Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0 */ 2 : : #ifndef __LINUX_GFP_H 3 : : #define __LINUX_GFP_H 4 : : 5 : : #include <linux/mmdebug.h> 6 : : #include <linux/mmzone.h> 7 : : #include <linux/stddef.h> 8 : : #include <linux/linkage.h> 9 : : #include <linux/topology.h> 10 : : 11 : : struct vm_area_struct; 12 : : 13 : : /* 14 : : * In case of changes, please don't forget to update 15 : : * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 16 : : */ 17 : : 18 : : /* Plain integer GFP bitmasks. Do not use this directly. */ 19 : : #define ___GFP_DMA 0x01u 20 : : #define ___GFP_HIGHMEM 0x02u 21 : : #define ___GFP_DMA32 0x04u 22 : : #define ___GFP_MOVABLE 0x08u 23 : : #define ___GFP_RECLAIMABLE 0x10u 24 : : #define ___GFP_HIGH 0x20u 25 : : #define ___GFP_IO 0x40u 26 : : #define ___GFP_FS 0x80u 27 : : #define ___GFP_ZERO 0x100u 28 : : #define ___GFP_ATOMIC 0x200u 29 : : #define ___GFP_DIRECT_RECLAIM 0x400u 30 : : #define ___GFP_KSWAPD_RECLAIM 0x800u 31 : : #define ___GFP_WRITE 0x1000u 32 : : #define ___GFP_NOWARN 0x2000u 33 : : #define ___GFP_RETRY_MAYFAIL 0x4000u 34 : : #define ___GFP_NOFAIL 0x8000u 35 : : #define ___GFP_NORETRY 0x10000u 36 : : #define ___GFP_MEMALLOC 0x20000u 37 : : #define ___GFP_COMP 0x40000u 38 : : #define ___GFP_NOMEMALLOC 0x80000u 39 : : #define ___GFP_HARDWALL 0x100000u 40 : : #define ___GFP_THISNODE 0x200000u 41 : : #define ___GFP_ACCOUNT 0x400000u 42 : : #ifdef CONFIG_LOCKDEP 43 : : #define ___GFP_NOLOCKDEP 0x800000u 44 : : #else 45 : : #define ___GFP_NOLOCKDEP 0 46 : : #endif 47 : : /* If the above are modified, __GFP_BITS_SHIFT may need updating */ 48 : : 49 : : /* 50 : : * Physical address zone modifiers (see linux/mmzone.h - low four bits) 51 : : * 52 : : * Do not put any conditional on these. If necessary modify the definitions 53 : : * without the underscores and use them consistently. The definitions here may 54 : : * be used in bit comparisons. 55 : : */ 56 : : #define __GFP_DMA ((__force gfp_t)___GFP_DMA) 57 : : #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 58 : : #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 59 : : #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 60 : : #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 61 : : 62 : : /** 63 : : * DOC: Page mobility and placement hints 64 : : * 65 : : * Page mobility and placement hints 66 : : * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 67 : : * 68 : : * These flags provide hints about how mobile the page is. Pages with similar 69 : : * mobility are placed within the same pageblocks to minimise problems due 70 : : * to external fragmentation. 71 : : * 72 : : * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be 73 : : * moved by page migration during memory compaction or can be reclaimed. 74 : : * 75 : : * %__GFP_RECLAIMABLE is used for slab allocations that specify 76 : : * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 77 : : * 78 : : * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible, 79 : : * these pages will be spread between local zones to avoid all the dirty 80 : : * pages being in one zone (fair zone allocation policy). 81 : : * 82 : : * %__GFP_HARDWALL enforces the cpuset memory allocation policy. 83 : : * 84 : : * %__GFP_THISNODE forces the allocation to be satisfied from the requested 85 : : * node with no fallbacks or placement policy enforcements. 86 : : * 87 : : * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 88 : : */ 89 : : #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 90 : : #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 91 : : #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 92 : : #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 93 : : #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 94 : : 95 : : /** 96 : : * DOC: Watermark modifiers 97 : : * 98 : : * Watermark modifiers -- controls access to emergency reserves 99 : : * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 : : * 101 : : * %__GFP_HIGH indicates that the caller is high-priority and that granting 102 : : * the request is necessary before the system can make forward progress. 103 : : * For example, creating an IO context to clean pages. 104 : : * 105 : : * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 106 : : * high priority. Users are typically interrupt handlers. This may be 107 : : * used in conjunction with %__GFP_HIGH 108 : : * 109 : : * %__GFP_MEMALLOC allows access to all memory. This should only be used when 110 : : * the caller guarantees the allocation will allow more memory to be freed 111 : : * very shortly e.g. process exiting or swapping. Users either should 112 : : * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 113 : : * 114 : : * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 115 : : * This takes precedence over the %__GFP_MEMALLOC flag if both are set. 116 : : */ 117 : : #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 118 : : #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 119 : : #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 120 : : #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 121 : : 122 : : /** 123 : : * DOC: Reclaim modifiers 124 : : * 125 : : * Reclaim modifiers 126 : : * ~~~~~~~~~~~~~~~~~ 127 : : * 128 : : * %__GFP_IO can start physical IO. 129 : : * 130 : : * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the 131 : : * allocator recursing into the filesystem which might already be holding 132 : : * locks. 133 : : * 134 : : * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 135 : : * This flag can be cleared to avoid unnecessary delays when a fallback 136 : : * option is available. 137 : : * 138 : : * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 139 : : * the low watermark is reached and have it reclaim pages until the high 140 : : * watermark is reached. A caller may wish to clear this flag when fallback 141 : : * options are available and the reclaim is likely to disrupt the system. The 142 : : * canonical example is THP allocation where a fallback is cheap but 143 : : * reclaim/compaction may cause indirect stalls. 144 : : * 145 : : * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 146 : : * 147 : : * The default allocator behavior depends on the request size. We have a concept 148 : : * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER). 149 : : * !costly allocations are too essential to fail so they are implicitly 150 : : * non-failing by default (with some exceptions like OOM victims might fail so 151 : : * the caller still has to check for failures) while costly requests try to be 152 : : * not disruptive and back off even without invoking the OOM killer. 153 : : * The following three modifiers might be used to override some of these 154 : : * implicit rules 155 : : * 156 : : * %__GFP_NORETRY: The VM implementation will try only very lightweight 157 : : * memory direct reclaim to get some memory under memory pressure (thus 158 : : * it can sleep). It will avoid disruptive actions like OOM killer. The 159 : : * caller must handle the failure which is quite likely to happen under 160 : : * heavy memory pressure. The flag is suitable when failure can easily be 161 : : * handled at small cost, such as reduced throughput 162 : : * 163 : : * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim 164 : : * procedures that have previously failed if there is some indication 165 : : * that progress has been made else where. It can wait for other 166 : : * tasks to attempt high level approaches to freeing memory such as 167 : : * compaction (which removes fragmentation) and page-out. 168 : : * There is still a definite limit to the number of retries, but it is 169 : : * a larger limit than with %__GFP_NORETRY. 170 : : * Allocations with this flag may fail, but only when there is 171 : : * genuinely little unused memory. While these allocations do not 172 : : * directly trigger the OOM killer, their failure indicates that 173 : : * the system is likely to need to use the OOM killer soon. The 174 : : * caller must handle failure, but can reasonably do so by failing 175 : : * a higher-level request, or completing it only in a much less 176 : : * efficient manner. 177 : : * If the allocation does fail, and the caller is in a position to 178 : : * free some non-essential memory, doing so could benefit the system 179 : : * as a whole. 180 : : * 181 : : * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 182 : : * cannot handle allocation failures. The allocation could block 183 : : * indefinitely but will never return with failure. Testing for 184 : : * failure is pointless. 185 : : * New users should be evaluated carefully (and the flag should be 186 : : * used only when there is no reasonable failure policy) but it is 187 : : * definitely preferable to use the flag rather than opencode endless 188 : : * loop around allocator. 189 : : * Using this flag for costly allocations is _highly_ discouraged. 190 : : */ 191 : : #define __GFP_IO ((__force gfp_t)___GFP_IO) 192 : : #define __GFP_FS ((__force gfp_t)___GFP_FS) 193 : : #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 194 : : #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 195 : : #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 196 : : #define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) 197 : : #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 198 : : #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 199 : : 200 : : /** 201 : : * DOC: Action modifiers 202 : : * 203 : : * Action modifiers 204 : : * ~~~~~~~~~~~~~~~~ 205 : : * 206 : : * %__GFP_NOWARN suppresses allocation failure reports. 207 : : * 208 : : * %__GFP_COMP address compound page metadata. 209 : : * 210 : : * %__GFP_ZERO returns a zeroed page on success. 211 : : */ 212 : : #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 213 : : #define __GFP_COMP ((__force gfp_t)___GFP_COMP) 214 : : #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 215 : : 216 : : /* Disable lockdep for GFP context tracking */ 217 : : #define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) 218 : : 219 : : /* Room for N __GFP_FOO bits */ 220 : : #define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP)) 221 : : #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 222 : : 223 : : /** 224 : : * DOC: Useful GFP flag combinations 225 : : * 226 : : * Useful GFP flag combinations 227 : : * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 228 : : * 229 : : * Useful GFP flag combinations that are commonly used. It is recommended 230 : : * that subsystems start with one of these combinations and then set/clear 231 : : * %__GFP_FOO flags as necessary. 232 : : * 233 : : * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 234 : : * watermark is applied to allow access to "atomic reserves" 235 : : * 236 : : * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires 237 : : * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 238 : : * 239 : : * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 240 : : * accounted to kmemcg. 241 : : * 242 : : * %GFP_NOWAIT is for kernel allocations that should not stall for direct 243 : : * reclaim, start physical IO or use any filesystem callback. 244 : : * 245 : : * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages 246 : : * that do not require the starting of any physical IO. 247 : : * Please try to avoid using this flag directly and instead use 248 : : * memalloc_noio_{save,restore} to mark the whole scope which cannot 249 : : * perform any IO with a short explanation why. All allocation requests 250 : : * will inherit GFP_NOIO implicitly. 251 : : * 252 : : * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 253 : : * Please try to avoid using this flag directly and instead use 254 : : * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't 255 : : * recurse into the FS layer with a short explanation why. All allocation 256 : : * requests will inherit GFP_NOFS implicitly. 257 : : * 258 : : * %GFP_USER is for userspace allocations that also need to be directly 259 : : * accessibly by the kernel or hardware. It is typically used by hardware 260 : : * for buffers that are mapped to userspace (e.g. graphics) that hardware 261 : : * still must DMA to. cpuset limits are enforced for these allocations. 262 : : * 263 : : * %GFP_DMA exists for historical reasons and should be avoided where possible. 264 : : * The flags indicates that the caller requires that the lowest zone be 265 : : * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 266 : : * it would require careful auditing as some users really require it and 267 : : * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the 268 : : * lowest zone as a type of emergency reserve. 269 : : * 270 : : * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit 271 : : * address. 272 : : * 273 : : * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 274 : : * do not need to be directly accessible by the kernel but that cannot 275 : : * move once in use. An example may be a hardware allocation that maps 276 : : * data directly into userspace but has no addressing limitations. 277 : : * 278 : : * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 279 : : * need direct access to but can use kmap() when access is required. They 280 : : * are expected to be movable via page reclaim or page migration. Typically, 281 : : * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE. 282 : : * 283 : : * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They 284 : : * are compound allocations that will generally fail quickly if memory is not 285 : : * available and will not wake kswapd/kcompactd on failure. The _LIGHT 286 : : * version does not attempt reclaim/compaction at all and is by default used 287 : : * in page fault path, while the non-light is used by khugepaged. 288 : : */ 289 : : #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 290 : : #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 291 : : #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 292 : : #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 293 : : #define GFP_NOIO (__GFP_RECLAIM) 294 : : #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 295 : : #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 296 : : #define GFP_DMA __GFP_DMA 297 : : #define GFP_DMA32 __GFP_DMA32 298 : : #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 299 : : #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 300 : : #define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 301 : : __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 302 : : #define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 303 : : 304 : : /* Convert GFP flags to their corresponding migrate type */ 305 : : #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 306 : : #define GFP_MOVABLE_SHIFT 3 307 : : 308 : : static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 309 : : { 310 : : VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 311 : : BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 312 : : BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 313 : : 314 : 3 : if (unlikely(page_group_by_mobility_disabled)) 315 : : return MIGRATE_UNMOVABLE; 316 : : 317 : : /* Group based on mobility */ 318 : 3 : return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 319 : : } 320 : : #undef GFP_MOVABLE_MASK 321 : : #undef GFP_MOVABLE_SHIFT 322 : : 323 : : static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 324 : : { 325 : 3 : return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 326 : : } 327 : : 328 : : /** 329 : : * gfpflags_normal_context - is gfp_flags a normal sleepable context? 330 : : * @gfp_flags: gfp_flags to test 331 : : * 332 : : * Test whether @gfp_flags indicates that the allocation is from the 333 : : * %current context and allowed to sleep. 334 : : * 335 : : * An allocation being allowed to block doesn't mean it owns the %current 336 : : * context. When direct reclaim path tries to allocate memory, the 337 : : * allocation context is nested inside whatever %current was doing at the 338 : : * time of the original allocation. The nested allocation may be allowed 339 : : * to block but modifying anything %current owns can corrupt the outer 340 : : * context's expectations. 341 : : * 342 : : * %true result from this function indicates that the allocation context 343 : : * can sleep and use anything that's associated with %current. 344 : : */ 345 : : static inline bool gfpflags_normal_context(const gfp_t gfp_flags) 346 : : { 347 : 3 : return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) == 348 : : __GFP_DIRECT_RECLAIM; 349 : : } 350 : : 351 : : #ifdef CONFIG_HIGHMEM 352 : : #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 353 : : #else 354 : : #define OPT_ZONE_HIGHMEM ZONE_NORMAL 355 : : #endif 356 : : 357 : : #ifdef CONFIG_ZONE_DMA 358 : : #define OPT_ZONE_DMA ZONE_DMA 359 : : #else 360 : : #define OPT_ZONE_DMA ZONE_NORMAL 361 : : #endif 362 : : 363 : : #ifdef CONFIG_ZONE_DMA32 364 : : #define OPT_ZONE_DMA32 ZONE_DMA32 365 : : #else 366 : : #define OPT_ZONE_DMA32 ZONE_NORMAL 367 : : #endif 368 : : 369 : : /* 370 : : * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 371 : : * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT 372 : : * bits long and there are 16 of them to cover all possible combinations of 373 : : * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 374 : : * 375 : : * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 376 : : * But GFP_MOVABLE is not only a zone specifier but also an allocation 377 : : * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 378 : : * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 379 : : * 380 : : * bit result 381 : : * ================= 382 : : * 0x0 => NORMAL 383 : : * 0x1 => DMA or NORMAL 384 : : * 0x2 => HIGHMEM or NORMAL 385 : : * 0x3 => BAD (DMA+HIGHMEM) 386 : : * 0x4 => DMA32 or NORMAL 387 : : * 0x5 => BAD (DMA+DMA32) 388 : : * 0x6 => BAD (HIGHMEM+DMA32) 389 : : * 0x7 => BAD (HIGHMEM+DMA32+DMA) 390 : : * 0x8 => NORMAL (MOVABLE+0) 391 : : * 0x9 => DMA or NORMAL (MOVABLE+DMA) 392 : : * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 393 : : * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 394 : : * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) 395 : : * 0xd => BAD (MOVABLE+DMA32+DMA) 396 : : * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 397 : : * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 398 : : * 399 : : * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 400 : : */ 401 : : 402 : : #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 403 : : /* ZONE_DEVICE is not a valid GFP zone specifier */ 404 : : #define GFP_ZONES_SHIFT 2 405 : : #else 406 : : #define GFP_ZONES_SHIFT ZONES_SHIFT 407 : : #endif 408 : : 409 : : #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 410 : : #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 411 : : #endif 412 : : 413 : : #define GFP_ZONE_TABLE ( \ 414 : : (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 415 : : | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 416 : : | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 417 : : | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 418 : : | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 419 : : | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 420 : : | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 421 : : | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 422 : : ) 423 : : 424 : : /* 425 : : * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 426 : : * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 427 : : * entry starting with bit 0. Bit is set if the combination is not 428 : : * allowed. 429 : : */ 430 : : #define GFP_ZONE_BAD ( \ 431 : : 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 432 : : | 1 << (___GFP_DMA | ___GFP_DMA32) \ 433 : : | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 434 : : | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 435 : : | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 436 : : | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 437 : : | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 438 : : | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 439 : : ) 440 : : 441 : : static inline enum zone_type gfp_zone(gfp_t flags) 442 : : { 443 : : enum zone_type z; 444 : 3 : int bit = (__force int) (flags & GFP_ZONEMASK); 445 : : 446 : 3 : z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 447 : : ((1 << GFP_ZONES_SHIFT) - 1); 448 : : VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 449 : : return z; 450 : : } 451 : : 452 : : /* 453 : : * There is only one page-allocator function, and two main namespaces to 454 : : * it. The alloc_page*() variants return 'struct page *' and as such 455 : : * can allocate highmem pages, the *get*page*() variants return 456 : : * virtual kernel addresses to the allocated page(s). 457 : : */ 458 : : 459 : : static inline int gfp_zonelist(gfp_t flags) 460 : : { 461 : : #ifdef CONFIG_NUMA 462 : : if (unlikely(flags & __GFP_THISNODE)) 463 : : return ZONELIST_NOFALLBACK; 464 : : #endif 465 : : return ZONELIST_FALLBACK; 466 : : } 467 : : 468 : : /* 469 : : * We get the zone list from the current node and the gfp_mask. 470 : : * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 471 : : * There are two zonelists per node, one for all zones with memory and 472 : : * one containing just zones from the node the zonelist belongs to. 473 : : * 474 : : * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 475 : : * optimized to &contig_page_data at compile-time. 476 : : */ 477 : : static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 478 : : { 479 : : return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 480 : : } 481 : : 482 : : #ifndef HAVE_ARCH_FREE_PAGE 483 : : static inline void arch_free_page(struct page *page, int order) { } 484 : : #endif 485 : : #ifndef HAVE_ARCH_ALLOC_PAGE 486 : : static inline void arch_alloc_page(struct page *page, int order) { } 487 : : #endif 488 : : 489 : : struct page * 490 : : __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 491 : : nodemask_t *nodemask); 492 : : 493 : : static inline struct page * 494 : : __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) 495 : : { 496 : 3 : return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); 497 : : } 498 : : 499 : : /* 500 : : * Allocate pages, preferring the node given as nid. The node must be valid and 501 : : * online. For more general interface, see alloc_pages_node(). 502 : : */ 503 : : static inline struct page * 504 : : __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 505 : : { 506 : : VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 507 : : VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid)); 508 : : 509 : : return __alloc_pages(gfp_mask, order, nid); 510 : : } 511 : : 512 : : /* 513 : : * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 514 : : * prefer the current CPU's closest node. Otherwise node must be valid and 515 : : * online. 516 : : */ 517 : 0 : static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 518 : : unsigned int order) 519 : : { 520 : 3 : if (nid == NUMA_NO_NODE) 521 : : nid = numa_mem_id(); 522 : : 523 : 0 : return __alloc_pages_node(nid, gfp_mask, order); 524 : : } 525 : : 526 : : #ifdef CONFIG_NUMA 527 : : extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 528 : : 529 : : static inline struct page * 530 : : alloc_pages(gfp_t gfp_mask, unsigned int order) 531 : : { 532 : : return alloc_pages_current(gfp_mask, order); 533 : : } 534 : : extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 535 : : struct vm_area_struct *vma, unsigned long addr, 536 : : int node, bool hugepage); 537 : : #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 538 : : alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 539 : : #else 540 : : #define alloc_pages(gfp_mask, order) \ 541 : : alloc_pages_node(numa_node_id(), gfp_mask, order) 542 : : #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 543 : : alloc_pages(gfp_mask, order) 544 : : #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 545 : : alloc_pages(gfp_mask, order) 546 : : #endif 547 : : #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 548 : : #define alloc_page_vma(gfp_mask, vma, addr) \ 549 : : alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 550 : : #define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 551 : : alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 552 : : 553 : : extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 554 : : extern unsigned long get_zeroed_page(gfp_t gfp_mask); 555 : : 556 : : void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 557 : : void free_pages_exact(void *virt, size_t size); 558 : : void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 559 : : 560 : : #define __get_free_page(gfp_mask) \ 561 : : __get_free_pages((gfp_mask), 0) 562 : : 563 : : #define __get_dma_pages(gfp_mask, order) \ 564 : : __get_free_pages((gfp_mask) | GFP_DMA, (order)) 565 : : 566 : : extern void __free_pages(struct page *page, unsigned int order); 567 : : extern void free_pages(unsigned long addr, unsigned int order); 568 : : extern void free_unref_page(struct page *page); 569 : : extern void free_unref_page_list(struct list_head *list); 570 : : 571 : : struct page_frag_cache; 572 : : extern void __page_frag_cache_drain(struct page *page, unsigned int count); 573 : : extern void *page_frag_alloc(struct page_frag_cache *nc, 574 : : unsigned int fragsz, gfp_t gfp_mask); 575 : : extern void page_frag_free(void *addr); 576 : : 577 : : #define __free_page(page) __free_pages((page), 0) 578 : : #define free_page(addr) free_pages((addr), 0) 579 : : 580 : : void page_alloc_init(void); 581 : : void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 582 : : void drain_all_pages(struct zone *zone); 583 : : void drain_local_pages(struct zone *zone); 584 : : 585 : : void page_alloc_init_late(void); 586 : : 587 : : /* 588 : : * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 589 : : * GFP flags are used before interrupts are enabled. Once interrupts are 590 : : * enabled, it is set to __GFP_BITS_MASK while the system is running. During 591 : : * hibernation, it is used by PM to avoid I/O during memory allocation while 592 : : * devices are suspended. 593 : : */ 594 : : extern gfp_t gfp_allowed_mask; 595 : : 596 : : /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 597 : : bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 598 : : 599 : : extern void pm_restrict_gfp_mask(void); 600 : : extern void pm_restore_gfp_mask(void); 601 : : 602 : : #ifdef CONFIG_PM_SLEEP 603 : : extern bool pm_suspended_storage(void); 604 : : #else 605 : : static inline bool pm_suspended_storage(void) 606 : : { 607 : : return false; 608 : : } 609 : : #endif /* CONFIG_PM_SLEEP */ 610 : : 611 : : #ifdef CONFIG_CONTIG_ALLOC 612 : : /* The below functions must be run on a range from a single zone. */ 613 : : extern int alloc_contig_range(unsigned long start, unsigned long end, 614 : : unsigned migratetype, gfp_t gfp_mask); 615 : : #endif 616 : : void free_contig_range(unsigned long pfn, unsigned int nr_pages); 617 : : 618 : : #ifdef CONFIG_CMA 619 : : /* CMA stuff */ 620 : : extern void init_cma_reserved_pageblock(struct page *page); 621 : : #endif 622 : : 623 : : #endif /* __LINUX_GFP_H */