Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0 */
2 : : #ifndef _LINUX_WAIT_BIT_H
3 : : #define _LINUX_WAIT_BIT_H
4 : :
5 : : /*
6 : : * Linux wait-bit related types and methods:
7 : : */
8 : : #include <linux/wait.h>
9 : :
10 : : struct wait_bit_key {
11 : : void *flags;
12 : : int bit_nr;
13 : : unsigned long timeout;
14 : : };
15 : :
16 : : struct wait_bit_queue_entry {
17 : : struct wait_bit_key key;
18 : : struct wait_queue_entry wq_entry;
19 : : };
20 : :
21 : : #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \
22 : : { .flags = word, .bit_nr = bit, }
23 : :
24 : : typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
25 : :
26 : : void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit);
27 : : int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
28 : : int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
29 : : void wake_up_bit(void *word, int bit);
30 : : int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode);
31 : : int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
32 : : int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode);
33 : : struct wait_queue_head *bit_waitqueue(void *word, int bit);
34 : : extern void __init wait_bit_init(void);
35 : :
36 : : int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
37 : :
38 : : #define DEFINE_WAIT_BIT(name, word, bit) \
39 : : struct wait_bit_queue_entry name = { \
40 : : .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \
41 : : .wq_entry = { \
42 : : .private = current, \
43 : : .func = wake_bit_function, \
44 : : .entry = \
45 : : LIST_HEAD_INIT((name).wq_entry.entry), \
46 : : }, \
47 : : }
48 : :
49 : : extern int bit_wait(struct wait_bit_key *key, int mode);
50 : : extern int bit_wait_io(struct wait_bit_key *key, int mode);
51 : : extern int bit_wait_timeout(struct wait_bit_key *key, int mode);
52 : : extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode);
53 : :
54 : : /**
55 : : * wait_on_bit - wait for a bit to be cleared
56 : : * @word: the word being waited on, a kernel virtual address
57 : : * @bit: the bit of the word being waited on
58 : : * @mode: the task state to sleep in
59 : : *
60 : : * There is a standard hashed waitqueue table for generic use. This
61 : : * is the part of the hashtable's accessor API that waits on a bit.
62 : : * For instance, if one were to have waiters on a bitflag, one would
63 : : * call wait_on_bit() in threads waiting for the bit to clear.
64 : : * One uses wait_on_bit() where one is waiting for the bit to clear,
65 : : * but has no intention of setting it.
66 : : * Returned value will be zero if the bit was cleared, or non-zero
67 : : * if the process received a signal and the mode permitted wakeup
68 : : * on that signal.
69 : : */
70 : : static inline int
71 : 3 : wait_on_bit(unsigned long *word, int bit, unsigned mode)
72 : : {
73 : 3 : might_sleep();
74 : 3 : if (!test_bit(bit, word))
75 : : return 0;
76 : 0 : return out_of_line_wait_on_bit(word, bit,
77 : : bit_wait,
78 : : mode);
79 : : }
80 : :
81 : : /**
82 : : * wait_on_bit_io - wait for a bit to be cleared
83 : : * @word: the word being waited on, a kernel virtual address
84 : : * @bit: the bit of the word being waited on
85 : : * @mode: the task state to sleep in
86 : : *
87 : : * Use the standard hashed waitqueue table to wait for a bit
88 : : * to be cleared. This is similar to wait_on_bit(), but calls
89 : : * io_schedule() instead of schedule() for the actual waiting.
90 : : *
91 : : * Returned value will be zero if the bit was cleared, or non-zero
92 : : * if the process received a signal and the mode permitted wakeup
93 : : * on that signal.
94 : : */
95 : : static inline int
96 : 3 : wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
97 : : {
98 : 3 : might_sleep();
99 : 3 : if (!test_bit(bit, word))
100 : : return 0;
101 : 3 : return out_of_line_wait_on_bit(word, bit,
102 : : bit_wait_io,
103 : : mode);
104 : : }
105 : :
106 : : /**
107 : : * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
108 : : * @word: the word being waited on, a kernel virtual address
109 : : * @bit: the bit of the word being waited on
110 : : * @mode: the task state to sleep in
111 : : * @timeout: timeout, in jiffies
112 : : *
113 : : * Use the standard hashed waitqueue table to wait for a bit
114 : : * to be cleared. This is similar to wait_on_bit(), except also takes a
115 : : * timeout parameter.
116 : : *
117 : : * Returned value will be zero if the bit was cleared before the
118 : : * @timeout elapsed, or non-zero if the @timeout elapsed or process
119 : : * received a signal and the mode permitted wakeup on that signal.
120 : : */
121 : : static inline int
122 : : wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
123 : : unsigned long timeout)
124 : : {
125 : : might_sleep();
126 : : if (!test_bit(bit, word))
127 : : return 0;
128 : : return out_of_line_wait_on_bit_timeout(word, bit,
129 : : bit_wait_timeout,
130 : : mode, timeout);
131 : : }
132 : :
133 : : /**
134 : : * wait_on_bit_action - wait for a bit to be cleared
135 : : * @word: the word being waited on, a kernel virtual address
136 : : * @bit: the bit of the word being waited on
137 : : * @action: the function used to sleep, which may take special actions
138 : : * @mode: the task state to sleep in
139 : : *
140 : : * Use the standard hashed waitqueue table to wait for a bit
141 : : * to be cleared, and allow the waiting action to be specified.
142 : : * This is like wait_on_bit() but allows fine control of how the waiting
143 : : * is done.
144 : : *
145 : : * Returned value will be zero if the bit was cleared, or non-zero
146 : : * if the process received a signal and the mode permitted wakeup
147 : : * on that signal.
148 : : */
149 : : static inline int
150 : 0 : wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
151 : : unsigned mode)
152 : : {
153 : 0 : might_sleep();
154 : 0 : if (!test_bit(bit, word))
155 : : return 0;
156 : 0 : return out_of_line_wait_on_bit(word, bit, action, mode);
157 : : }
158 : :
159 : : /**
160 : : * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
161 : : * @word: the word being waited on, a kernel virtual address
162 : : * @bit: the bit of the word being waited on
163 : : * @mode: the task state to sleep in
164 : : *
165 : : * There is a standard hashed waitqueue table for generic use. This
166 : : * is the part of the hashtable's accessor API that waits on a bit
167 : : * when one intends to set it, for instance, trying to lock bitflags.
168 : : * For instance, if one were to have waiters trying to set bitflag
169 : : * and waiting for it to clear before setting it, one would call
170 : : * wait_on_bit() in threads waiting to be able to set the bit.
171 : : * One uses wait_on_bit_lock() where one is waiting for the bit to
172 : : * clear with the intention of setting it, and when done, clearing it.
173 : : *
174 : : * Returns zero if the bit was (eventually) found to be clear and was
175 : : * set. Returns non-zero if a signal was delivered to the process and
176 : : * the @mode allows that signal to wake the process.
177 : : */
178 : : static inline int
179 : 0 : wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
180 : : {
181 : 0 : might_sleep();
182 : 0 : if (!test_and_set_bit(bit, word))
183 : : return 0;
184 : 0 : return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
185 : : }
186 : :
187 : : /**
188 : : * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
189 : : * @word: the word being waited on, a kernel virtual address
190 : : * @bit: the bit of the word being waited on
191 : : * @mode: the task state to sleep in
192 : : *
193 : : * Use the standard hashed waitqueue table to wait for a bit
194 : : * to be cleared and then to atomically set it. This is similar
195 : : * to wait_on_bit(), but calls io_schedule() instead of schedule()
196 : : * for the actual waiting.
197 : : *
198 : : * Returns zero if the bit was (eventually) found to be clear and was
199 : : * set. Returns non-zero if a signal was delivered to the process and
200 : : * the @mode allows that signal to wake the process.
201 : : */
202 : : static inline int
203 : 3 : wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
204 : : {
205 : 3 : might_sleep();
206 : 3 : if (!test_and_set_bit(bit, word))
207 : : return 0;
208 : 3 : return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
209 : : }
210 : :
211 : : /**
212 : : * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
213 : : * @word: the word being waited on, a kernel virtual address
214 : : * @bit: the bit of the word being waited on
215 : : * @action: the function used to sleep, which may take special actions
216 : : * @mode: the task state to sleep in
217 : : *
218 : : * Use the standard hashed waitqueue table to wait for a bit
219 : : * to be cleared and then to set it, and allow the waiting action
220 : : * to be specified.
221 : : * This is like wait_on_bit() but allows fine control of how the waiting
222 : : * is done.
223 : : *
224 : : * Returns zero if the bit was (eventually) found to be clear and was
225 : : * set. Returns non-zero if a signal was delivered to the process and
226 : : * the @mode allows that signal to wake the process.
227 : : */
228 : : static inline int
229 : 0 : wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
230 : : unsigned mode)
231 : : {
232 : 0 : might_sleep();
233 : 0 : if (!test_and_set_bit(bit, word))
234 : : return 0;
235 : 0 : return out_of_line_wait_on_bit_lock(word, bit, action, mode);
236 : : }
237 : :
238 : : extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags);
239 : : extern void wake_up_var(void *var);
240 : : extern wait_queue_head_t *__var_waitqueue(void *p);
241 : :
242 : : #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \
243 : : ({ \
244 : : __label__ __out; \
245 : : struct wait_queue_head *__wq_head = __var_waitqueue(var); \
246 : : struct wait_bit_queue_entry __wbq_entry; \
247 : : long __ret = ret; /* explicit shadow */ \
248 : : \
249 : : init_wait_var_entry(&__wbq_entry, var, \
250 : : exclusive ? WQ_FLAG_EXCLUSIVE : 0); \
251 : : for (;;) { \
252 : : long __int = prepare_to_wait_event(__wq_head, \
253 : : &__wbq_entry.wq_entry, \
254 : : state); \
255 : : if (condition) \
256 : : break; \
257 : : \
258 : : if (___wait_is_interruptible(state) && __int) { \
259 : : __ret = __int; \
260 : : goto __out; \
261 : : } \
262 : : \
263 : : cmd; \
264 : : } \
265 : : finish_wait(__wq_head, &__wbq_entry.wq_entry); \
266 : : __out: __ret; \
267 : : })
268 : :
269 : : #define __wait_var_event(var, condition) \
270 : : ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \
271 : : schedule())
272 : :
273 : : #define wait_var_event(var, condition) \
274 : : do { \
275 : : might_sleep(); \
276 : : if (condition) \
277 : : break; \
278 : : __wait_var_event(var, condition); \
279 : : } while (0)
280 : :
281 : : #define __wait_var_event_killable(var, condition) \
282 : : ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \
283 : : schedule())
284 : :
285 : : #define wait_var_event_killable(var, condition) \
286 : : ({ \
287 : : int __ret = 0; \
288 : : might_sleep(); \
289 : : if (!(condition)) \
290 : : __ret = __wait_var_event_killable(var, condition); \
291 : : __ret; \
292 : : })
293 : :
294 : : #define __wait_var_event_timeout(var, condition, timeout) \
295 : : ___wait_var_event(var, ___wait_cond_timeout(condition), \
296 : : TASK_UNINTERRUPTIBLE, 0, timeout, \
297 : : __ret = schedule_timeout(__ret))
298 : :
299 : : #define wait_var_event_timeout(var, condition, timeout) \
300 : : ({ \
301 : : long __ret = timeout; \
302 : : might_sleep(); \
303 : : if (!___wait_cond_timeout(condition)) \
304 : : __ret = __wait_var_event_timeout(var, condition, timeout); \
305 : : __ret; \
306 : : })
307 : :
308 : : #define __wait_var_event_interruptible(var, condition) \
309 : : ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \
310 : : schedule())
311 : :
312 : : #define wait_var_event_interruptible(var, condition) \
313 : : ({ \
314 : : int __ret = 0; \
315 : : might_sleep(); \
316 : : if (!(condition)) \
317 : : __ret = __wait_var_event_interruptible(var, condition); \
318 : : __ret; \
319 : : })
320 : :
321 : : /**
322 : : * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit
323 : : *
324 : : * @bit: the bit of the word being waited on
325 : : * @word: the word being waited on, a kernel virtual address
326 : : *
327 : : * You can use this helper if bitflags are manipulated atomically rather than
328 : : * non-atomically under a lock.
329 : : */
330 : : static inline void clear_and_wake_up_bit(int bit, void *word)
331 : : {
332 : : clear_bit_unlock(bit, word);
333 : : /* See wake_up_bit() for which memory barrier you need to use. */
334 : : smp_mb__after_atomic();
335 : : wake_up_bit(word, bit);
336 : : }
337 : :
338 : : #endif /* _LINUX_WAIT_BIT_H */
|