Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-or-later 2 : : /* Instantiate a public key crypto key from an X.509 Certificate 3 : : * 4 : : * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. 5 : : * Written by David Howells (dhowells@redhat.com) 6 : : */ 7 : : 8 : : #define pr_fmt(fmt) "ASYM: "fmt 9 : : #include <linux/module.h> 10 : : #include <linux/kernel.h> 11 : : #include <linux/err.h> 12 : : #include <crypto/public_key.h> 13 : : #include "asymmetric_keys.h" 14 : : 15 : : static bool use_builtin_keys; 16 : : static struct asymmetric_key_id *ca_keyid; 17 : : 18 : : #ifndef MODULE 19 : : static struct { 20 : : struct asymmetric_key_id id; 21 : : unsigned char data[10]; 22 : : } cakey; 23 : : 24 : 0 : static int __init ca_keys_setup(char *str) 25 : : { 26 : 0 : if (!str) /* default system keyring */ 27 : : return 1; 28 : : 29 : 0 : if (strncmp(str, "id:", 3) == 0) { 30 : : struct asymmetric_key_id *p = &cakey.id; 31 : 0 : size_t hexlen = (strlen(str) - 3) / 2; 32 : : int ret; 33 : : 34 : 0 : if (hexlen == 0 || hexlen > sizeof(cakey.data)) { 35 : 0 : pr_err("Missing or invalid ca_keys id\n"); 36 : 0 : return 1; 37 : : } 38 : : 39 : 0 : ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); 40 : 0 : if (ret < 0) 41 : 0 : pr_err("Unparsable ca_keys id hex string\n"); 42 : : else 43 : 0 : ca_keyid = p; /* owner key 'id:xxxxxx' */ 44 : 0 : } else if (strcmp(str, "builtin") == 0) { 45 : 0 : use_builtin_keys = true; 46 : : } 47 : : 48 : : return 1; 49 : : } 50 : : __setup("ca_keys=", ca_keys_setup); 51 : : #endif 52 : : 53 : : /** 54 : : * restrict_link_by_signature - Restrict additions to a ring of public keys 55 : : * @dest_keyring: Keyring being linked to. 56 : : * @type: The type of key being added. 57 : : * @payload: The payload of the new key. 58 : : * @trust_keyring: A ring of keys that can be used to vouch for the new cert. 59 : : * 60 : : * Check the new certificate against the ones in the trust keyring. If one of 61 : : * those is the signing key and validates the new certificate, then mark the 62 : : * new certificate as being trusted. 63 : : * 64 : : * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a 65 : : * matching parent certificate in the trusted list, -EKEYREJECTED if the 66 : : * signature check fails or the key is blacklisted, -ENOPKG if the signature 67 : : * uses unsupported crypto, or some other error if there is a matching 68 : : * certificate but the signature check cannot be performed. 69 : : */ 70 : 0 : int restrict_link_by_signature(struct key *dest_keyring, 71 : : const struct key_type *type, 72 : : const union key_payload *payload, 73 : : struct key *trust_keyring) 74 : : { 75 : : const struct public_key_signature *sig; 76 : : struct key *key; 77 : : int ret; 78 : : 79 : : pr_devel("==>%s()\n", __func__); 80 : : 81 : 0 : if (!trust_keyring) 82 : : return -ENOKEY; 83 : : 84 : 0 : if (type != &key_type_asymmetric) 85 : : return -EOPNOTSUPP; 86 : : 87 : 0 : sig = payload->data[asym_auth]; 88 : 0 : if (!sig) 89 : : return -ENOPKG; 90 : 0 : if (!sig->auth_ids[0] && !sig->auth_ids[1]) 91 : : return -ENOKEY; 92 : : 93 : 0 : if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) 94 : : return -EPERM; 95 : : 96 : : /* See if we have a key that signed this one. */ 97 : 0 : key = find_asymmetric_key(trust_keyring, 98 : 0 : sig->auth_ids[0], sig->auth_ids[1], 99 : : false); 100 : 0 : if (IS_ERR(key)) 101 : : return -ENOKEY; 102 : : 103 : 0 : if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) 104 : : ret = -ENOKEY; 105 : : else 106 : 0 : ret = verify_signature(key, sig); 107 : 0 : key_put(key); 108 : 0 : return ret; 109 : : } 110 : : 111 : 0 : static bool match_either_id(const struct asymmetric_key_ids *pair, 112 : : const struct asymmetric_key_id *single) 113 : : { 114 : 0 : return (asymmetric_key_id_same(pair->id[0], single) || 115 : 0 : asymmetric_key_id_same(pair->id[1], single)); 116 : : } 117 : : 118 : 0 : static int key_or_keyring_common(struct key *dest_keyring, 119 : : const struct key_type *type, 120 : : const union key_payload *payload, 121 : : struct key *trusted, bool check_dest) 122 : : { 123 : : const struct public_key_signature *sig; 124 : : struct key *key = NULL; 125 : : int ret; 126 : : 127 : : pr_devel("==>%s()\n", __func__); 128 : : 129 : 0 : if (!dest_keyring) 130 : : return -ENOKEY; 131 : 0 : else if (dest_keyring->type != &key_type_keyring) 132 : : return -EOPNOTSUPP; 133 : : 134 : 0 : if (!trusted && !check_dest) 135 : : return -ENOKEY; 136 : : 137 : 0 : if (type != &key_type_asymmetric) 138 : : return -EOPNOTSUPP; 139 : : 140 : 0 : sig = payload->data[asym_auth]; 141 : 0 : if (!sig) 142 : : return -ENOPKG; 143 : 0 : if (!sig->auth_ids[0] && !sig->auth_ids[1]) 144 : : return -ENOKEY; 145 : : 146 : 0 : if (trusted) { 147 : 0 : if (trusted->type == &key_type_keyring) { 148 : : /* See if we have a key that signed this one. */ 149 : 0 : key = find_asymmetric_key(trusted, sig->auth_ids[0], 150 : 0 : sig->auth_ids[1], false); 151 : 0 : if (IS_ERR(key)) 152 : : key = NULL; 153 : 0 : } else if (trusted->type == &key_type_asymmetric) { 154 : : const struct asymmetric_key_ids *signer_ids; 155 : : 156 : : signer_ids = asymmetric_key_ids(trusted); 157 : : 158 : : /* 159 : : * The auth_ids come from the candidate key (the 160 : : * one that is being considered for addition to 161 : : * dest_keyring) and identify the key that was 162 : : * used to sign. 163 : : * 164 : : * The signer_ids are identifiers for the 165 : : * signing key specified for dest_keyring. 166 : : * 167 : : * The first auth_id is the preferred id, and 168 : : * the second is the fallback. If only one 169 : : * auth_id is present, it may match against 170 : : * either signer_id. If two auth_ids are 171 : : * present, the first auth_id must match one 172 : : * signer_id and the second auth_id must match 173 : : * the second signer_id. 174 : : */ 175 : 0 : if (!sig->auth_ids[0] || !sig->auth_ids[1]) { 176 : : const struct asymmetric_key_id *auth_id; 177 : : 178 : 0 : auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; 179 : 0 : if (match_either_id(signer_ids, auth_id)) 180 : : key = __key_get(trusted); 181 : : 182 : 0 : } else if (asymmetric_key_id_same(signer_ids->id[1], 183 : 0 : sig->auth_ids[1]) && 184 : 0 : match_either_id(signer_ids, 185 : 0 : sig->auth_ids[0])) { 186 : : key = __key_get(trusted); 187 : : } 188 : : } else { 189 : : return -EOPNOTSUPP; 190 : : } 191 : : } 192 : : 193 : 0 : if (check_dest && !key) { 194 : : /* See if the destination has a key that signed this one. */ 195 : 0 : key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], 196 : 0 : sig->auth_ids[1], false); 197 : 0 : if (IS_ERR(key)) 198 : : key = NULL; 199 : : } 200 : : 201 : 0 : if (!key) 202 : : return -ENOKEY; 203 : : 204 : 0 : ret = key_validate(key); 205 : 0 : if (ret == 0) 206 : 0 : ret = verify_signature(key, sig); 207 : : 208 : 0 : key_put(key); 209 : 0 : return ret; 210 : : } 211 : : 212 : : /** 213 : : * restrict_link_by_key_or_keyring - Restrict additions to a ring of public 214 : : * keys using the restrict_key information stored in the ring. 215 : : * @dest_keyring: Keyring being linked to. 216 : : * @type: The type of key being added. 217 : : * @payload: The payload of the new key. 218 : : * @trusted: A key or ring of keys that can be used to vouch for the new cert. 219 : : * 220 : : * Check the new certificate only against the key or keys passed in the data 221 : : * parameter. If one of those is the signing key and validates the new 222 : : * certificate, then mark the new certificate as being ok to link. 223 : : * 224 : : * Returns 0 if the new certificate was accepted, -ENOKEY if we 225 : : * couldn't find a matching parent certificate in the trusted list, 226 : : * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 227 : : * unsupported crypto, or some other error if there is a matching certificate 228 : : * but the signature check cannot be performed. 229 : : */ 230 : 0 : int restrict_link_by_key_or_keyring(struct key *dest_keyring, 231 : : const struct key_type *type, 232 : : const union key_payload *payload, 233 : : struct key *trusted) 234 : : { 235 : 0 : return key_or_keyring_common(dest_keyring, type, payload, trusted, 236 : : false); 237 : : } 238 : : 239 : : /** 240 : : * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of 241 : : * public keys using the restrict_key information stored in the ring. 242 : : * @dest_keyring: Keyring being linked to. 243 : : * @type: The type of key being added. 244 : : * @payload: The payload of the new key. 245 : : * @trusted: A key or ring of keys that can be used to vouch for the new cert. 246 : : * 247 : : * Check the new certificate only against the key or keys passed in the data 248 : : * parameter. If one of those is the signing key and validates the new 249 : : * certificate, then mark the new certificate as being ok to link. 250 : : * 251 : : * Returns 0 if the new certificate was accepted, -ENOKEY if we 252 : : * couldn't find a matching parent certificate in the trusted list, 253 : : * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 254 : : * unsupported crypto, or some other error if there is a matching certificate 255 : : * but the signature check cannot be performed. 256 : : */ 257 : 0 : int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, 258 : : const struct key_type *type, 259 : : const union key_payload *payload, 260 : : struct key *trusted) 261 : : { 262 : 0 : return key_or_keyring_common(dest_keyring, type, payload, trusted, 263 : : true); 264 : : }