Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 : : /* 3 : : * AEAD: Authenticated Encryption with Associated Data 4 : : * 5 : : * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> 6 : : */ 7 : : 8 : : #ifndef _CRYPTO_AEAD_H 9 : : #define _CRYPTO_AEAD_H 10 : : 11 : : #include <linux/crypto.h> 12 : : #include <linux/kernel.h> 13 : : #include <linux/slab.h> 14 : : 15 : : /** 16 : : * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API 17 : : * 18 : : * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD 19 : : * (listed as type "aead" in /proc/crypto) 20 : : * 21 : : * The most prominent examples for this type of encryption is GCM and CCM. 22 : : * However, the kernel supports other types of AEAD ciphers which are defined 23 : : * with the following cipher string: 24 : : * 25 : : * authenc(keyed message digest, block cipher) 26 : : * 27 : : * For example: authenc(hmac(sha256), cbc(aes)) 28 : : * 29 : : * The example code provided for the symmetric key cipher operation 30 : : * applies here as well. Naturally all *skcipher* symbols must be exchanged 31 : : * the *aead* pendants discussed in the following. In addition, for the AEAD 32 : : * operation, the aead_request_set_ad function must be used to set the 33 : : * pointer to the associated data memory location before performing the 34 : : * encryption or decryption operation. In case of an encryption, the associated 35 : : * data memory is filled during the encryption operation. For decryption, the 36 : : * associated data memory must contain data that is used to verify the integrity 37 : : * of the decrypted data. Another deviation from the asynchronous block cipher 38 : : * operation is that the caller should explicitly check for -EBADMSG of the 39 : : * crypto_aead_decrypt. That error indicates an authentication error, i.e. 40 : : * a breach in the integrity of the message. In essence, that -EBADMSG error 41 : : * code is the key bonus an AEAD cipher has over "standard" block chaining 42 : : * modes. 43 : : * 44 : : * Memory Structure: 45 : : * 46 : : * To support the needs of the most prominent user of AEAD ciphers, namely 47 : : * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere 48 : : * to. 49 : : * 50 : : * The scatter list pointing to the input data must contain: 51 : : * 52 : : * * for RFC4106 ciphers, the concatenation of 53 : : * associated authentication data || IV || plaintext or ciphertext. Note, the 54 : : * same IV (buffer) is also set with the aead_request_set_crypt call. Note, 55 : : * the API call of aead_request_set_ad must provide the length of the AAD and 56 : : * the IV. The API call of aead_request_set_crypt only points to the size of 57 : : * the input plaintext or ciphertext. 58 : : * 59 : : * * for "normal" AEAD ciphers, the concatenation of 60 : : * associated authentication data || plaintext or ciphertext. 61 : : * 62 : : * It is important to note that if multiple scatter gather list entries form 63 : : * the input data mentioned above, the first entry must not point to a NULL 64 : : * buffer. If there is any potential where the AAD buffer can be NULL, the 65 : : * calling code must contain a precaution to ensure that this does not result 66 : : * in the first scatter gather list entry pointing to a NULL buffer. 67 : : */ 68 : : 69 : : struct crypto_aead; 70 : : 71 : : /** 72 : : * struct aead_request - AEAD request 73 : : * @base: Common attributes for async crypto requests 74 : : * @assoclen: Length in bytes of associated data for authentication 75 : : * @cryptlen: Length of data to be encrypted or decrypted 76 : : * @iv: Initialisation vector 77 : : * @src: Source data 78 : : * @dst: Destination data 79 : : * @__ctx: Start of private context data 80 : : */ 81 : : struct aead_request { 82 : : struct crypto_async_request base; 83 : : 84 : : unsigned int assoclen; 85 : : unsigned int cryptlen; 86 : : 87 : : u8 *iv; 88 : : 89 : : struct scatterlist *src; 90 : : struct scatterlist *dst; 91 : : 92 : : void *__ctx[] CRYPTO_MINALIGN_ATTR; 93 : : }; 94 : : 95 : : /** 96 : : * struct aead_alg - AEAD cipher definition 97 : : * @maxauthsize: Set the maximum authentication tag size supported by the 98 : : * transformation. A transformation may support smaller tag sizes. 99 : : * As the authentication tag is a message digest to ensure the 100 : : * integrity of the encrypted data, a consumer typically wants the 101 : : * largest authentication tag possible as defined by this 102 : : * variable. 103 : : * @setauthsize: Set authentication size for the AEAD transformation. This 104 : : * function is used to specify the consumer requested size of the 105 : : * authentication tag to be either generated by the transformation 106 : : * during encryption or the size of the authentication tag to be 107 : : * supplied during the decryption operation. This function is also 108 : : * responsible for checking the authentication tag size for 109 : : * validity. 110 : : * @setkey: see struct skcipher_alg 111 : : * @encrypt: see struct skcipher_alg 112 : : * @decrypt: see struct skcipher_alg 113 : : * @ivsize: see struct skcipher_alg 114 : : * @chunksize: see struct skcipher_alg 115 : : * @init: Initialize the cryptographic transformation object. This function 116 : : * is used to initialize the cryptographic transformation object. 117 : : * This function is called only once at the instantiation time, right 118 : : * after the transformation context was allocated. In case the 119 : : * cryptographic hardware has some special requirements which need to 120 : : * be handled by software, this function shall check for the precise 121 : : * requirement of the transformation and put any software fallbacks 122 : : * in place. 123 : : * @exit: Deinitialize the cryptographic transformation object. This is a 124 : : * counterpart to @init, used to remove various changes set in 125 : : * @init. 126 : : * @base: Definition of a generic crypto cipher algorithm. 127 : : * 128 : : * All fields except @ivsize is mandatory and must be filled. 129 : : */ 130 : : struct aead_alg { 131 : : int (*setkey)(struct crypto_aead *tfm, const u8 *key, 132 : : unsigned int keylen); 133 : : int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize); 134 : : int (*encrypt)(struct aead_request *req); 135 : : int (*decrypt)(struct aead_request *req); 136 : : int (*init)(struct crypto_aead *tfm); 137 : : void (*exit)(struct crypto_aead *tfm); 138 : : 139 : : unsigned int ivsize; 140 : : unsigned int maxauthsize; 141 : : unsigned int chunksize; 142 : : 143 : : struct crypto_alg base; 144 : : }; 145 : : 146 : : struct crypto_aead { 147 : : unsigned int authsize; 148 : : unsigned int reqsize; 149 : : 150 : : struct crypto_tfm base; 151 : : }; 152 : : 153 : : static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm) 154 : : { 155 : 0 : return container_of(tfm, struct crypto_aead, base); 156 : : } 157 : : 158 : : /** 159 : : * crypto_alloc_aead() - allocate AEAD cipher handle 160 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 161 : : * AEAD cipher 162 : : * @type: specifies the type of the cipher 163 : : * @mask: specifies the mask for the cipher 164 : : * 165 : : * Allocate a cipher handle for an AEAD. The returned struct 166 : : * crypto_aead is the cipher handle that is required for any subsequent 167 : : * API invocation for that AEAD. 168 : : * 169 : : * Return: allocated cipher handle in case of success; IS_ERR() is true in case 170 : : * of an error, PTR_ERR() returns the error code. 171 : : */ 172 : : struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask); 173 : : 174 : : static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm) 175 : : { 176 : 0 : return &tfm->base; 177 : : } 178 : : 179 : : /** 180 : : * crypto_free_aead() - zeroize and free aead handle 181 : : * @tfm: cipher handle to be freed 182 : : */ 183 : : static inline void crypto_free_aead(struct crypto_aead *tfm) 184 : : { 185 : 0 : crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm)); 186 : : } 187 : : 188 : : static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm) 189 : : { 190 : 0 : return container_of(crypto_aead_tfm(tfm)->__crt_alg, 191 : : struct aead_alg, base); 192 : : } 193 : : 194 : : static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg) 195 : : { 196 : 0 : return alg->ivsize; 197 : : } 198 : : 199 : : /** 200 : : * crypto_aead_ivsize() - obtain IV size 201 : : * @tfm: cipher handle 202 : : * 203 : : * The size of the IV for the aead referenced by the cipher handle is 204 : : * returned. This IV size may be zero if the cipher does not need an IV. 205 : : * 206 : : * Return: IV size in bytes 207 : : */ 208 : : static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm) 209 : : { 210 : : return crypto_aead_alg_ivsize(crypto_aead_alg(tfm)); 211 : : } 212 : : 213 : : /** 214 : : * crypto_aead_authsize() - obtain maximum authentication data size 215 : : * @tfm: cipher handle 216 : : * 217 : : * The maximum size of the authentication data for the AEAD cipher referenced 218 : : * by the AEAD cipher handle is returned. The authentication data size may be 219 : : * zero if the cipher implements a hard-coded maximum. 220 : : * 221 : : * The authentication data may also be known as "tag value". 222 : : * 223 : : * Return: authentication data size / tag size in bytes 224 : : */ 225 : : static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm) 226 : : { 227 : 0 : return tfm->authsize; 228 : : } 229 : : 230 : : /** 231 : : * crypto_aead_blocksize() - obtain block size of cipher 232 : : * @tfm: cipher handle 233 : : * 234 : : * The block size for the AEAD referenced with the cipher handle is returned. 235 : : * The caller may use that information to allocate appropriate memory for the 236 : : * data returned by the encryption or decryption operation 237 : : * 238 : : * Return: block size of cipher 239 : : */ 240 : : static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm) 241 : : { 242 : : return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm)); 243 : : } 244 : : 245 : : static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm) 246 : : { 247 : : return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm)); 248 : : } 249 : : 250 : : static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm) 251 : : { 252 : : return crypto_tfm_get_flags(crypto_aead_tfm(tfm)); 253 : : } 254 : : 255 : : static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags) 256 : : { 257 : : crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags); 258 : : } 259 : : 260 : : static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags) 261 : : { 262 : : crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags); 263 : : } 264 : : 265 : : /** 266 : : * crypto_aead_setkey() - set key for cipher 267 : : * @tfm: cipher handle 268 : : * @key: buffer holding the key 269 : : * @keylen: length of the key in bytes 270 : : * 271 : : * The caller provided key is set for the AEAD referenced by the cipher 272 : : * handle. 273 : : * 274 : : * Note, the key length determines the cipher type. Many block ciphers implement 275 : : * different cipher modes depending on the key size, such as AES-128 vs AES-192 276 : : * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 277 : : * is performed. 278 : : * 279 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred 280 : : */ 281 : : int crypto_aead_setkey(struct crypto_aead *tfm, 282 : : const u8 *key, unsigned int keylen); 283 : : 284 : : /** 285 : : * crypto_aead_setauthsize() - set authentication data size 286 : : * @tfm: cipher handle 287 : : * @authsize: size of the authentication data / tag in bytes 288 : : * 289 : : * Set the authentication data size / tag size. AEAD requires an authentication 290 : : * tag (or MAC) in addition to the associated data. 291 : : * 292 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred 293 : : */ 294 : : int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize); 295 : : 296 : : static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req) 297 : : { 298 : 0 : return __crypto_aead_cast(req->base.tfm); 299 : : } 300 : : 301 : : /** 302 : : * crypto_aead_encrypt() - encrypt plaintext 303 : : * @req: reference to the aead_request handle that holds all information 304 : : * needed to perform the cipher operation 305 : : * 306 : : * Encrypt plaintext data using the aead_request handle. That data structure 307 : : * and how it is filled with data is discussed with the aead_request_* 308 : : * functions. 309 : : * 310 : : * IMPORTANT NOTE The encryption operation creates the authentication data / 311 : : * tag. That data is concatenated with the created ciphertext. 312 : : * The ciphertext memory size is therefore the given number of 313 : : * block cipher blocks + the size defined by the 314 : : * crypto_aead_setauthsize invocation. The caller must ensure 315 : : * that sufficient memory is available for the ciphertext and 316 : : * the authentication tag. 317 : : * 318 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred 319 : : */ 320 : : int crypto_aead_encrypt(struct aead_request *req); 321 : : 322 : : /** 323 : : * crypto_aead_decrypt() - decrypt ciphertext 324 : : * @req: reference to the ablkcipher_request handle that holds all information 325 : : * needed to perform the cipher operation 326 : : * 327 : : * Decrypt ciphertext data using the aead_request handle. That data structure 328 : : * and how it is filled with data is discussed with the aead_request_* 329 : : * functions. 330 : : * 331 : : * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the 332 : : * authentication data / tag. That authentication data / tag 333 : : * must have the size defined by the crypto_aead_setauthsize 334 : : * invocation. 335 : : * 336 : : * 337 : : * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD 338 : : * cipher operation performs the authentication of the data during the 339 : : * decryption operation. Therefore, the function returns this error if 340 : : * the authentication of the ciphertext was unsuccessful (i.e. the 341 : : * integrity of the ciphertext or the associated data was violated); 342 : : * < 0 if an error occurred. 343 : : */ 344 : : int crypto_aead_decrypt(struct aead_request *req); 345 : : 346 : : /** 347 : : * DOC: Asynchronous AEAD Request Handle 348 : : * 349 : : * The aead_request data structure contains all pointers to data required for 350 : : * the AEAD cipher operation. This includes the cipher handle (which can be 351 : : * used by multiple aead_request instances), pointer to plaintext and 352 : : * ciphertext, asynchronous callback function, etc. It acts as a handle to the 353 : : * aead_request_* API calls in a similar way as AEAD handle to the 354 : : * crypto_aead_* API calls. 355 : : */ 356 : : 357 : : /** 358 : : * crypto_aead_reqsize() - obtain size of the request data structure 359 : : * @tfm: cipher handle 360 : : * 361 : : * Return: number of bytes 362 : : */ 363 : : static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm) 364 : : { 365 : 0 : return tfm->reqsize; 366 : : } 367 : : 368 : : /** 369 : : * aead_request_set_tfm() - update cipher handle reference in request 370 : : * @req: request handle to be modified 371 : : * @tfm: cipher handle that shall be added to the request handle 372 : : * 373 : : * Allow the caller to replace the existing aead handle in the request 374 : : * data structure with a different one. 375 : : */ 376 : : static inline void aead_request_set_tfm(struct aead_request *req, 377 : : struct crypto_aead *tfm) 378 : : { 379 : : req->base.tfm = crypto_aead_tfm(tfm); 380 : : } 381 : : 382 : : /** 383 : : * aead_request_alloc() - allocate request data structure 384 : : * @tfm: cipher handle to be registered with the request 385 : : * @gfp: memory allocation flag that is handed to kmalloc by the API call. 386 : : * 387 : : * Allocate the request data structure that must be used with the AEAD 388 : : * encrypt and decrypt API calls. During the allocation, the provided aead 389 : : * handle is registered in the request data structure. 390 : : * 391 : : * Return: allocated request handle in case of success, or NULL if out of memory 392 : : */ 393 : : static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm, 394 : : gfp_t gfp) 395 : : { 396 : : struct aead_request *req; 397 : : 398 : : req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp); 399 : : 400 : : if (likely(req)) 401 : : aead_request_set_tfm(req, tfm); 402 : : 403 : : return req; 404 : : } 405 : : 406 : : /** 407 : : * aead_request_free() - zeroize and free request data structure 408 : : * @req: request data structure cipher handle to be freed 409 : : */ 410 : : static inline void aead_request_free(struct aead_request *req) 411 : : { 412 : : kzfree(req); 413 : : } 414 : : 415 : : /** 416 : : * aead_request_set_callback() - set asynchronous callback function 417 : : * @req: request handle 418 : : * @flags: specify zero or an ORing of the flags 419 : : * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 420 : : * increase the wait queue beyond the initial maximum size; 421 : : * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 422 : : * @compl: callback function pointer to be registered with the request handle 423 : : * @data: The data pointer refers to memory that is not used by the kernel 424 : : * crypto API, but provided to the callback function for it to use. Here, 425 : : * the caller can provide a reference to memory the callback function can 426 : : * operate on. As the callback function is invoked asynchronously to the 427 : : * related functionality, it may need to access data structures of the 428 : : * related functionality which can be referenced using this pointer. The 429 : : * callback function can access the memory via the "data" field in the 430 : : * crypto_async_request data structure provided to the callback function. 431 : : * 432 : : * Setting the callback function that is triggered once the cipher operation 433 : : * completes 434 : : * 435 : : * The callback function is registered with the aead_request handle and 436 : : * must comply with the following template:: 437 : : * 438 : : * void callback_function(struct crypto_async_request *req, int error) 439 : : */ 440 : : static inline void aead_request_set_callback(struct aead_request *req, 441 : : u32 flags, 442 : : crypto_completion_t compl, 443 : : void *data) 444 : : { 445 : : req->base.complete = compl; 446 : : req->base.data = data; 447 : : req->base.flags = flags; 448 : : } 449 : : 450 : : /** 451 : : * aead_request_set_crypt - set data buffers 452 : : * @req: request handle 453 : : * @src: source scatter / gather list 454 : : * @dst: destination scatter / gather list 455 : : * @cryptlen: number of bytes to process from @src 456 : : * @iv: IV for the cipher operation which must comply with the IV size defined 457 : : * by crypto_aead_ivsize() 458 : : * 459 : : * Setting the source data and destination data scatter / gather lists which 460 : : * hold the associated data concatenated with the plaintext or ciphertext. See 461 : : * below for the authentication tag. 462 : : * 463 : : * For encryption, the source is treated as the plaintext and the 464 : : * destination is the ciphertext. For a decryption operation, the use is 465 : : * reversed - the source is the ciphertext and the destination is the plaintext. 466 : : * 467 : : * The memory structure for cipher operation has the following structure: 468 : : * 469 : : * - AEAD encryption input: assoc data || plaintext 470 : : * - AEAD encryption output: assoc data || cipherntext || auth tag 471 : : * - AEAD decryption input: assoc data || ciphertext || auth tag 472 : : * - AEAD decryption output: assoc data || plaintext 473 : : * 474 : : * Albeit the kernel requires the presence of the AAD buffer, however, 475 : : * the kernel does not fill the AAD buffer in the output case. If the 476 : : * caller wants to have that data buffer filled, the caller must either 477 : : * use an in-place cipher operation (i.e. same memory location for 478 : : * input/output memory location). 479 : : */ 480 : : static inline void aead_request_set_crypt(struct aead_request *req, 481 : : struct scatterlist *src, 482 : : struct scatterlist *dst, 483 : : unsigned int cryptlen, u8 *iv) 484 : : { 485 : : req->src = src; 486 : : req->dst = dst; 487 : : req->cryptlen = cryptlen; 488 : : req->iv = iv; 489 : : } 490 : : 491 : : /** 492 : : * aead_request_set_ad - set associated data information 493 : : * @req: request handle 494 : : * @assoclen: number of bytes in associated data 495 : : * 496 : : * Setting the AD information. This function sets the length of 497 : : * the associated data. 498 : : */ 499 : : static inline void aead_request_set_ad(struct aead_request *req, 500 : : unsigned int assoclen) 501 : : { 502 : : req->assoclen = assoclen; 503 : : } 504 : : 505 : : #endif /* _CRYPTO_AEAD_H */