs

• If we allow ourselves to use multiple DUAs, we can 
create more complex trigger conditions 

• More inputs that satisfy this condition – but simple 
tricks like extracting constants don't work 

• We can extend this technique and estimate the 
difficulty of solving each trigger using model 
counting (FSE '18, to appear)

�33
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Rode0day: Beta Results

• We ran a beta version of the competition last month 

• Two (small) programs; x86 (32-bit) binaries 

• 52 bugs total 

• 90 registered teams (9 who scored)

• Two teams (Itszn and “Inventive Mayfly”) found all 
52 bugs
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Beta Scoreboard �36
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Goals and Future Work

• Lots of room for improvement in LAVA: 

• More bug types (temporal safety, concurrency) 

• How can we evaluate static analyses? 

• Analysis of competition data: 

• How do teams & techniques improve over time? 

• What makes some bugs more difficult to find? 

• Let others submit challenge programs as well!
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Conclusions

• We have seen in other fields (ML, SAT solving) that 
regular evaluations and competition can help drive 
rapid progress 

• Automated bug injection makes frequent 
evaluation and hill-climbing possible 

• Play Rode0day! The first official competition starts 
this week: 
 
                   https://rode0day.mit.edu/
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https://rode0day.mit.edu/

