Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-only */ 2 : : /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 : : */ 4 : : #ifndef _LINUX_BPF_VERIFIER_H 5 : : #define _LINUX_BPF_VERIFIER_H 1 6 : : 7 : : #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 : : #include <linux/filter.h> /* for MAX_BPF_STACK */ 9 : : #include <linux/tnum.h> 10 : : 11 : : /* Maximum variable offset umax_value permitted when resolving memory accesses. 12 : : * In practice this is far bigger than any realistic pointer offset; this limit 13 : : * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 14 : : */ 15 : : #define BPF_MAX_VAR_OFF (1 << 29) 16 : : /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 17 : : * that converting umax_value to int cannot overflow. 18 : : */ 19 : : #define BPF_MAX_VAR_SIZ (1 << 29) 20 : : 21 : : /* Liveness marks, used for registers and spilled-regs (in stack slots). 22 : : * Read marks propagate upwards until they find a write mark; they record that 23 : : * "one of this state's descendants read this reg" (and therefore the reg is 24 : : * relevant for states_equal() checks). 25 : : * Write marks collect downwards and do not propagate; they record that "the 26 : : * straight-line code that reached this state (from its parent) wrote this reg" 27 : : * (and therefore that reads propagated from this state or its descendants 28 : : * should not propagate to its parent). 29 : : * A state with a write mark can receive read marks; it just won't propagate 30 : : * them to its parent, since the write mark is a property, not of the state, 31 : : * but of the link between it and its parent. See mark_reg_read() and 32 : : * mark_stack_slot_read() in kernel/bpf/verifier.c. 33 : : */ 34 : : enum bpf_reg_liveness { 35 : : REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 36 : : REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 37 : : REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 38 : : REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 39 : : REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 40 : : REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 41 : : }; 42 : : 43 : : struct bpf_reg_state { 44 : : /* Ordering of fields matters. See states_equal() */ 45 : : enum bpf_reg_type type; 46 : : union { 47 : : /* valid when type == PTR_TO_PACKET */ 48 : : u16 range; 49 : : 50 : : /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 51 : : * PTR_TO_MAP_VALUE_OR_NULL 52 : : */ 53 : : struct bpf_map *map_ptr; 54 : : 55 : : /* Max size from any of the above. */ 56 : : unsigned long raw; 57 : : }; 58 : : /* Fixed part of pointer offset, pointer types only */ 59 : : s32 off; 60 : : /* For PTR_TO_PACKET, used to find other pointers with the same variable 61 : : * offset, so they can share range knowledge. 62 : : * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 63 : : * came from, when one is tested for != NULL. 64 : : * For PTR_TO_SOCKET this is used to share which pointers retain the 65 : : * same reference to the socket, to determine proper reference freeing. 66 : : */ 67 : : u32 id; 68 : : /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 69 : : * from a pointer-cast helper, bpf_sk_fullsock() and 70 : : * bpf_tcp_sock(). 71 : : * 72 : : * Consider the following where "sk" is a reference counted 73 : : * pointer returned from "sk = bpf_sk_lookup_tcp();": 74 : : * 75 : : * 1: sk = bpf_sk_lookup_tcp(); 76 : : * 2: if (!sk) { return 0; } 77 : : * 3: fullsock = bpf_sk_fullsock(sk); 78 : : * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 79 : : * 5: tp = bpf_tcp_sock(fullsock); 80 : : * 6: if (!tp) { bpf_sk_release(sk); return 0; } 81 : : * 7: bpf_sk_release(sk); 82 : : * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 83 : : * 84 : : * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 85 : : * "tp" ptr should be invalidated also. In order to do that, 86 : : * the reg holding "fullsock" and "sk" need to remember 87 : : * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 88 : : * such that the verifier can reset all regs which have 89 : : * ref_obj_id matching the sk_reg->id. 90 : : * 91 : : * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 92 : : * sk_reg->id will stay as NULL-marking purpose only. 93 : : * After NULL-marking is done, sk_reg->id can be reset to 0. 94 : : * 95 : : * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 96 : : * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 97 : : * 98 : : * After "tp = bpf_tcp_sock(fullsock);" at line 5, 99 : : * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 100 : : * which is the same as sk_reg->ref_obj_id. 101 : : * 102 : : * From the verifier perspective, if sk, fullsock and tp 103 : : * are not NULL, they are the same ptr with different 104 : : * reg->type. In particular, bpf_sk_release(tp) is also 105 : : * allowed and has the same effect as bpf_sk_release(sk). 106 : : */ 107 : : u32 ref_obj_id; 108 : : /* For scalar types (SCALAR_VALUE), this represents our knowledge of 109 : : * the actual value. 110 : : * For pointer types, this represents the variable part of the offset 111 : : * from the pointed-to object, and is shared with all bpf_reg_states 112 : : * with the same id as us. 113 : : */ 114 : : struct tnum var_off; 115 : : /* Used to determine if any memory access using this register will 116 : : * result in a bad access. 117 : : * These refer to the same value as var_off, not necessarily the actual 118 : : * contents of the register. 119 : : */ 120 : : s64 smin_value; /* minimum possible (s64)value */ 121 : : s64 smax_value; /* maximum possible (s64)value */ 122 : : u64 umin_value; /* minimum possible (u64)value */ 123 : : u64 umax_value; /* maximum possible (u64)value */ 124 : : /* parentage chain for liveness checking */ 125 : : struct bpf_reg_state *parent; 126 : : /* Inside the callee two registers can be both PTR_TO_STACK like 127 : : * R1=fp-8 and R2=fp-8, but one of them points to this function stack 128 : : * while another to the caller's stack. To differentiate them 'frameno' 129 : : * is used which is an index in bpf_verifier_state->frame[] array 130 : : * pointing to bpf_func_state. 131 : : */ 132 : : u32 frameno; 133 : : /* Tracks subreg definition. The stored value is the insn_idx of the 134 : : * writing insn. This is safe because subreg_def is used before any insn 135 : : * patching which only happens after main verification finished. 136 : : */ 137 : : s32 subreg_def; 138 : : enum bpf_reg_liveness live; 139 : : /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 140 : : bool precise; 141 : : }; 142 : : 143 : : enum bpf_stack_slot_type { 144 : : STACK_INVALID, /* nothing was stored in this stack slot */ 145 : : STACK_SPILL, /* register spilled into stack */ 146 : : STACK_MISC, /* BPF program wrote some data into this slot */ 147 : : STACK_ZERO, /* BPF program wrote constant zero */ 148 : : }; 149 : : 150 : : #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 151 : : 152 : : struct bpf_stack_state { 153 : : struct bpf_reg_state spilled_ptr; 154 : : u8 slot_type[BPF_REG_SIZE]; 155 : : }; 156 : : 157 : : struct bpf_reference_state { 158 : : /* Track each reference created with a unique id, even if the same 159 : : * instruction creates the reference multiple times (eg, via CALL). 160 : : */ 161 : : int id; 162 : : /* Instruction where the allocation of this reference occurred. This 163 : : * is used purely to inform the user of a reference leak. 164 : : */ 165 : : int insn_idx; 166 : : }; 167 : : 168 : : /* state of the program: 169 : : * type of all registers and stack info 170 : : */ 171 : : struct bpf_func_state { 172 : : struct bpf_reg_state regs[MAX_BPF_REG]; 173 : : /* index of call instruction that called into this func */ 174 : : int callsite; 175 : : /* stack frame number of this function state from pov of 176 : : * enclosing bpf_verifier_state. 177 : : * 0 = main function, 1 = first callee. 178 : : */ 179 : : u32 frameno; 180 : : /* subprog number == index within subprog_stack_depth 181 : : * zero == main subprog 182 : : */ 183 : : u32 subprogno; 184 : : 185 : : /* The following fields should be last. See copy_func_state() */ 186 : : int acquired_refs; 187 : : struct bpf_reference_state *refs; 188 : : int allocated_stack; 189 : : struct bpf_stack_state *stack; 190 : : }; 191 : : 192 : : struct bpf_idx_pair { 193 : : u32 prev_idx; 194 : : u32 idx; 195 : : }; 196 : : 197 : : #define MAX_CALL_FRAMES 8 198 : : struct bpf_verifier_state { 199 : : /* call stack tracking */ 200 : : struct bpf_func_state *frame[MAX_CALL_FRAMES]; 201 : : struct bpf_verifier_state *parent; 202 : : /* 203 : : * 'branches' field is the number of branches left to explore: 204 : : * 0 - all possible paths from this state reached bpf_exit or 205 : : * were safely pruned 206 : : * 1 - at least one path is being explored. 207 : : * This state hasn't reached bpf_exit 208 : : * 2 - at least two paths are being explored. 209 : : * This state is an immediate parent of two children. 210 : : * One is fallthrough branch with branches==1 and another 211 : : * state is pushed into stack (to be explored later) also with 212 : : * branches==1. The parent of this state has branches==1. 213 : : * The verifier state tree connected via 'parent' pointer looks like: 214 : : * 1 215 : : * 1 216 : : * 2 -> 1 (first 'if' pushed into stack) 217 : : * 1 218 : : * 2 -> 1 (second 'if' pushed into stack) 219 : : * 1 220 : : * 1 221 : : * 1 bpf_exit. 222 : : * 223 : : * Once do_check() reaches bpf_exit, it calls update_branch_counts() 224 : : * and the verifier state tree will look: 225 : : * 1 226 : : * 1 227 : : * 2 -> 1 (first 'if' pushed into stack) 228 : : * 1 229 : : * 1 -> 1 (second 'if' pushed into stack) 230 : : * 0 231 : : * 0 232 : : * 0 bpf_exit. 233 : : * After pop_stack() the do_check() will resume at second 'if'. 234 : : * 235 : : * If is_state_visited() sees a state with branches > 0 it means 236 : : * there is a loop. If such state is exactly equal to the current state 237 : : * it's an infinite loop. Note states_equal() checks for states 238 : : * equvalency, so two states being 'states_equal' does not mean 239 : : * infinite loop. The exact comparison is provided by 240 : : * states_maybe_looping() function. It's a stronger pre-check and 241 : : * much faster than states_equal(). 242 : : * 243 : : * This algorithm may not find all possible infinite loops or 244 : : * loop iteration count may be too high. 245 : : * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 246 : : */ 247 : : u32 branches; 248 : : u32 insn_idx; 249 : : u32 curframe; 250 : : u32 active_spin_lock; 251 : : bool speculative; 252 : : 253 : : /* first and last insn idx of this verifier state */ 254 : : u32 first_insn_idx; 255 : : u32 last_insn_idx; 256 : : /* jmp history recorded from first to last. 257 : : * backtracking is using it to go from last to first. 258 : : * For most states jmp_history_cnt is [0-3]. 259 : : * For loops can go up to ~40. 260 : : */ 261 : : struct bpf_idx_pair *jmp_history; 262 : : u32 jmp_history_cnt; 263 : : }; 264 : : 265 : : #define bpf_get_spilled_reg(slot, frame) \ 266 : : (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 267 : : (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 268 : : ? &frame->stack[slot].spilled_ptr : NULL) 269 : : 270 : : /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 271 : : #define bpf_for_each_spilled_reg(iter, frame, reg) \ 272 : : for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 273 : : iter < frame->allocated_stack / BPF_REG_SIZE; \ 274 : : iter++, reg = bpf_get_spilled_reg(iter, frame)) 275 : : 276 : : /* linked list of verifier states used to prune search */ 277 : : struct bpf_verifier_state_list { 278 : : struct bpf_verifier_state state; 279 : : struct bpf_verifier_state_list *next; 280 : : int miss_cnt, hit_cnt; 281 : : }; 282 : : 283 : : /* Possible states for alu_state member. */ 284 : : #define BPF_ALU_SANITIZE_SRC 1U 285 : : #define BPF_ALU_SANITIZE_DST 2U 286 : : #define BPF_ALU_NEG_VALUE (1U << 2) 287 : : #define BPF_ALU_NON_POINTER (1U << 3) 288 : : #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 289 : : BPF_ALU_SANITIZE_DST) 290 : : 291 : : struct bpf_insn_aux_data { 292 : : union { 293 : : enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 294 : : unsigned long map_state; /* pointer/poison value for maps */ 295 : : s32 call_imm; /* saved imm field of call insn */ 296 : : u32 alu_limit; /* limit for add/sub register with pointer */ 297 : : struct { 298 : : u32 map_index; /* index into used_maps[] */ 299 : : u32 map_off; /* offset from value base address */ 300 : : }; 301 : : }; 302 : : int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 303 : : int sanitize_stack_off; /* stack slot to be cleared */ 304 : : bool seen; /* this insn was processed by the verifier */ 305 : : bool zext_dst; /* this insn zero extends dst reg */ 306 : : u8 alu_state; /* used in combination with alu_limit */ 307 : : bool prune_point; 308 : : unsigned int orig_idx; /* original instruction index */ 309 : : }; 310 : : 311 : : #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 312 : : 313 : : #define BPF_VERIFIER_TMP_LOG_SIZE 1024 314 : : 315 : : struct bpf_verifier_log { 316 : : u32 level; 317 : : char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 318 : : char __user *ubuf; 319 : : u32 len_used; 320 : : u32 len_total; 321 : : }; 322 : : 323 : : static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 324 : : { 325 : 0 : return log->len_used >= log->len_total - 1; 326 : : } 327 : : 328 : : #define BPF_LOG_LEVEL1 1 329 : : #define BPF_LOG_LEVEL2 2 330 : : #define BPF_LOG_STATS 4 331 : : #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 332 : : #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 333 : : 334 : : static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 335 : : { 336 : 3 : return log->level && log->ubuf && !bpf_verifier_log_full(log); 337 : : } 338 : : 339 : : #define BPF_MAX_SUBPROGS 256 340 : : 341 : : struct bpf_subprog_info { 342 : : u32 start; /* insn idx of function entry point */ 343 : : u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 344 : : u16 stack_depth; /* max. stack depth used by this function */ 345 : : }; 346 : : 347 : : /* single container for all structs 348 : : * one verifier_env per bpf_check() call 349 : : */ 350 : : struct bpf_verifier_env { 351 : : u32 insn_idx; 352 : : u32 prev_insn_idx; 353 : : struct bpf_prog *prog; /* eBPF program being verified */ 354 : : const struct bpf_verifier_ops *ops; 355 : : struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 356 : : int stack_size; /* number of states to be processed */ 357 : : bool strict_alignment; /* perform strict pointer alignment checks */ 358 : : bool test_state_freq; /* test verifier with different pruning frequency */ 359 : : struct bpf_verifier_state *cur_state; /* current verifier state */ 360 : : struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 361 : : struct bpf_verifier_state_list *free_list; 362 : : struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 363 : : u32 used_map_cnt; /* number of used maps */ 364 : : u32 id_gen; /* used to generate unique reg IDs */ 365 : : bool allow_ptr_leaks; 366 : : bool seen_direct_write; 367 : : struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 368 : : const struct bpf_line_info *prev_linfo; 369 : : struct bpf_verifier_log log; 370 : : struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 371 : : struct { 372 : : int *insn_state; 373 : : int *insn_stack; 374 : : int cur_stack; 375 : : } cfg; 376 : : u32 subprog_cnt; 377 : : /* number of instructions analyzed by the verifier */ 378 : : u32 prev_insn_processed, insn_processed; 379 : : /* number of jmps, calls, exits analyzed so far */ 380 : : u32 prev_jmps_processed, jmps_processed; 381 : : /* total verification time */ 382 : : u64 verification_time; 383 : : /* maximum number of verifier states kept in 'branching' instructions */ 384 : : u32 max_states_per_insn; 385 : : /* total number of allocated verifier states */ 386 : : u32 total_states; 387 : : /* some states are freed during program analysis. 388 : : * this is peak number of states. this number dominates kernel 389 : : * memory consumption during verification 390 : : */ 391 : : u32 peak_states; 392 : : /* longest register parentage chain walked for liveness marking */ 393 : : u32 longest_mark_read_walk; 394 : : }; 395 : : 396 : : __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 397 : : const char *fmt, va_list args); 398 : : __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 399 : : const char *fmt, ...); 400 : : 401 : : static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 402 : : { 403 : 3 : struct bpf_verifier_state *cur = env->cur_state; 404 : : 405 : 3 : return cur->frame[cur->curframe]; 406 : : } 407 : : 408 : : static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 409 : : { 410 : 3 : return cur_func(env)->regs; 411 : : } 412 : : 413 : : int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 414 : : int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 415 : : int insn_idx, int prev_insn_idx); 416 : : int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 417 : : void 418 : : bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 419 : : struct bpf_insn *insn); 420 : : void 421 : : bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 422 : : 423 : : #endif /* _LINUX_BPF_VERIFIER_H */