Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0
2 : : /*
3 : : * message.c - synchronous message handling
4 : : *
5 : : * Released under the GPLv2 only.
6 : : */
7 : :
8 : : #include <linux/pci.h> /* for scatterlist macros */
9 : : #include <linux/usb.h>
10 : : #include <linux/module.h>
11 : : #include <linux/slab.h>
12 : : #include <linux/mm.h>
13 : : #include <linux/timer.h>
14 : : #include <linux/ctype.h>
15 : : #include <linux/nls.h>
16 : : #include <linux/device.h>
17 : : #include <linux/scatterlist.h>
18 : : #include <linux/usb/cdc.h>
19 : : #include <linux/usb/quirks.h>
20 : : #include <linux/usb/hcd.h> /* for usbcore internals */
21 : : #include <linux/usb/of.h>
22 : : #include <asm/byteorder.h>
23 : :
24 : : #include "usb.h"
25 : :
26 : : static void cancel_async_set_config(struct usb_device *udev);
27 : :
28 : : struct api_context {
29 : : struct completion done;
30 : : int status;
31 : : };
32 : :
33 : 3 : static void usb_api_blocking_completion(struct urb *urb)
34 : : {
35 : 3 : struct api_context *ctx = urb->context;
36 : :
37 : 3 : ctx->status = urb->status;
38 : 3 : complete(&ctx->done);
39 : 3 : }
40 : :
41 : :
42 : : /*
43 : : * Starts urb and waits for completion or timeout. Note that this call
44 : : * is NOT interruptible. Many device driver i/o requests should be
45 : : * interruptible and therefore these drivers should implement their
46 : : * own interruptible routines.
47 : : */
48 : 3 : static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 : : {
50 : : struct api_context ctx;
51 : : unsigned long expire;
52 : : int retval;
53 : :
54 : : init_completion(&ctx.done);
55 : 3 : urb->context = &ctx;
56 : 3 : urb->actual_length = 0;
57 : 3 : retval = usb_submit_urb(urb, GFP_NOIO);
58 : 3 : if (unlikely(retval))
59 : : goto out;
60 : :
61 : 3 : expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 : 3 : if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 : 0 : usb_kill_urb(urb);
64 : 0 : retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 : :
66 : : dev_dbg(&urb->dev->dev,
67 : : "%s timed out on ep%d%s len=%u/%u\n",
68 : : current->comm,
69 : : usb_endpoint_num(&urb->ep->desc),
70 : : usb_urb_dir_in(urb) ? "in" : "out",
71 : : urb->actual_length,
72 : : urb->transfer_buffer_length);
73 : : } else
74 : 3 : retval = ctx.status;
75 : : out:
76 : 3 : if (actual_length)
77 : 3 : *actual_length = urb->actual_length;
78 : :
79 : 3 : usb_free_urb(urb);
80 : 3 : return retval;
81 : : }
82 : :
83 : : /*-------------------------------------------------------------------*/
84 : : /* returns status (negative) or length (positive) */
85 : 3 : static int usb_internal_control_msg(struct usb_device *usb_dev,
86 : : unsigned int pipe,
87 : : struct usb_ctrlrequest *cmd,
88 : : void *data, int len, int timeout)
89 : : {
90 : : struct urb *urb;
91 : : int retv;
92 : : int length;
93 : :
94 : 3 : urb = usb_alloc_urb(0, GFP_NOIO);
95 : 3 : if (!urb)
96 : : return -ENOMEM;
97 : :
98 : : usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 : : len, usb_api_blocking_completion, NULL);
100 : :
101 : 3 : retv = usb_start_wait_urb(urb, timeout, &length);
102 : 3 : if (retv < 0)
103 : : return retv;
104 : : else
105 : 3 : return length;
106 : : }
107 : :
108 : : /**
109 : : * usb_control_msg - Builds a control urb, sends it off and waits for completion
110 : : * @dev: pointer to the usb device to send the message to
111 : : * @pipe: endpoint "pipe" to send the message to
112 : : * @request: USB message request value
113 : : * @requesttype: USB message request type value
114 : : * @value: USB message value
115 : : * @index: USB message index value
116 : : * @data: pointer to the data to send
117 : : * @size: length in bytes of the data to send
118 : : * @timeout: time in msecs to wait for the message to complete before timing
119 : : * out (if 0 the wait is forever)
120 : : *
121 : : * Context: !in_interrupt ()
122 : : *
123 : : * This function sends a simple control message to a specified endpoint and
124 : : * waits for the message to complete, or timeout.
125 : : *
126 : : * Don't use this function from within an interrupt context. If you need
127 : : * an asynchronous message, or need to send a message from within interrupt
128 : : * context, use usb_submit_urb(). If a thread in your driver uses this call,
129 : : * make sure your disconnect() method can wait for it to complete. Since you
130 : : * don't have a handle on the URB used, you can't cancel the request.
131 : : *
132 : : * Return: If successful, the number of bytes transferred. Otherwise, a negative
133 : : * error number.
134 : : */
135 : 3 : int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 : : __u8 requesttype, __u16 value, __u16 index, void *data,
137 : : __u16 size, int timeout)
138 : : {
139 : : struct usb_ctrlrequest *dr;
140 : : int ret;
141 : :
142 : : dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 : 3 : if (!dr)
144 : : return -ENOMEM;
145 : :
146 : 3 : dr->bRequestType = requesttype;
147 : 3 : dr->bRequest = request;
148 : 3 : dr->wValue = cpu_to_le16(value);
149 : 3 : dr->wIndex = cpu_to_le16(index);
150 : 3 : dr->wLength = cpu_to_le16(size);
151 : :
152 : 3 : ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 : :
154 : : /* Linger a bit, prior to the next control message. */
155 : 3 : if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 : 0 : msleep(200);
157 : :
158 : 3 : kfree(dr);
159 : :
160 : 3 : return ret;
161 : : }
162 : : EXPORT_SYMBOL_GPL(usb_control_msg);
163 : :
164 : : /**
165 : : * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166 : : * @usb_dev: pointer to the usb device to send the message to
167 : : * @pipe: endpoint "pipe" to send the message to
168 : : * @data: pointer to the data to send
169 : : * @len: length in bytes of the data to send
170 : : * @actual_length: pointer to a location to put the actual length transferred
171 : : * in bytes
172 : : * @timeout: time in msecs to wait for the message to complete before
173 : : * timing out (if 0 the wait is forever)
174 : : *
175 : : * Context: !in_interrupt ()
176 : : *
177 : : * This function sends a simple interrupt message to a specified endpoint and
178 : : * waits for the message to complete, or timeout.
179 : : *
180 : : * Don't use this function from within an interrupt context. If you need
181 : : * an asynchronous message, or need to send a message from within interrupt
182 : : * context, use usb_submit_urb() If a thread in your driver uses this call,
183 : : * make sure your disconnect() method can wait for it to complete. Since you
184 : : * don't have a handle on the URB used, you can't cancel the request.
185 : : *
186 : : * Return:
187 : : * If successful, 0. Otherwise a negative error number. The number of actual
188 : : * bytes transferred will be stored in the @actual_length parameter.
189 : : */
190 : 0 : int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 : : void *data, int len, int *actual_length, int timeout)
192 : : {
193 : 0 : return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194 : : }
195 : : EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196 : :
197 : : /**
198 : : * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199 : : * @usb_dev: pointer to the usb device to send the message to
200 : : * @pipe: endpoint "pipe" to send the message to
201 : : * @data: pointer to the data to send
202 : : * @len: length in bytes of the data to send
203 : : * @actual_length: pointer to a location to put the actual length transferred
204 : : * in bytes
205 : : * @timeout: time in msecs to wait for the message to complete before
206 : : * timing out (if 0 the wait is forever)
207 : : *
208 : : * Context: !in_interrupt ()
209 : : *
210 : : * This function sends a simple bulk message to a specified endpoint
211 : : * and waits for the message to complete, or timeout.
212 : : *
213 : : * Don't use this function from within an interrupt context. If you need
214 : : * an asynchronous message, or need to send a message from within interrupt
215 : : * context, use usb_submit_urb() If a thread in your driver uses this call,
216 : : * make sure your disconnect() method can wait for it to complete. Since you
217 : : * don't have a handle on the URB used, you can't cancel the request.
218 : : *
219 : : * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220 : : * users are forced to abuse this routine by using it to submit URBs for
221 : : * interrupt endpoints. We will take the liberty of creating an interrupt URB
222 : : * (with the default interval) if the target is an interrupt endpoint.
223 : : *
224 : : * Return:
225 : : * If successful, 0. Otherwise a negative error number. The number of actual
226 : : * bytes transferred will be stored in the @actual_length parameter.
227 : : *
228 : : */
229 : 0 : int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 : : void *data, int len, int *actual_length, int timeout)
231 : : {
232 : : struct urb *urb;
233 : : struct usb_host_endpoint *ep;
234 : :
235 : : ep = usb_pipe_endpoint(usb_dev, pipe);
236 : 0 : if (!ep || len < 0)
237 : : return -EINVAL;
238 : :
239 : 0 : urb = usb_alloc_urb(0, GFP_KERNEL);
240 : 0 : if (!urb)
241 : : return -ENOMEM;
242 : :
243 : 0 : if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 : : USB_ENDPOINT_XFER_INT) {
245 : 0 : pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 : 0 : usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 : : usb_api_blocking_completion, NULL,
248 : 0 : ep->desc.bInterval);
249 : : } else
250 : : usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 : : usb_api_blocking_completion, NULL);
252 : :
253 : 0 : return usb_start_wait_urb(urb, timeout, actual_length);
254 : : }
255 : : EXPORT_SYMBOL_GPL(usb_bulk_msg);
256 : :
257 : : /*-------------------------------------------------------------------*/
258 : :
259 : 0 : static void sg_clean(struct usb_sg_request *io)
260 : : {
261 : 0 : if (io->urbs) {
262 : 0 : while (io->entries--)
263 : 0 : usb_free_urb(io->urbs[io->entries]);
264 : 0 : kfree(io->urbs);
265 : 0 : io->urbs = NULL;
266 : : }
267 : 0 : io->dev = NULL;
268 : 0 : }
269 : :
270 : 0 : static void sg_complete(struct urb *urb)
271 : : {
272 : : unsigned long flags;
273 : 0 : struct usb_sg_request *io = urb->context;
274 : 0 : int status = urb->status;
275 : :
276 : 0 : spin_lock_irqsave(&io->lock, flags);
277 : :
278 : : /* In 2.5 we require hcds' endpoint queues not to progress after fault
279 : : * reports, until the completion callback (this!) returns. That lets
280 : : * device driver code (like this routine) unlink queued urbs first,
281 : : * if it needs to, since the HC won't work on them at all. So it's
282 : : * not possible for page N+1 to overwrite page N, and so on.
283 : : *
284 : : * That's only for "hard" faults; "soft" faults (unlinks) sometimes
285 : : * complete before the HCD can get requests away from hardware,
286 : : * though never during cleanup after a hard fault.
287 : : */
288 : 0 : if (io->status
289 : 0 : && (io->status != -ECONNRESET
290 : 0 : || status != -ECONNRESET)
291 : 0 : && urb->actual_length) {
292 : 0 : dev_err(io->dev->bus->controller,
293 : : "dev %s ep%d%s scatterlist error %d/%d\n",
294 : : io->dev->devpath,
295 : : usb_endpoint_num(&urb->ep->desc),
296 : : usb_urb_dir_in(urb) ? "in" : "out",
297 : : status, io->status);
298 : : /* BUG (); */
299 : : }
300 : :
301 : 0 : if (io->status == 0 && status && status != -ECONNRESET) {
302 : : int i, found, retval;
303 : :
304 : 0 : io->status = status;
305 : :
306 : : /* the previous urbs, and this one, completed already.
307 : : * unlink pending urbs so they won't rx/tx bad data.
308 : : * careful: unlink can sometimes be synchronous...
309 : : */
310 : : spin_unlock_irqrestore(&io->lock, flags);
311 : 0 : for (i = 0, found = 0; i < io->entries; i++) {
312 : 0 : if (!io->urbs[i])
313 : 0 : continue;
314 : 0 : if (found) {
315 : 0 : usb_block_urb(io->urbs[i]);
316 : 0 : retval = usb_unlink_urb(io->urbs[i]);
317 : 0 : if (retval != -EINPROGRESS &&
318 : 0 : retval != -ENODEV &&
319 : 0 : retval != -EBUSY &&
320 : 0 : retval != -EIDRM)
321 : 0 : dev_err(&io->dev->dev,
322 : : "%s, unlink --> %d\n",
323 : : __func__, retval);
324 : 0 : } else if (urb == io->urbs[i])
325 : : found = 1;
326 : : }
327 : 0 : spin_lock_irqsave(&io->lock, flags);
328 : : }
329 : :
330 : : /* on the last completion, signal usb_sg_wait() */
331 : 0 : io->bytes += urb->actual_length;
332 : 0 : io->count--;
333 : 0 : if (!io->count)
334 : 0 : complete(&io->complete);
335 : :
336 : : spin_unlock_irqrestore(&io->lock, flags);
337 : 0 : }
338 : :
339 : :
340 : : /**
341 : : * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
342 : : * @io: request block being initialized. until usb_sg_wait() returns,
343 : : * treat this as a pointer to an opaque block of memory,
344 : : * @dev: the usb device that will send or receive the data
345 : : * @pipe: endpoint "pipe" used to transfer the data
346 : : * @period: polling rate for interrupt endpoints, in frames or
347 : : * (for high speed endpoints) microframes; ignored for bulk
348 : : * @sg: scatterlist entries
349 : : * @nents: how many entries in the scatterlist
350 : : * @length: how many bytes to send from the scatterlist, or zero to
351 : : * send every byte identified in the list.
352 : : * @mem_flags: SLAB_* flags affecting memory allocations in this call
353 : : *
354 : : * This initializes a scatter/gather request, allocating resources such as
355 : : * I/O mappings and urb memory (except maybe memory used by USB controller
356 : : * drivers).
357 : : *
358 : : * The request must be issued using usb_sg_wait(), which waits for the I/O to
359 : : * complete (or to be canceled) and then cleans up all resources allocated by
360 : : * usb_sg_init().
361 : : *
362 : : * The request may be canceled with usb_sg_cancel(), either before or after
363 : : * usb_sg_wait() is called.
364 : : *
365 : : * Return: Zero for success, else a negative errno value.
366 : : */
367 : 0 : int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
368 : : unsigned pipe, unsigned period, struct scatterlist *sg,
369 : : int nents, size_t length, gfp_t mem_flags)
370 : : {
371 : : int i;
372 : : int urb_flags;
373 : : int use_sg;
374 : :
375 : 0 : if (!io || !dev || !sg
376 : 0 : || usb_pipecontrol(pipe)
377 : 0 : || usb_pipeisoc(pipe)
378 : 0 : || nents <= 0)
379 : : return -EINVAL;
380 : :
381 : 0 : spin_lock_init(&io->lock);
382 : 0 : io->dev = dev;
383 : 0 : io->pipe = pipe;
384 : :
385 : 0 : if (dev->bus->sg_tablesize > 0) {
386 : : use_sg = true;
387 : 0 : io->entries = 1;
388 : : } else {
389 : : use_sg = false;
390 : 0 : io->entries = nents;
391 : : }
392 : :
393 : : /* initialize all the urbs we'll use */
394 : 0 : io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
395 : 0 : if (!io->urbs)
396 : : goto nomem;
397 : :
398 : : urb_flags = URB_NO_INTERRUPT;
399 : 0 : if (usb_pipein(pipe))
400 : : urb_flags |= URB_SHORT_NOT_OK;
401 : :
402 : 0 : for_each_sg(sg, sg, io->entries, i) {
403 : : struct urb *urb;
404 : : unsigned len;
405 : :
406 : 0 : urb = usb_alloc_urb(0, mem_flags);
407 : 0 : if (!urb) {
408 : 0 : io->entries = i;
409 : 0 : goto nomem;
410 : : }
411 : 0 : io->urbs[i] = urb;
412 : :
413 : 0 : urb->dev = NULL;
414 : 0 : urb->pipe = pipe;
415 : 0 : urb->interval = period;
416 : 0 : urb->transfer_flags = urb_flags;
417 : 0 : urb->complete = sg_complete;
418 : 0 : urb->context = io;
419 : 0 : urb->sg = sg;
420 : :
421 : 0 : if (use_sg) {
422 : : /* There is no single transfer buffer */
423 : 0 : urb->transfer_buffer = NULL;
424 : 0 : urb->num_sgs = nents;
425 : :
426 : : /* A length of zero means transfer the whole sg list */
427 : : len = length;
428 : 0 : if (len == 0) {
429 : : struct scatterlist *sg2;
430 : : int j;
431 : :
432 : 0 : for_each_sg(sg, sg2, nents, j)
433 : 0 : len += sg2->length;
434 : : }
435 : : } else {
436 : : /*
437 : : * Some systems can't use DMA; they use PIO instead.
438 : : * For their sakes, transfer_buffer is set whenever
439 : : * possible.
440 : : */
441 : : if (!PageHighMem(sg_page(sg)))
442 : 0 : urb->transfer_buffer = sg_virt(sg);
443 : : else
444 : : urb->transfer_buffer = NULL;
445 : :
446 : 0 : len = sg->length;
447 : 0 : if (length) {
448 : 0 : len = min_t(size_t, len, length);
449 : 0 : length -= len;
450 : 0 : if (length == 0)
451 : 0 : io->entries = i + 1;
452 : : }
453 : : }
454 : 0 : urb->transfer_buffer_length = len;
455 : : }
456 : 0 : io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
457 : :
458 : : /* transaction state */
459 : 0 : io->count = io->entries;
460 : 0 : io->status = 0;
461 : 0 : io->bytes = 0;
462 : : init_completion(&io->complete);
463 : 0 : return 0;
464 : :
465 : : nomem:
466 : 0 : sg_clean(io);
467 : 0 : return -ENOMEM;
468 : : }
469 : : EXPORT_SYMBOL_GPL(usb_sg_init);
470 : :
471 : : /**
472 : : * usb_sg_wait - synchronously execute scatter/gather request
473 : : * @io: request block handle, as initialized with usb_sg_init().
474 : : * some fields become accessible when this call returns.
475 : : * Context: !in_interrupt ()
476 : : *
477 : : * This function blocks until the specified I/O operation completes. It
478 : : * leverages the grouping of the related I/O requests to get good transfer
479 : : * rates, by queueing the requests. At higher speeds, such queuing can
480 : : * significantly improve USB throughput.
481 : : *
482 : : * There are three kinds of completion for this function.
483 : : *
484 : : * (1) success, where io->status is zero. The number of io->bytes
485 : : * transferred is as requested.
486 : : * (2) error, where io->status is a negative errno value. The number
487 : : * of io->bytes transferred before the error is usually less
488 : : * than requested, and can be nonzero.
489 : : * (3) cancellation, a type of error with status -ECONNRESET that
490 : : * is initiated by usb_sg_cancel().
491 : : *
492 : : * When this function returns, all memory allocated through usb_sg_init() or
493 : : * this call will have been freed. The request block parameter may still be
494 : : * passed to usb_sg_cancel(), or it may be freed. It could also be
495 : : * reinitialized and then reused.
496 : : *
497 : : * Data Transfer Rates:
498 : : *
499 : : * Bulk transfers are valid for full or high speed endpoints.
500 : : * The best full speed data rate is 19 packets of 64 bytes each
501 : : * per frame, or 1216 bytes per millisecond.
502 : : * The best high speed data rate is 13 packets of 512 bytes each
503 : : * per microframe, or 52 KBytes per millisecond.
504 : : *
505 : : * The reason to use interrupt transfers through this API would most likely
506 : : * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507 : : * could be transferred. That capability is less useful for low or full
508 : : * speed interrupt endpoints, which allow at most one packet per millisecond,
509 : : * of at most 8 or 64 bytes (respectively).
510 : : *
511 : : * It is not necessary to call this function to reserve bandwidth for devices
512 : : * under an xHCI host controller, as the bandwidth is reserved when the
513 : : * configuration or interface alt setting is selected.
514 : : */
515 : 0 : void usb_sg_wait(struct usb_sg_request *io)
516 : : {
517 : : int i;
518 : 0 : int entries = io->entries;
519 : :
520 : : /* queue the urbs. */
521 : : spin_lock_irq(&io->lock);
522 : : i = 0;
523 : 0 : while (i < entries && !io->status) {
524 : : int retval;
525 : :
526 : 0 : io->urbs[i]->dev = io->dev;
527 : : spin_unlock_irq(&io->lock);
528 : :
529 : 0 : retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
530 : :
531 : 0 : switch (retval) {
532 : : /* maybe we retrying will recover */
533 : : case -ENXIO: /* hc didn't queue this one */
534 : : case -EAGAIN:
535 : : case -ENOMEM:
536 : : retval = 0;
537 : 0 : yield();
538 : 0 : break;
539 : :
540 : : /* no error? continue immediately.
541 : : *
542 : : * NOTE: to work better with UHCI (4K I/O buffer may
543 : : * need 3K of TDs) it may be good to limit how many
544 : : * URBs are queued at once; N milliseconds?
545 : : */
546 : : case 0:
547 : 0 : ++i;
548 : 0 : cpu_relax();
549 : 0 : break;
550 : :
551 : : /* fail any uncompleted urbs */
552 : : default:
553 : 0 : io->urbs[i]->status = retval;
554 : : dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 : : __func__, retval);
556 : 0 : usb_sg_cancel(io);
557 : : }
558 : : spin_lock_irq(&io->lock);
559 : 0 : if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 : 0 : io->status = retval;
561 : : }
562 : 0 : io->count -= entries - i;
563 : 0 : if (io->count == 0)
564 : 0 : complete(&io->complete);
565 : : spin_unlock_irq(&io->lock);
566 : :
567 : : /* OK, yes, this could be packaged as non-blocking.
568 : : * So could the submit loop above ... but it's easier to
569 : : * solve neither problem than to solve both!
570 : : */
571 : 0 : wait_for_completion(&io->complete);
572 : :
573 : 0 : sg_clean(io);
574 : 0 : }
575 : : EXPORT_SYMBOL_GPL(usb_sg_wait);
576 : :
577 : : /**
578 : : * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579 : : * @io: request block, initialized with usb_sg_init()
580 : : *
581 : : * This stops a request after it has been started by usb_sg_wait().
582 : : * It can also prevents one initialized by usb_sg_init() from starting,
583 : : * so that call just frees resources allocated to the request.
584 : : */
585 : 0 : void usb_sg_cancel(struct usb_sg_request *io)
586 : : {
587 : : unsigned long flags;
588 : : int i, retval;
589 : :
590 : 0 : spin_lock_irqsave(&io->lock, flags);
591 : 0 : if (io->status || io->count == 0) {
592 : : spin_unlock_irqrestore(&io->lock, flags);
593 : 0 : return;
594 : : }
595 : : /* shut everything down */
596 : 0 : io->status = -ECONNRESET;
597 : 0 : io->count++; /* Keep the request alive until we're done */
598 : : spin_unlock_irqrestore(&io->lock, flags);
599 : :
600 : 0 : for (i = io->entries - 1; i >= 0; --i) {
601 : 0 : usb_block_urb(io->urbs[i]);
602 : :
603 : 0 : retval = usb_unlink_urb(io->urbs[i]);
604 : 0 : if (retval != -EINPROGRESS
605 : 0 : && retval != -ENODEV
606 : 0 : && retval != -EBUSY
607 : 0 : && retval != -EIDRM)
608 : 0 : dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
609 : : __func__, retval);
610 : : }
611 : :
612 : 0 : spin_lock_irqsave(&io->lock, flags);
613 : 0 : io->count--;
614 : 0 : if (!io->count)
615 : 0 : complete(&io->complete);
616 : : spin_unlock_irqrestore(&io->lock, flags);
617 : : }
618 : : EXPORT_SYMBOL_GPL(usb_sg_cancel);
619 : :
620 : : /*-------------------------------------------------------------------*/
621 : :
622 : : /**
623 : : * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
624 : : * @dev: the device whose descriptor is being retrieved
625 : : * @type: the descriptor type (USB_DT_*)
626 : : * @index: the number of the descriptor
627 : : * @buf: where to put the descriptor
628 : : * @size: how big is "buf"?
629 : : * Context: !in_interrupt ()
630 : : *
631 : : * Gets a USB descriptor. Convenience functions exist to simplify
632 : : * getting some types of descriptors. Use
633 : : * usb_get_string() or usb_string() for USB_DT_STRING.
634 : : * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
635 : : * are part of the device structure.
636 : : * In addition to a number of USB-standard descriptors, some
637 : : * devices also use class-specific or vendor-specific descriptors.
638 : : *
639 : : * This call is synchronous, and may not be used in an interrupt context.
640 : : *
641 : : * Return: The number of bytes received on success, or else the status code
642 : : * returned by the underlying usb_control_msg() call.
643 : : */
644 : 3 : int usb_get_descriptor(struct usb_device *dev, unsigned char type,
645 : : unsigned char index, void *buf, int size)
646 : : {
647 : : int i;
648 : : int result;
649 : :
650 : 3 : memset(buf, 0, size); /* Make sure we parse really received data */
651 : :
652 : 3 : for (i = 0; i < 3; ++i) {
653 : : /* retry on length 0 or error; some devices are flakey */
654 : 3 : result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
655 : : USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
656 : : (type << 8) + index, 0, buf, size,
657 : : USB_CTRL_GET_TIMEOUT);
658 : 3 : if (result <= 0 && result != -ETIMEDOUT)
659 : 1 : continue;
660 : 3 : if (result > 1 && ((u8 *)buf)[1] != type) {
661 : : result = -ENODATA;
662 : 0 : continue;
663 : : }
664 : : break;
665 : : }
666 : 3 : return result;
667 : : }
668 : : EXPORT_SYMBOL_GPL(usb_get_descriptor);
669 : :
670 : : /**
671 : : * usb_get_string - gets a string descriptor
672 : : * @dev: the device whose string descriptor is being retrieved
673 : : * @langid: code for language chosen (from string descriptor zero)
674 : : * @index: the number of the descriptor
675 : : * @buf: where to put the string
676 : : * @size: how big is "buf"?
677 : : * Context: !in_interrupt ()
678 : : *
679 : : * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
680 : : * in little-endian byte order).
681 : : * The usb_string() function will often be a convenient way to turn
682 : : * these strings into kernel-printable form.
683 : : *
684 : : * Strings may be referenced in device, configuration, interface, or other
685 : : * descriptors, and could also be used in vendor-specific ways.
686 : : *
687 : : * This call is synchronous, and may not be used in an interrupt context.
688 : : *
689 : : * Return: The number of bytes received on success, or else the status code
690 : : * returned by the underlying usb_control_msg() call.
691 : : */
692 : 3 : static int usb_get_string(struct usb_device *dev, unsigned short langid,
693 : : unsigned char index, void *buf, int size)
694 : : {
695 : : int i;
696 : : int result;
697 : :
698 : 3 : for (i = 0; i < 3; ++i) {
699 : : /* retry on length 0 or stall; some devices are flakey */
700 : 3 : result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
701 : : USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
702 : : (USB_DT_STRING << 8) + index, langid, buf, size,
703 : : USB_CTRL_GET_TIMEOUT);
704 : 3 : if (result == 0 || result == -EPIPE)
705 : 0 : continue;
706 : 3 : if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
707 : : result = -ENODATA;
708 : 0 : continue;
709 : : }
710 : : break;
711 : : }
712 : 3 : return result;
713 : : }
714 : :
715 : 0 : static void usb_try_string_workarounds(unsigned char *buf, int *length)
716 : : {
717 : 0 : int newlength, oldlength = *length;
718 : :
719 : 0 : for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
720 : 0 : if (!isprint(buf[newlength]) || buf[newlength + 1])
721 : : break;
722 : :
723 : 0 : if (newlength > 2) {
724 : 0 : buf[0] = newlength;
725 : 0 : *length = newlength;
726 : : }
727 : 0 : }
728 : :
729 : 3 : static int usb_string_sub(struct usb_device *dev, unsigned int langid,
730 : : unsigned int index, unsigned char *buf)
731 : : {
732 : : int rc;
733 : :
734 : : /* Try to read the string descriptor by asking for the maximum
735 : : * possible number of bytes */
736 : 3 : if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
737 : 0 : rc = -EIO;
738 : : else
739 : 3 : rc = usb_get_string(dev, langid, index, buf, 255);
740 : :
741 : : /* If that failed try to read the descriptor length, then
742 : : * ask for just that many bytes */
743 : 3 : if (rc < 2) {
744 : 0 : rc = usb_get_string(dev, langid, index, buf, 2);
745 : 0 : if (rc == 2)
746 : 0 : rc = usb_get_string(dev, langid, index, buf, buf[0]);
747 : : }
748 : :
749 : 3 : if (rc >= 2) {
750 : 3 : if (!buf[0] && !buf[1])
751 : 0 : usb_try_string_workarounds(buf, &rc);
752 : :
753 : : /* There might be extra junk at the end of the descriptor */
754 : 3 : if (buf[0] < rc)
755 : 0 : rc = buf[0];
756 : :
757 : 3 : rc = rc - (rc & 1); /* force a multiple of two */
758 : : }
759 : :
760 : 3 : if (rc < 2)
761 : 0 : rc = (rc < 0 ? rc : -EINVAL);
762 : :
763 : 3 : return rc;
764 : : }
765 : :
766 : 3 : static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
767 : : {
768 : : int err;
769 : :
770 : 3 : if (dev->have_langid)
771 : : return 0;
772 : :
773 : 3 : if (dev->string_langid < 0)
774 : : return -EPIPE;
775 : :
776 : 3 : err = usb_string_sub(dev, 0, 0, tbuf);
777 : :
778 : : /* If the string was reported but is malformed, default to english
779 : : * (0x0409) */
780 : 3 : if (err == -ENODATA || (err > 0 && err < 4)) {
781 : 0 : dev->string_langid = 0x0409;
782 : 0 : dev->have_langid = 1;
783 : 0 : dev_err(&dev->dev,
784 : : "language id specifier not provided by device, defaulting to English\n");
785 : 0 : return 0;
786 : : }
787 : :
788 : : /* In case of all other errors, we assume the device is not able to
789 : : * deal with strings at all. Set string_langid to -1 in order to
790 : : * prevent any string to be retrieved from the device */
791 : 3 : if (err < 0) {
792 : 0 : dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
793 : : err);
794 : 0 : dev->string_langid = -1;
795 : 0 : return -EPIPE;
796 : : }
797 : :
798 : : /* always use the first langid listed */
799 : 3 : dev->string_langid = tbuf[2] | (tbuf[3] << 8);
800 : 3 : dev->have_langid = 1;
801 : : dev_dbg(&dev->dev, "default language 0x%04x\n",
802 : : dev->string_langid);
803 : 3 : return 0;
804 : : }
805 : :
806 : : /**
807 : : * usb_string - returns UTF-8 version of a string descriptor
808 : : * @dev: the device whose string descriptor is being retrieved
809 : : * @index: the number of the descriptor
810 : : * @buf: where to put the string
811 : : * @size: how big is "buf"?
812 : : * Context: !in_interrupt ()
813 : : *
814 : : * This converts the UTF-16LE encoded strings returned by devices, from
815 : : * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
816 : : * that are more usable in most kernel contexts. Note that this function
817 : : * chooses strings in the first language supported by the device.
818 : : *
819 : : * This call is synchronous, and may not be used in an interrupt context.
820 : : *
821 : : * Return: length of the string (>= 0) or usb_control_msg status (< 0).
822 : : */
823 : 3 : int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
824 : : {
825 : : unsigned char *tbuf;
826 : : int err;
827 : :
828 : 3 : if (dev->state == USB_STATE_SUSPENDED)
829 : : return -EHOSTUNREACH;
830 : 3 : if (size <= 0 || !buf)
831 : : return -EINVAL;
832 : 3 : buf[0] = 0;
833 : 3 : if (index <= 0 || index >= 256)
834 : : return -EINVAL;
835 : : tbuf = kmalloc(256, GFP_NOIO);
836 : 3 : if (!tbuf)
837 : : return -ENOMEM;
838 : :
839 : 3 : err = usb_get_langid(dev, tbuf);
840 : 3 : if (err < 0)
841 : : goto errout;
842 : :
843 : 3 : err = usb_string_sub(dev, dev->string_langid, index, tbuf);
844 : 3 : if (err < 0)
845 : : goto errout;
846 : :
847 : 3 : size--; /* leave room for trailing NULL char in output buffer */
848 : 3 : err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
849 : : UTF16_LITTLE_ENDIAN, buf, size);
850 : 3 : buf[err] = 0;
851 : :
852 : : if (tbuf[1] != USB_DT_STRING)
853 : : dev_dbg(&dev->dev,
854 : : "wrong descriptor type %02x for string %d (\"%s\")\n",
855 : : tbuf[1], index, buf);
856 : :
857 : : errout:
858 : 3 : kfree(tbuf);
859 : 3 : return err;
860 : : }
861 : : EXPORT_SYMBOL_GPL(usb_string);
862 : :
863 : : /* one UTF-8-encoded 16-bit character has at most three bytes */
864 : : #define MAX_USB_STRING_SIZE (127 * 3 + 1)
865 : :
866 : : /**
867 : : * usb_cache_string - read a string descriptor and cache it for later use
868 : : * @udev: the device whose string descriptor is being read
869 : : * @index: the descriptor index
870 : : *
871 : : * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
872 : : * or %NULL if the index is 0 or the string could not be read.
873 : : */
874 : 3 : char *usb_cache_string(struct usb_device *udev, int index)
875 : : {
876 : : char *buf;
877 : : char *smallbuf = NULL;
878 : : int len;
879 : :
880 : 3 : if (index <= 0)
881 : : return NULL;
882 : :
883 : : buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
884 : 3 : if (buf) {
885 : 3 : len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
886 : 3 : if (len > 0) {
887 : 3 : smallbuf = kmalloc(++len, GFP_NOIO);
888 : 3 : if (!smallbuf)
889 : : return buf;
890 : 3 : memcpy(smallbuf, buf, len);
891 : : }
892 : 3 : kfree(buf);
893 : : }
894 : 3 : return smallbuf;
895 : : }
896 : :
897 : : /*
898 : : * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
899 : : * @dev: the device whose device descriptor is being updated
900 : : * @size: how much of the descriptor to read
901 : : * Context: !in_interrupt ()
902 : : *
903 : : * Updates the copy of the device descriptor stored in the device structure,
904 : : * which dedicates space for this purpose.
905 : : *
906 : : * Not exported, only for use by the core. If drivers really want to read
907 : : * the device descriptor directly, they can call usb_get_descriptor() with
908 : : * type = USB_DT_DEVICE and index = 0.
909 : : *
910 : : * This call is synchronous, and may not be used in an interrupt context.
911 : : *
912 : : * Return: The number of bytes received on success, or else the status code
913 : : * returned by the underlying usb_control_msg() call.
914 : : */
915 : 3 : int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
916 : : {
917 : : struct usb_device_descriptor *desc;
918 : : int ret;
919 : :
920 : 3 : if (size > sizeof(*desc))
921 : : return -EINVAL;
922 : : desc = kmalloc(sizeof(*desc), GFP_NOIO);
923 : 3 : if (!desc)
924 : : return -ENOMEM;
925 : :
926 : 3 : ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
927 : 3 : if (ret >= 0)
928 : 3 : memcpy(&dev->descriptor, desc, size);
929 : 3 : kfree(desc);
930 : 3 : return ret;
931 : : }
932 : :
933 : : /*
934 : : * usb_set_isoch_delay - informs the device of the packet transmit delay
935 : : * @dev: the device whose delay is to be informed
936 : : * Context: !in_interrupt()
937 : : *
938 : : * Since this is an optional request, we don't bother if it fails.
939 : : */
940 : 0 : int usb_set_isoch_delay(struct usb_device *dev)
941 : : {
942 : : /* skip hub devices */
943 : 0 : if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
944 : : return 0;
945 : :
946 : : /* skip non-SS/non-SSP devices */
947 : 0 : if (dev->speed < USB_SPEED_SUPER)
948 : : return 0;
949 : :
950 : 0 : return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
951 : : USB_REQ_SET_ISOCH_DELAY,
952 : : USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
953 : : dev->hub_delay, 0, NULL, 0,
954 : : USB_CTRL_SET_TIMEOUT);
955 : : }
956 : :
957 : : /**
958 : : * usb_get_status - issues a GET_STATUS call
959 : : * @dev: the device whose status is being checked
960 : : * @recip: USB_RECIP_*; for device, interface, or endpoint
961 : : * @type: USB_STATUS_TYPE_*; for standard or PTM status types
962 : : * @target: zero (for device), else interface or endpoint number
963 : : * @data: pointer to two bytes of bitmap data
964 : : * Context: !in_interrupt ()
965 : : *
966 : : * Returns device, interface, or endpoint status. Normally only of
967 : : * interest to see if the device is self powered, or has enabled the
968 : : * remote wakeup facility; or whether a bulk or interrupt endpoint
969 : : * is halted ("stalled").
970 : : *
971 : : * Bits in these status bitmaps are set using the SET_FEATURE request,
972 : : * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
973 : : * function should be used to clear halt ("stall") status.
974 : : *
975 : : * This call is synchronous, and may not be used in an interrupt context.
976 : : *
977 : : * Returns 0 and the status value in *@data (in host byte order) on success,
978 : : * or else the status code from the underlying usb_control_msg() call.
979 : : */
980 : 3 : int usb_get_status(struct usb_device *dev, int recip, int type, int target,
981 : : void *data)
982 : : {
983 : : int ret;
984 : : void *status;
985 : : int length;
986 : :
987 : 3 : switch (type) {
988 : : case USB_STATUS_TYPE_STANDARD:
989 : : length = 2;
990 : : break;
991 : : case USB_STATUS_TYPE_PTM:
992 : 0 : if (recip != USB_RECIP_DEVICE)
993 : : return -EINVAL;
994 : :
995 : : length = 4;
996 : : break;
997 : : default:
998 : : return -EINVAL;
999 : : }
1000 : :
1001 : 3 : status = kmalloc(length, GFP_KERNEL);
1002 : 3 : if (!status)
1003 : : return -ENOMEM;
1004 : :
1005 : 3 : ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1006 : : USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1007 : : target, status, length, USB_CTRL_GET_TIMEOUT);
1008 : :
1009 : 3 : switch (ret) {
1010 : : case 4:
1011 : 0 : if (type != USB_STATUS_TYPE_PTM) {
1012 : : ret = -EIO;
1013 : : break;
1014 : : }
1015 : :
1016 : 0 : *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1017 : : ret = 0;
1018 : 0 : break;
1019 : : case 2:
1020 : 3 : if (type != USB_STATUS_TYPE_STANDARD) {
1021 : : ret = -EIO;
1022 : : break;
1023 : : }
1024 : :
1025 : 3 : *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1026 : : ret = 0;
1027 : 3 : break;
1028 : : default:
1029 : : ret = -EIO;
1030 : : }
1031 : :
1032 : 3 : kfree(status);
1033 : 3 : return ret;
1034 : : }
1035 : : EXPORT_SYMBOL_GPL(usb_get_status);
1036 : :
1037 : : /**
1038 : : * usb_clear_halt - tells device to clear endpoint halt/stall condition
1039 : : * @dev: device whose endpoint is halted
1040 : : * @pipe: endpoint "pipe" being cleared
1041 : : * Context: !in_interrupt ()
1042 : : *
1043 : : * This is used to clear halt conditions for bulk and interrupt endpoints,
1044 : : * as reported by URB completion status. Endpoints that are halted are
1045 : : * sometimes referred to as being "stalled". Such endpoints are unable
1046 : : * to transmit or receive data until the halt status is cleared. Any URBs
1047 : : * queued for such an endpoint should normally be unlinked by the driver
1048 : : * before clearing the halt condition, as described in sections 5.7.5
1049 : : * and 5.8.5 of the USB 2.0 spec.
1050 : : *
1051 : : * Note that control and isochronous endpoints don't halt, although control
1052 : : * endpoints report "protocol stall" (for unsupported requests) using the
1053 : : * same status code used to report a true stall.
1054 : : *
1055 : : * This call is synchronous, and may not be used in an interrupt context.
1056 : : *
1057 : : * Return: Zero on success, or else the status code returned by the
1058 : : * underlying usb_control_msg() call.
1059 : : */
1060 : 0 : int usb_clear_halt(struct usb_device *dev, int pipe)
1061 : : {
1062 : : int result;
1063 : 0 : int endp = usb_pipeendpoint(pipe);
1064 : :
1065 : 0 : if (usb_pipein(pipe))
1066 : 0 : endp |= USB_DIR_IN;
1067 : :
1068 : : /* we don't care if it wasn't halted first. in fact some devices
1069 : : * (like some ibmcam model 1 units) seem to expect hosts to make
1070 : : * this request for iso endpoints, which can't halt!
1071 : : */
1072 : 0 : result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1073 : : USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1074 : : USB_ENDPOINT_HALT, endp, NULL, 0,
1075 : : USB_CTRL_SET_TIMEOUT);
1076 : :
1077 : : /* don't un-halt or force to DATA0 except on success */
1078 : 0 : if (result < 0)
1079 : : return result;
1080 : :
1081 : : /* NOTE: seems like Microsoft and Apple don't bother verifying
1082 : : * the clear "took", so some devices could lock up if you check...
1083 : : * such as the Hagiwara FlashGate DUAL. So we won't bother.
1084 : : *
1085 : : * NOTE: make sure the logic here doesn't diverge much from
1086 : : * the copy in usb-storage, for as long as we need two copies.
1087 : : */
1088 : :
1089 : 0 : usb_reset_endpoint(dev, endp);
1090 : :
1091 : 0 : return 0;
1092 : : }
1093 : : EXPORT_SYMBOL_GPL(usb_clear_halt);
1094 : :
1095 : 3 : static int create_intf_ep_devs(struct usb_interface *intf)
1096 : : {
1097 : : struct usb_device *udev = interface_to_usbdev(intf);
1098 : 3 : struct usb_host_interface *alt = intf->cur_altsetting;
1099 : : int i;
1100 : :
1101 : 3 : if (intf->ep_devs_created || intf->unregistering)
1102 : : return 0;
1103 : :
1104 : 3 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1105 : 3 : (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1106 : 3 : intf->ep_devs_created = 1;
1107 : 3 : return 0;
1108 : : }
1109 : :
1110 : 3 : static void remove_intf_ep_devs(struct usb_interface *intf)
1111 : : {
1112 : 3 : struct usb_host_interface *alt = intf->cur_altsetting;
1113 : : int i;
1114 : :
1115 : 3 : if (!intf->ep_devs_created)
1116 : 3 : return;
1117 : :
1118 : 0 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1119 : 0 : usb_remove_ep_devs(&alt->endpoint[i]);
1120 : 1 : intf->ep_devs_created = 0;
1121 : : }
1122 : :
1123 : 3 : void usb_fixup_endpoint(struct usb_device *dev, int epaddr, int interval)
1124 : : {
1125 : 3 : unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1126 : : struct usb_host_endpoint *ep;
1127 : :
1128 : 3 : if (usb_endpoint_out(epaddr))
1129 : 0 : ep = dev->ep_out[epnum];
1130 : : else
1131 : 3 : ep = dev->ep_in[epnum];
1132 : :
1133 : 3 : if (ep && usb_endpoint_xfer_int(&ep->desc))
1134 : 3 : usb_hcd_fixup_endpoint(dev, ep, interval);
1135 : 3 : }
1136 : : EXPORT_SYMBOL_GPL(usb_fixup_endpoint);
1137 : :
1138 : : /**
1139 : : * usb_disable_endpoint -- Disable an endpoint by address
1140 : : * @dev: the device whose endpoint is being disabled
1141 : : * @epaddr: the endpoint's address. Endpoint number for output,
1142 : : * endpoint number + USB_DIR_IN for input
1143 : : * @reset_hardware: flag to erase any endpoint state stored in the
1144 : : * controller hardware
1145 : : *
1146 : : * Disables the endpoint for URB submission and nukes all pending URBs.
1147 : : * If @reset_hardware is set then also deallocates hcd/hardware state
1148 : : * for the endpoint.
1149 : : */
1150 : 3 : void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1151 : : bool reset_hardware)
1152 : : {
1153 : 3 : unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1154 : : struct usb_host_endpoint *ep;
1155 : :
1156 : 3 : if (!dev)
1157 : 3 : return;
1158 : :
1159 : 3 : if (usb_endpoint_out(epaddr)) {
1160 : 3 : ep = dev->ep_out[epnum];
1161 : 3 : if (reset_hardware && epnum != 0)
1162 : 2 : dev->ep_out[epnum] = NULL;
1163 : : } else {
1164 : 3 : ep = dev->ep_in[epnum];
1165 : 3 : if (reset_hardware && epnum != 0)
1166 : 2 : dev->ep_in[epnum] = NULL;
1167 : : }
1168 : 3 : if (ep) {
1169 : 3 : ep->enabled = 0;
1170 : 3 : usb_hcd_flush_endpoint(dev, ep);
1171 : 3 : if (reset_hardware)
1172 : 3 : usb_hcd_disable_endpoint(dev, ep);
1173 : : }
1174 : : }
1175 : :
1176 : : /**
1177 : : * usb_reset_endpoint - Reset an endpoint's state.
1178 : : * @dev: the device whose endpoint is to be reset
1179 : : * @epaddr: the endpoint's address. Endpoint number for output,
1180 : : * endpoint number + USB_DIR_IN for input
1181 : : *
1182 : : * Resets any host-side endpoint state such as the toggle bit,
1183 : : * sequence number or current window.
1184 : : */
1185 : 0 : void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1186 : : {
1187 : 0 : unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1188 : : struct usb_host_endpoint *ep;
1189 : :
1190 : 0 : if (usb_endpoint_out(epaddr))
1191 : 0 : ep = dev->ep_out[epnum];
1192 : : else
1193 : 0 : ep = dev->ep_in[epnum];
1194 : 0 : if (ep)
1195 : 0 : usb_hcd_reset_endpoint(dev, ep);
1196 : 0 : }
1197 : : EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1198 : :
1199 : :
1200 : : /**
1201 : : * usb_disable_interface -- Disable all endpoints for an interface
1202 : : * @dev: the device whose interface is being disabled
1203 : : * @intf: pointer to the interface descriptor
1204 : : * @reset_hardware: flag to erase any endpoint state stored in the
1205 : : * controller hardware
1206 : : *
1207 : : * Disables all the endpoints for the interface's current altsetting.
1208 : : */
1209 : 3 : void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1210 : : bool reset_hardware)
1211 : : {
1212 : 3 : struct usb_host_interface *alt = intf->cur_altsetting;
1213 : : int i;
1214 : :
1215 : 3 : for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1216 : 2 : usb_disable_endpoint(dev,
1217 : 2 : alt->endpoint[i].desc.bEndpointAddress,
1218 : : reset_hardware);
1219 : : }
1220 : 3 : }
1221 : :
1222 : : /**
1223 : : * usb_disable_device - Disable all the endpoints for a USB device
1224 : : * @dev: the device whose endpoints are being disabled
1225 : : * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1226 : : *
1227 : : * Disables all the device's endpoints, potentially including endpoint 0.
1228 : : * Deallocates hcd/hardware state for the endpoints (nuking all or most
1229 : : * pending urbs) and usbcore state for the interfaces, so that usbcore
1230 : : * must usb_set_configuration() before any interfaces could be used.
1231 : : */
1232 : 0 : void usb_disable_device(struct usb_device *dev, int skip_ep0)
1233 : : {
1234 : : int i;
1235 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1236 : :
1237 : : /* getting rid of interfaces will disconnect
1238 : : * any drivers bound to them (a key side effect)
1239 : : */
1240 : 0 : if (dev->actconfig) {
1241 : : /*
1242 : : * FIXME: In order to avoid self-deadlock involving the
1243 : : * bandwidth_mutex, we have to mark all the interfaces
1244 : : * before unregistering any of them.
1245 : : */
1246 : 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1247 : 0 : dev->actconfig->interface[i]->unregistering = 1;
1248 : :
1249 : 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1250 : : struct usb_interface *interface;
1251 : :
1252 : : /* remove this interface if it has been registered */
1253 : 0 : interface = dev->actconfig->interface[i];
1254 : 0 : if (!device_is_registered(&interface->dev))
1255 : 0 : continue;
1256 : : dev_dbg(&dev->dev, "unregistering interface %s\n",
1257 : : dev_name(&interface->dev));
1258 : 0 : remove_intf_ep_devs(interface);
1259 : 0 : device_del(&interface->dev);
1260 : : }
1261 : :
1262 : : /* Now that the interfaces are unbound, nobody should
1263 : : * try to access them.
1264 : : */
1265 : 0 : for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1266 : 0 : put_device(&dev->actconfig->interface[i]->dev);
1267 : 0 : dev->actconfig->interface[i] = NULL;
1268 : : }
1269 : :
1270 : 0 : usb_disable_usb2_hardware_lpm(dev);
1271 : 0 : usb_unlocked_disable_lpm(dev);
1272 : 0 : usb_disable_ltm(dev);
1273 : :
1274 : 0 : dev->actconfig = NULL;
1275 : 0 : if (dev->state == USB_STATE_CONFIGURED)
1276 : 0 : usb_set_device_state(dev, USB_STATE_ADDRESS);
1277 : : }
1278 : :
1279 : : dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1280 : : skip_ep0 ? "non-ep0" : "all");
1281 : 0 : if (hcd->driver->check_bandwidth) {
1282 : : /* First pass: Cancel URBs, leave endpoint pointers intact. */
1283 : 0 : for (i = skip_ep0; i < 16; ++i) {
1284 : 0 : usb_disable_endpoint(dev, i, false);
1285 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1286 : : }
1287 : : /* Remove endpoints from the host controller internal state */
1288 : 0 : mutex_lock(hcd->bandwidth_mutex);
1289 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1290 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1291 : : /* Second pass: remove endpoint pointers */
1292 : : }
1293 : 0 : for (i = skip_ep0; i < 16; ++i) {
1294 : 0 : usb_disable_endpoint(dev, i, true);
1295 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1296 : : }
1297 : 0 : }
1298 : :
1299 : : /**
1300 : : * usb_enable_endpoint - Enable an endpoint for USB communications
1301 : : * @dev: the device whose interface is being enabled
1302 : : * @ep: the endpoint
1303 : : * @reset_ep: flag to reset the endpoint state
1304 : : *
1305 : : * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1306 : : * For control endpoints, both the input and output sides are handled.
1307 : : */
1308 : 3 : void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1309 : : bool reset_ep)
1310 : : {
1311 : : int epnum = usb_endpoint_num(&ep->desc);
1312 : : int is_out = usb_endpoint_dir_out(&ep->desc);
1313 : : int is_control = usb_endpoint_xfer_control(&ep->desc);
1314 : :
1315 : 3 : if (reset_ep)
1316 : 3 : usb_hcd_reset_endpoint(dev, ep);
1317 : 3 : if (is_out || is_control)
1318 : 3 : dev->ep_out[epnum] = ep;
1319 : 3 : if (!is_out || is_control)
1320 : 3 : dev->ep_in[epnum] = ep;
1321 : 3 : ep->enabled = 1;
1322 : 3 : }
1323 : :
1324 : : /**
1325 : : * usb_enable_interface - Enable all the endpoints for an interface
1326 : : * @dev: the device whose interface is being enabled
1327 : : * @intf: pointer to the interface descriptor
1328 : : * @reset_eps: flag to reset the endpoints' state
1329 : : *
1330 : : * Enables all the endpoints for the interface's current altsetting.
1331 : : */
1332 : 3 : void usb_enable_interface(struct usb_device *dev,
1333 : : struct usb_interface *intf, bool reset_eps)
1334 : : {
1335 : 3 : struct usb_host_interface *alt = intf->cur_altsetting;
1336 : : int i;
1337 : :
1338 : 3 : for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1339 : 3 : usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1340 : 3 : }
1341 : :
1342 : : /**
1343 : : * usb_set_interface - Makes a particular alternate setting be current
1344 : : * @dev: the device whose interface is being updated
1345 : : * @interface: the interface being updated
1346 : : * @alternate: the setting being chosen.
1347 : : * Context: !in_interrupt ()
1348 : : *
1349 : : * This is used to enable data transfers on interfaces that may not
1350 : : * be enabled by default. Not all devices support such configurability.
1351 : : * Only the driver bound to an interface may change its setting.
1352 : : *
1353 : : * Within any given configuration, each interface may have several
1354 : : * alternative settings. These are often used to control levels of
1355 : : * bandwidth consumption. For example, the default setting for a high
1356 : : * speed interrupt endpoint may not send more than 64 bytes per microframe,
1357 : : * while interrupt transfers of up to 3KBytes per microframe are legal.
1358 : : * Also, isochronous endpoints may never be part of an
1359 : : * interface's default setting. To access such bandwidth, alternate
1360 : : * interface settings must be made current.
1361 : : *
1362 : : * Note that in the Linux USB subsystem, bandwidth associated with
1363 : : * an endpoint in a given alternate setting is not reserved until an URB
1364 : : * is submitted that needs that bandwidth. Some other operating systems
1365 : : * allocate bandwidth early, when a configuration is chosen.
1366 : : *
1367 : : * xHCI reserves bandwidth and configures the alternate setting in
1368 : : * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1369 : : * may be disabled. Drivers cannot rely on any particular alternate
1370 : : * setting being in effect after a failure.
1371 : : *
1372 : : * This call is synchronous, and may not be used in an interrupt context.
1373 : : * Also, drivers must not change altsettings while urbs are scheduled for
1374 : : * endpoints in that interface; all such urbs must first be completed
1375 : : * (perhaps forced by unlinking).
1376 : : *
1377 : : * Return: Zero on success, or else the status code returned by the
1378 : : * underlying usb_control_msg() call.
1379 : : */
1380 : 3 : int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1381 : : {
1382 : : struct usb_interface *iface;
1383 : : struct usb_host_interface *alt;
1384 : 3 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1385 : : int i, ret, manual = 0;
1386 : : unsigned int epaddr;
1387 : : unsigned int pipe;
1388 : :
1389 : 3 : if (dev->state == USB_STATE_SUSPENDED)
1390 : : return -EHOSTUNREACH;
1391 : :
1392 : 3 : iface = usb_ifnum_to_if(dev, interface);
1393 : 3 : if (!iface) {
1394 : : dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1395 : : interface);
1396 : : return -EINVAL;
1397 : : }
1398 : 3 : if (iface->unregistering)
1399 : : return -ENODEV;
1400 : :
1401 : 3 : alt = usb_altnum_to_altsetting(iface, alternate);
1402 : 3 : if (!alt) {
1403 : 0 : dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1404 : : alternate);
1405 : 0 : return -EINVAL;
1406 : : }
1407 : : /*
1408 : : * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1409 : : * including freeing dropped endpoint ring buffers.
1410 : : * Make sure the interface endpoints are flushed before that
1411 : : */
1412 : 3 : usb_disable_interface(dev, iface, false);
1413 : :
1414 : : /* Make sure we have enough bandwidth for this alternate interface.
1415 : : * Remove the current alt setting and add the new alt setting.
1416 : : */
1417 : 3 : mutex_lock(hcd->bandwidth_mutex);
1418 : : /* Disable LPM, and re-enable it once the new alt setting is installed,
1419 : : * so that the xHCI driver can recalculate the U1/U2 timeouts.
1420 : : */
1421 : 3 : if (usb_disable_lpm(dev)) {
1422 : 0 : dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1423 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1424 : 0 : return -ENOMEM;
1425 : : }
1426 : : /* Changing alt-setting also frees any allocated streams */
1427 : 2 : for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1428 : 2 : iface->cur_altsetting->endpoint[i].streams = 0;
1429 : :
1430 : 3 : ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1431 : 3 : if (ret < 0) {
1432 : 0 : dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1433 : : alternate);
1434 : 0 : usb_enable_lpm(dev);
1435 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1436 : 0 : return ret;
1437 : : }
1438 : :
1439 : 3 : if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1440 : : ret = -EPIPE;
1441 : : else
1442 : 3 : ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1443 : : USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1444 : : alternate, interface, NULL, 0, 5000);
1445 : :
1446 : : /* 9.4.10 says devices don't need this and are free to STALL the
1447 : : * request if the interface only has one alternate setting.
1448 : : */
1449 : 3 : if (ret == -EPIPE && iface->num_altsetting == 1) {
1450 : : dev_dbg(&dev->dev,
1451 : : "manual set_interface for iface %d, alt %d\n",
1452 : : interface, alternate);
1453 : : manual = 1;
1454 : 3 : } else if (ret < 0) {
1455 : : /* Re-instate the old alt setting */
1456 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1457 : 0 : usb_enable_lpm(dev);
1458 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1459 : 0 : return ret;
1460 : : }
1461 : 3 : mutex_unlock(hcd->bandwidth_mutex);
1462 : :
1463 : : /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1464 : : * when they implement async or easily-killable versions of this or
1465 : : * other "should-be-internal" functions (like clear_halt).
1466 : : * should hcd+usbcore postprocess control requests?
1467 : : */
1468 : :
1469 : : /* prevent submissions using previous endpoint settings */
1470 : 3 : if (iface->cur_altsetting != alt) {
1471 : 3 : remove_intf_ep_devs(iface);
1472 : 3 : usb_remove_sysfs_intf_files(iface);
1473 : : }
1474 : 3 : usb_disable_interface(dev, iface, true);
1475 : :
1476 : 3 : iface->cur_altsetting = alt;
1477 : :
1478 : : /* Now that the interface is installed, re-enable LPM. */
1479 : 3 : usb_unlocked_enable_lpm(dev);
1480 : :
1481 : : /* If the interface only has one altsetting and the device didn't
1482 : : * accept the request, we attempt to carry out the equivalent action
1483 : : * by manually clearing the HALT feature for each endpoint in the
1484 : : * new altsetting.
1485 : : */
1486 : 3 : if (manual) {
1487 : 0 : for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1488 : 0 : epaddr = alt->endpoint[i].desc.bEndpointAddress;
1489 : 0 : pipe = __create_pipe(dev,
1490 : 0 : USB_ENDPOINT_NUMBER_MASK & epaddr) |
1491 : 0 : (usb_endpoint_out(epaddr) ?
1492 : : USB_DIR_OUT : USB_DIR_IN);
1493 : :
1494 : 0 : usb_clear_halt(dev, pipe);
1495 : : }
1496 : : }
1497 : :
1498 : : /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1499 : : *
1500 : : * Note:
1501 : : * Despite EP0 is always present in all interfaces/AS, the list of
1502 : : * endpoints from the descriptor does not contain EP0. Due to its
1503 : : * omnipresence one might expect EP0 being considered "affected" by
1504 : : * any SetInterface request and hence assume toggles need to be reset.
1505 : : * However, EP0 toggles are re-synced for every individual transfer
1506 : : * during the SETUP stage - hence EP0 toggles are "don't care" here.
1507 : : * (Likewise, EP0 never "halts" on well designed devices.)
1508 : : */
1509 : 3 : usb_enable_interface(dev, iface, true);
1510 : 3 : if (device_is_registered(&iface->dev)) {
1511 : 3 : usb_create_sysfs_intf_files(iface);
1512 : 3 : create_intf_ep_devs(iface);
1513 : : }
1514 : : return 0;
1515 : : }
1516 : : EXPORT_SYMBOL_GPL(usb_set_interface);
1517 : :
1518 : : /**
1519 : : * usb_reset_configuration - lightweight device reset
1520 : : * @dev: the device whose configuration is being reset
1521 : : *
1522 : : * This issues a standard SET_CONFIGURATION request to the device using
1523 : : * the current configuration. The effect is to reset most USB-related
1524 : : * state in the device, including interface altsettings (reset to zero),
1525 : : * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1526 : : * endpoints). Other usbcore state is unchanged, including bindings of
1527 : : * usb device drivers to interfaces.
1528 : : *
1529 : : * Because this affects multiple interfaces, avoid using this with composite
1530 : : * (multi-interface) devices. Instead, the driver for each interface may
1531 : : * use usb_set_interface() on the interfaces it claims. Be careful though;
1532 : : * some devices don't support the SET_INTERFACE request, and others won't
1533 : : * reset all the interface state (notably endpoint state). Resetting the whole
1534 : : * configuration would affect other drivers' interfaces.
1535 : : *
1536 : : * The caller must own the device lock.
1537 : : *
1538 : : * Return: Zero on success, else a negative error code.
1539 : : */
1540 : 0 : int usb_reset_configuration(struct usb_device *dev)
1541 : : {
1542 : : int i, retval;
1543 : : struct usb_host_config *config;
1544 : 0 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1545 : :
1546 : 0 : if (dev->state == USB_STATE_SUSPENDED)
1547 : : return -EHOSTUNREACH;
1548 : :
1549 : : /* caller must have locked the device and must own
1550 : : * the usb bus readlock (so driver bindings are stable);
1551 : : * calls during probe() are fine
1552 : : */
1553 : :
1554 : 0 : for (i = 1; i < 16; ++i) {
1555 : 0 : usb_disable_endpoint(dev, i, true);
1556 : 0 : usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1557 : : }
1558 : :
1559 : 0 : config = dev->actconfig;
1560 : : retval = 0;
1561 : 0 : mutex_lock(hcd->bandwidth_mutex);
1562 : : /* Disable LPM, and re-enable it once the configuration is reset, so
1563 : : * that the xHCI driver can recalculate the U1/U2 timeouts.
1564 : : */
1565 : 0 : if (usb_disable_lpm(dev)) {
1566 : 0 : dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1567 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1568 : 0 : return -ENOMEM;
1569 : : }
1570 : : /* Make sure we have enough bandwidth for each alternate setting 0 */
1571 : 0 : for (i = 0; i < config->desc.bNumInterfaces; i++) {
1572 : 0 : struct usb_interface *intf = config->interface[i];
1573 : : struct usb_host_interface *alt;
1574 : :
1575 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1576 : 0 : if (!alt)
1577 : 0 : alt = &intf->altsetting[0];
1578 : 0 : if (alt != intf->cur_altsetting)
1579 : 0 : retval = usb_hcd_alloc_bandwidth(dev, NULL,
1580 : : intf->cur_altsetting, alt);
1581 : 0 : if (retval < 0)
1582 : : break;
1583 : : }
1584 : : /* If not, reinstate the old alternate settings */
1585 : 0 : if (retval < 0) {
1586 : : reset_old_alts:
1587 : 0 : for (i--; i >= 0; i--) {
1588 : 0 : struct usb_interface *intf = config->interface[i];
1589 : : struct usb_host_interface *alt;
1590 : :
1591 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1592 : 0 : if (!alt)
1593 : 0 : alt = &intf->altsetting[0];
1594 : 0 : if (alt != intf->cur_altsetting)
1595 : 0 : usb_hcd_alloc_bandwidth(dev, NULL,
1596 : : alt, intf->cur_altsetting);
1597 : : }
1598 : 0 : usb_enable_lpm(dev);
1599 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1600 : 0 : return retval;
1601 : : }
1602 : 0 : retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1603 : : USB_REQ_SET_CONFIGURATION, 0,
1604 : 0 : config->desc.bConfigurationValue, 0,
1605 : : NULL, 0, USB_CTRL_SET_TIMEOUT);
1606 : 0 : if (retval < 0)
1607 : : goto reset_old_alts;
1608 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1609 : :
1610 : : /* re-init hc/hcd interface/endpoint state */
1611 : 0 : for (i = 0; i < config->desc.bNumInterfaces; i++) {
1612 : 0 : struct usb_interface *intf = config->interface[i];
1613 : : struct usb_host_interface *alt;
1614 : :
1615 : 0 : alt = usb_altnum_to_altsetting(intf, 0);
1616 : :
1617 : : /* No altsetting 0? We'll assume the first altsetting.
1618 : : * We could use a GetInterface call, but if a device is
1619 : : * so non-compliant that it doesn't have altsetting 0
1620 : : * then I wouldn't trust its reply anyway.
1621 : : */
1622 : 0 : if (!alt)
1623 : 0 : alt = &intf->altsetting[0];
1624 : :
1625 : 0 : if (alt != intf->cur_altsetting) {
1626 : 0 : remove_intf_ep_devs(intf);
1627 : 0 : usb_remove_sysfs_intf_files(intf);
1628 : : }
1629 : 0 : intf->cur_altsetting = alt;
1630 : 0 : usb_enable_interface(dev, intf, true);
1631 : 0 : if (device_is_registered(&intf->dev)) {
1632 : 0 : usb_create_sysfs_intf_files(intf);
1633 : 0 : create_intf_ep_devs(intf);
1634 : : }
1635 : : }
1636 : : /* Now that the interfaces are installed, re-enable LPM. */
1637 : 0 : usb_unlocked_enable_lpm(dev);
1638 : 0 : return 0;
1639 : : }
1640 : : EXPORT_SYMBOL_GPL(usb_reset_configuration);
1641 : :
1642 : 0 : static void usb_release_interface(struct device *dev)
1643 : : {
1644 : 0 : struct usb_interface *intf = to_usb_interface(dev);
1645 : : struct usb_interface_cache *intfc =
1646 : 0 : altsetting_to_usb_interface_cache(intf->altsetting);
1647 : :
1648 : 0 : kref_put(&intfc->ref, usb_release_interface_cache);
1649 : 0 : usb_put_dev(interface_to_usbdev(intf));
1650 : 0 : of_node_put(dev->of_node);
1651 : 0 : kfree(intf);
1652 : 0 : }
1653 : :
1654 : : /*
1655 : : * usb_deauthorize_interface - deauthorize an USB interface
1656 : : *
1657 : : * @intf: USB interface structure
1658 : : */
1659 : 0 : void usb_deauthorize_interface(struct usb_interface *intf)
1660 : : {
1661 : : struct device *dev = &intf->dev;
1662 : :
1663 : 0 : device_lock(dev->parent);
1664 : :
1665 : 0 : if (intf->authorized) {
1666 : : device_lock(dev);
1667 : 0 : intf->authorized = 0;
1668 : : device_unlock(dev);
1669 : :
1670 : 0 : usb_forced_unbind_intf(intf);
1671 : : }
1672 : :
1673 : 0 : device_unlock(dev->parent);
1674 : 0 : }
1675 : :
1676 : : /*
1677 : : * usb_authorize_interface - authorize an USB interface
1678 : : *
1679 : : * @intf: USB interface structure
1680 : : */
1681 : 0 : void usb_authorize_interface(struct usb_interface *intf)
1682 : : {
1683 : : struct device *dev = &intf->dev;
1684 : :
1685 : 0 : if (!intf->authorized) {
1686 : : device_lock(dev);
1687 : 0 : intf->authorized = 1; /* authorize interface */
1688 : : device_unlock(dev);
1689 : : }
1690 : 0 : }
1691 : :
1692 : 3 : static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1693 : : {
1694 : : struct usb_device *usb_dev;
1695 : : struct usb_interface *intf;
1696 : : struct usb_host_interface *alt;
1697 : :
1698 : : intf = to_usb_interface(dev);
1699 : : usb_dev = interface_to_usbdev(intf);
1700 : 3 : alt = intf->cur_altsetting;
1701 : :
1702 : 3 : if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1703 : 3 : alt->desc.bInterfaceClass,
1704 : 3 : alt->desc.bInterfaceSubClass,
1705 : 3 : alt->desc.bInterfaceProtocol))
1706 : : return -ENOMEM;
1707 : :
1708 : 3 : if (add_uevent_var(env,
1709 : : "MODALIAS=usb:"
1710 : : "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1711 : 3 : le16_to_cpu(usb_dev->descriptor.idVendor),
1712 : 3 : le16_to_cpu(usb_dev->descriptor.idProduct),
1713 : 3 : le16_to_cpu(usb_dev->descriptor.bcdDevice),
1714 : 3 : usb_dev->descriptor.bDeviceClass,
1715 : 3 : usb_dev->descriptor.bDeviceSubClass,
1716 : 3 : usb_dev->descriptor.bDeviceProtocol,
1717 : 3 : alt->desc.bInterfaceClass,
1718 : 3 : alt->desc.bInterfaceSubClass,
1719 : 3 : alt->desc.bInterfaceProtocol,
1720 : 3 : alt->desc.bInterfaceNumber))
1721 : : return -ENOMEM;
1722 : :
1723 : 3 : return 0;
1724 : : }
1725 : :
1726 : : struct device_type usb_if_device_type = {
1727 : : .name = "usb_interface",
1728 : : .release = usb_release_interface,
1729 : : .uevent = usb_if_uevent,
1730 : : };
1731 : :
1732 : 3 : static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1733 : : struct usb_host_config *config,
1734 : : u8 inum)
1735 : : {
1736 : : struct usb_interface_assoc_descriptor *retval = NULL;
1737 : : struct usb_interface_assoc_descriptor *intf_assoc;
1738 : : int first_intf;
1739 : : int last_intf;
1740 : : int i;
1741 : :
1742 : 3 : for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1743 : : intf_assoc = config->intf_assoc[i];
1744 : 0 : if (intf_assoc->bInterfaceCount == 0)
1745 : 0 : continue;
1746 : :
1747 : 0 : first_intf = intf_assoc->bFirstInterface;
1748 : 0 : last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1749 : 0 : if (inum >= first_intf && inum <= last_intf) {
1750 : 0 : if (!retval)
1751 : : retval = intf_assoc;
1752 : : else
1753 : 0 : dev_err(&dev->dev, "Interface #%d referenced"
1754 : : " by multiple IADs\n", inum);
1755 : : }
1756 : : }
1757 : :
1758 : 3 : return retval;
1759 : : }
1760 : :
1761 : :
1762 : : /*
1763 : : * Internal function to queue a device reset
1764 : : * See usb_queue_reset_device() for more details
1765 : : */
1766 : 0 : static void __usb_queue_reset_device(struct work_struct *ws)
1767 : : {
1768 : : int rc;
1769 : : struct usb_interface *iface =
1770 : 0 : container_of(ws, struct usb_interface, reset_ws);
1771 : : struct usb_device *udev = interface_to_usbdev(iface);
1772 : :
1773 : 0 : rc = usb_lock_device_for_reset(udev, iface);
1774 : 0 : if (rc >= 0) {
1775 : 0 : usb_reset_device(udev);
1776 : : usb_unlock_device(udev);
1777 : : }
1778 : 0 : usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1779 : 0 : }
1780 : :
1781 : :
1782 : : /*
1783 : : * usb_set_configuration - Makes a particular device setting be current
1784 : : * @dev: the device whose configuration is being updated
1785 : : * @configuration: the configuration being chosen.
1786 : : * Context: !in_interrupt(), caller owns the device lock
1787 : : *
1788 : : * This is used to enable non-default device modes. Not all devices
1789 : : * use this kind of configurability; many devices only have one
1790 : : * configuration.
1791 : : *
1792 : : * @configuration is the value of the configuration to be installed.
1793 : : * According to the USB spec (e.g. section 9.1.1.5), configuration values
1794 : : * must be non-zero; a value of zero indicates that the device in
1795 : : * unconfigured. However some devices erroneously use 0 as one of their
1796 : : * configuration values. To help manage such devices, this routine will
1797 : : * accept @configuration = -1 as indicating the device should be put in
1798 : : * an unconfigured state.
1799 : : *
1800 : : * USB device configurations may affect Linux interoperability,
1801 : : * power consumption and the functionality available. For example,
1802 : : * the default configuration is limited to using 100mA of bus power,
1803 : : * so that when certain device functionality requires more power,
1804 : : * and the device is bus powered, that functionality should be in some
1805 : : * non-default device configuration. Other device modes may also be
1806 : : * reflected as configuration options, such as whether two ISDN
1807 : : * channels are available independently; and choosing between open
1808 : : * standard device protocols (like CDC) or proprietary ones.
1809 : : *
1810 : : * Note that a non-authorized device (dev->authorized == 0) will only
1811 : : * be put in unconfigured mode.
1812 : : *
1813 : : * Note that USB has an additional level of device configurability,
1814 : : * associated with interfaces. That configurability is accessed using
1815 : : * usb_set_interface().
1816 : : *
1817 : : * This call is synchronous. The calling context must be able to sleep,
1818 : : * must own the device lock, and must not hold the driver model's USB
1819 : : * bus mutex; usb interface driver probe() methods cannot use this routine.
1820 : : *
1821 : : * Returns zero on success, or else the status code returned by the
1822 : : * underlying call that failed. On successful completion, each interface
1823 : : * in the original device configuration has been destroyed, and each one
1824 : : * in the new configuration has been probed by all relevant usb device
1825 : : * drivers currently known to the kernel.
1826 : : */
1827 : 3 : int usb_set_configuration(struct usb_device *dev, int configuration)
1828 : : {
1829 : : int i, ret;
1830 : : struct usb_host_config *cp = NULL;
1831 : : struct usb_interface **new_interfaces = NULL;
1832 : 3 : struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1833 : : int n, nintf;
1834 : :
1835 : 3 : if (dev->authorized == 0 || configuration == -1)
1836 : : configuration = 0;
1837 : : else {
1838 : 1 : for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1839 : 3 : if (dev->config[i].desc.bConfigurationValue ==
1840 : : configuration) {
1841 : 3 : cp = &dev->config[i];
1842 : 3 : break;
1843 : : }
1844 : : }
1845 : : }
1846 : 3 : if ((!cp && configuration != 0))
1847 : : return -EINVAL;
1848 : :
1849 : : /* The USB spec says configuration 0 means unconfigured.
1850 : : * But if a device includes a configuration numbered 0,
1851 : : * we will accept it as a correctly configured state.
1852 : : * Use -1 if you really want to unconfigure the device.
1853 : : */
1854 : 3 : if (cp && configuration == 0)
1855 : 0 : dev_warn(&dev->dev, "config 0 descriptor??\n");
1856 : :
1857 : : /* Allocate memory for new interfaces before doing anything else,
1858 : : * so that if we run out then nothing will have changed. */
1859 : : n = nintf = 0;
1860 : 3 : if (cp) {
1861 : 3 : nintf = cp->desc.bNumInterfaces;
1862 : 3 : new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1863 : : GFP_NOIO);
1864 : 3 : if (!new_interfaces)
1865 : : return -ENOMEM;
1866 : :
1867 : 3 : for (; n < nintf; ++n) {
1868 : 3 : new_interfaces[n] = kzalloc(
1869 : : sizeof(struct usb_interface),
1870 : : GFP_NOIO);
1871 : 3 : if (!new_interfaces[n]) {
1872 : : ret = -ENOMEM;
1873 : : free_interfaces:
1874 : 0 : while (--n >= 0)
1875 : 0 : kfree(new_interfaces[n]);
1876 : 0 : kfree(new_interfaces);
1877 : 0 : return ret;
1878 : : }
1879 : : }
1880 : :
1881 : 3 : i = dev->bus_mA - usb_get_max_power(dev, cp);
1882 : 3 : if (i < 0)
1883 : 0 : dev_warn(&dev->dev, "new config #%d exceeds power "
1884 : : "limit by %dmA\n",
1885 : : configuration, -i);
1886 : : }
1887 : :
1888 : : /* Wake up the device so we can send it the Set-Config request */
1889 : 3 : ret = usb_autoresume_device(dev);
1890 : 3 : if (ret)
1891 : : goto free_interfaces;
1892 : :
1893 : : /* if it's already configured, clear out old state first.
1894 : : * getting rid of old interfaces means unbinding their drivers.
1895 : : */
1896 : 3 : if (dev->state != USB_STATE_ADDRESS)
1897 : 0 : usb_disable_device(dev, 1); /* Skip ep0 */
1898 : :
1899 : : /* Get rid of pending async Set-Config requests for this device */
1900 : 3 : cancel_async_set_config(dev);
1901 : :
1902 : : /* Make sure we have bandwidth (and available HCD resources) for this
1903 : : * configuration. Remove endpoints from the schedule if we're dropping
1904 : : * this configuration to set configuration 0. After this point, the
1905 : : * host controller will not allow submissions to dropped endpoints. If
1906 : : * this call fails, the device state is unchanged.
1907 : : */
1908 : 3 : mutex_lock(hcd->bandwidth_mutex);
1909 : : /* Disable LPM, and re-enable it once the new configuration is
1910 : : * installed, so that the xHCI driver can recalculate the U1/U2
1911 : : * timeouts.
1912 : : */
1913 : 3 : if (dev->actconfig && usb_disable_lpm(dev)) {
1914 : 0 : dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1915 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1916 : : ret = -ENOMEM;
1917 : 0 : goto free_interfaces;
1918 : : }
1919 : 3 : ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1920 : 3 : if (ret < 0) {
1921 : 0 : if (dev->actconfig)
1922 : 0 : usb_enable_lpm(dev);
1923 : 0 : mutex_unlock(hcd->bandwidth_mutex);
1924 : 0 : usb_autosuspend_device(dev);
1925 : 0 : goto free_interfaces;
1926 : : }
1927 : :
1928 : : /*
1929 : : * Initialize the new interface structures and the
1930 : : * hc/hcd/usbcore interface/endpoint state.
1931 : : */
1932 : 3 : for (i = 0; i < nintf; ++i) {
1933 : : struct usb_interface_cache *intfc;
1934 : : struct usb_interface *intf;
1935 : : struct usb_host_interface *alt;
1936 : : u8 ifnum;
1937 : :
1938 : 3 : cp->interface[i] = intf = new_interfaces[i];
1939 : 3 : intfc = cp->intf_cache[i];
1940 : 3 : intf->altsetting = intfc->altsetting;
1941 : 3 : intf->num_altsetting = intfc->num_altsetting;
1942 : 3 : intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1943 : : kref_get(&intfc->ref);
1944 : :
1945 : 3 : alt = usb_altnum_to_altsetting(intf, 0);
1946 : :
1947 : : /* No altsetting 0? We'll assume the first altsetting.
1948 : : * We could use a GetInterface call, but if a device is
1949 : : * so non-compliant that it doesn't have altsetting 0
1950 : : * then I wouldn't trust its reply anyway.
1951 : : */
1952 : 3 : if (!alt)
1953 : 0 : alt = &intf->altsetting[0];
1954 : :
1955 : 3 : ifnum = alt->desc.bInterfaceNumber;
1956 : 3 : intf->intf_assoc = find_iad(dev, cp, ifnum);
1957 : 3 : intf->cur_altsetting = alt;
1958 : 3 : usb_enable_interface(dev, intf, true);
1959 : 3 : intf->dev.parent = &dev->dev;
1960 : 3 : if (usb_of_has_combined_node(dev)) {
1961 : 3 : device_set_of_node_from_dev(&intf->dev, &dev->dev);
1962 : : } else {
1963 : 3 : intf->dev.of_node = usb_of_get_interface_node(dev,
1964 : : configuration, ifnum);
1965 : : }
1966 : 3 : intf->dev.driver = NULL;
1967 : 3 : intf->dev.bus = &usb_bus_type;
1968 : 3 : intf->dev.type = &usb_if_device_type;
1969 : 3 : intf->dev.groups = usb_interface_groups;
1970 : : /*
1971 : : * Please refer to usb_alloc_dev() to see why we set
1972 : : * dma_mask and dma_pfn_offset.
1973 : : */
1974 : 3 : intf->dev.dma_mask = dev->dev.dma_mask;
1975 : 3 : intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1976 : 3 : INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1977 : 3 : intf->minor = -1;
1978 : 3 : device_initialize(&intf->dev);
1979 : 3 : pm_runtime_no_callbacks(&intf->dev);
1980 : 3 : dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1981 : 3 : dev->devpath, configuration, ifnum);
1982 : 3 : usb_get_dev(dev);
1983 : : }
1984 : 3 : kfree(new_interfaces);
1985 : :
1986 : 3 : ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1987 : : USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1988 : : NULL, 0, USB_CTRL_SET_TIMEOUT);
1989 : 3 : if (ret < 0 && cp) {
1990 : : /*
1991 : : * All the old state is gone, so what else can we do?
1992 : : * The device is probably useless now anyway.
1993 : : */
1994 : 0 : usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1995 : 0 : for (i = 0; i < nintf; ++i) {
1996 : 0 : usb_disable_interface(dev, cp->interface[i], true);
1997 : 0 : put_device(&cp->interface[i]->dev);
1998 : 0 : cp->interface[i] = NULL;
1999 : : }
2000 : : cp = NULL;
2001 : : }
2002 : :
2003 : 3 : dev->actconfig = cp;
2004 : 3 : mutex_unlock(hcd->bandwidth_mutex);
2005 : :
2006 : 3 : if (!cp) {
2007 : 0 : usb_set_device_state(dev, USB_STATE_ADDRESS);
2008 : :
2009 : : /* Leave LPM disabled while the device is unconfigured. */
2010 : 0 : usb_autosuspend_device(dev);
2011 : 0 : return ret;
2012 : : }
2013 : 3 : usb_set_device_state(dev, USB_STATE_CONFIGURED);
2014 : :
2015 : 3 : if (cp->string == NULL &&
2016 : 3 : !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2017 : 3 : cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2018 : : /* Uncomment this define to enable the HS Electrical Test support */
2019 : : #define DWC_HS_ELECT_TST 1
2020 : : #ifdef DWC_HS_ELECT_TST
2021 : : /* Here we implement the HS Electrical Test support. The
2022 : : * tester uses a vendor ID of 0x1A0A to indicate we should
2023 : : * run a special test sequence. The product ID tells us
2024 : : * which sequence to run. We invoke the test sequence by
2025 : : * sending a non-standard SetFeature command to our root
2026 : : * hub port. Our dwc_otg_hcd_hub_control() routine will
2027 : : * recognize the command and perform the desired test
2028 : : * sequence.
2029 : : */
2030 : 3 : if (dev->descriptor.idVendor == 0x1A0A) {
2031 : : /* HSOTG Electrical Test */
2032 : 0 : dev_warn(&dev->dev, "VID from HSOTG Electrical Test Fixture\n");
2033 : :
2034 : 0 : if (dev->bus && dev->bus->root_hub) {
2035 : : struct usb_device *hdev = dev->bus->root_hub;
2036 : 0 : dev_warn(&dev->dev, "Got PID 0x%x\n", dev->descriptor.idProduct);
2037 : :
2038 : 0 : switch (dev->descriptor.idProduct) {
2039 : : case 0x0101: /* TEST_SE0_NAK */
2040 : 0 : dev_warn(&dev->dev, "TEST_SE0_NAK\n");
2041 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2042 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2043 : : USB_PORT_FEAT_TEST, 0x300, NULL, 0, HZ);
2044 : 0 : break;
2045 : :
2046 : : case 0x0102: /* TEST_J */
2047 : 0 : dev_warn(&dev->dev, "TEST_J\n");
2048 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2049 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2050 : : USB_PORT_FEAT_TEST, 0x100, NULL, 0, HZ);
2051 : 0 : break;
2052 : :
2053 : : case 0x0103: /* TEST_K */
2054 : 0 : dev_warn(&dev->dev, "TEST_K\n");
2055 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2056 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2057 : : USB_PORT_FEAT_TEST, 0x200, NULL, 0, HZ);
2058 : 0 : break;
2059 : :
2060 : : case 0x0104: /* TEST_PACKET */
2061 : 0 : dev_warn(&dev->dev, "TEST_PACKET\n");
2062 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2063 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2064 : : USB_PORT_FEAT_TEST, 0x400, NULL, 0, HZ);
2065 : 0 : break;
2066 : :
2067 : : case 0x0105: /* TEST_FORCE_ENABLE */
2068 : 0 : dev_warn(&dev->dev, "TEST_FORCE_ENABLE\n");
2069 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2070 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2071 : : USB_PORT_FEAT_TEST, 0x500, NULL, 0, HZ);
2072 : 0 : break;
2073 : :
2074 : : case 0x0106: /* HS_HOST_PORT_SUSPEND_RESUME */
2075 : 0 : dev_warn(&dev->dev, "HS_HOST_PORT_SUSPEND_RESUME\n");
2076 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2077 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2078 : : USB_PORT_FEAT_TEST, 0x600, NULL, 0, 40 * HZ);
2079 : 0 : break;
2080 : :
2081 : : case 0x0107: /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
2082 : 0 : dev_warn(&dev->dev, "SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup\n");
2083 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2084 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2085 : : USB_PORT_FEAT_TEST, 0x700, NULL, 0, 40 * HZ);
2086 : 0 : break;
2087 : :
2088 : : case 0x0108: /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
2089 : 0 : dev_warn(&dev->dev, "SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute\n");
2090 : 0 : usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
2091 : : USB_REQ_SET_FEATURE, USB_RT_PORT,
2092 : : USB_PORT_FEAT_TEST, 0x800, NULL, 0, 40 * HZ);
2093 : : }
2094 : : }
2095 : : }
2096 : : #endif /* DWC_HS_ELECT_TST */
2097 : :
2098 : : /* Now that the interfaces are installed, re-enable LPM. */
2099 : 3 : usb_unlocked_enable_lpm(dev);
2100 : : /* Enable LTM if it was turned off by usb_disable_device. */
2101 : 3 : usb_enable_ltm(dev);
2102 : :
2103 : : /* Now that all the interfaces are set up, register them
2104 : : * to trigger binding of drivers to interfaces. probe()
2105 : : * routines may install different altsettings and may
2106 : : * claim() any interfaces not yet bound. Many class drivers
2107 : : * need that: CDC, audio, video, etc.
2108 : : */
2109 : 3 : for (i = 0; i < nintf; ++i) {
2110 : 3 : struct usb_interface *intf = cp->interface[i];
2111 : :
2112 : 3 : if (intf->dev.of_node &&
2113 : 3 : !of_device_is_available(intf->dev.of_node)) {
2114 : 0 : dev_info(&dev->dev, "skipping disabled interface %d\n",
2115 : : intf->cur_altsetting->desc.bInterfaceNumber);
2116 : 0 : continue;
2117 : : }
2118 : :
2119 : : dev_dbg(&dev->dev,
2120 : : "adding %s (config #%d, interface %d)\n",
2121 : : dev_name(&intf->dev), configuration,
2122 : : intf->cur_altsetting->desc.bInterfaceNumber);
2123 : : device_enable_async_suspend(&intf->dev);
2124 : 3 : ret = device_add(&intf->dev);
2125 : 3 : if (ret != 0) {
2126 : 0 : dev_err(&dev->dev, "device_add(%s) --> %d\n",
2127 : : dev_name(&intf->dev), ret);
2128 : 0 : continue;
2129 : : }
2130 : 3 : create_intf_ep_devs(intf);
2131 : : }
2132 : :
2133 : 3 : usb_autosuspend_device(dev);
2134 : 3 : return 0;
2135 : : }
2136 : : EXPORT_SYMBOL_GPL(usb_set_configuration);
2137 : :
2138 : : static LIST_HEAD(set_config_list);
2139 : : static DEFINE_SPINLOCK(set_config_lock);
2140 : :
2141 : : struct set_config_request {
2142 : : struct usb_device *udev;
2143 : : int config;
2144 : : struct work_struct work;
2145 : : struct list_head node;
2146 : : };
2147 : :
2148 : : /* Worker routine for usb_driver_set_configuration() */
2149 : 0 : static void driver_set_config_work(struct work_struct *work)
2150 : : {
2151 : : struct set_config_request *req =
2152 : 0 : container_of(work, struct set_config_request, work);
2153 : 0 : struct usb_device *udev = req->udev;
2154 : :
2155 : : usb_lock_device(udev);
2156 : : spin_lock(&set_config_lock);
2157 : : list_del(&req->node);
2158 : : spin_unlock(&set_config_lock);
2159 : :
2160 : 0 : if (req->config >= -1) /* Is req still valid? */
2161 : 0 : usb_set_configuration(udev, req->config);
2162 : : usb_unlock_device(udev);
2163 : 0 : usb_put_dev(udev);
2164 : 0 : kfree(req);
2165 : 0 : }
2166 : :
2167 : : /* Cancel pending Set-Config requests for a device whose configuration
2168 : : * was just changed
2169 : : */
2170 : 3 : static void cancel_async_set_config(struct usb_device *udev)
2171 : : {
2172 : : struct set_config_request *req;
2173 : :
2174 : : spin_lock(&set_config_lock);
2175 : 3 : list_for_each_entry(req, &set_config_list, node) {
2176 : 0 : if (req->udev == udev)
2177 : 0 : req->config = -999; /* Mark as cancelled */
2178 : : }
2179 : : spin_unlock(&set_config_lock);
2180 : 3 : }
2181 : :
2182 : : /**
2183 : : * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2184 : : * @udev: the device whose configuration is being updated
2185 : : * @config: the configuration being chosen.
2186 : : * Context: In process context, must be able to sleep
2187 : : *
2188 : : * Device interface drivers are not allowed to change device configurations.
2189 : : * This is because changing configurations will destroy the interface the
2190 : : * driver is bound to and create new ones; it would be like a floppy-disk
2191 : : * driver telling the computer to replace the floppy-disk drive with a
2192 : : * tape drive!
2193 : : *
2194 : : * Still, in certain specialized circumstances the need may arise. This
2195 : : * routine gets around the normal restrictions by using a work thread to
2196 : : * submit the change-config request.
2197 : : *
2198 : : * Return: 0 if the request was successfully queued, error code otherwise.
2199 : : * The caller has no way to know whether the queued request will eventually
2200 : : * succeed.
2201 : : */
2202 : 0 : int usb_driver_set_configuration(struct usb_device *udev, int config)
2203 : : {
2204 : : struct set_config_request *req;
2205 : :
2206 : : req = kmalloc(sizeof(*req), GFP_KERNEL);
2207 : 0 : if (!req)
2208 : : return -ENOMEM;
2209 : 0 : req->udev = udev;
2210 : 0 : req->config = config;
2211 : 0 : INIT_WORK(&req->work, driver_set_config_work);
2212 : :
2213 : : spin_lock(&set_config_lock);
2214 : 0 : list_add(&req->node, &set_config_list);
2215 : : spin_unlock(&set_config_lock);
2216 : :
2217 : 0 : usb_get_dev(udev);
2218 : 0 : schedule_work(&req->work);
2219 : 0 : return 0;
2220 : : }
2221 : : EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2222 : :
2223 : : /**
2224 : : * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2225 : : * @hdr: the place to put the results of the parsing
2226 : : * @intf: the interface for which parsing is requested
2227 : : * @buffer: pointer to the extra headers to be parsed
2228 : : * @buflen: length of the extra headers
2229 : : *
2230 : : * This evaluates the extra headers present in CDC devices which
2231 : : * bind the interfaces for data and control and provide details
2232 : : * about the capabilities of the device.
2233 : : *
2234 : : * Return: number of descriptors parsed or -EINVAL
2235 : : * if the header is contradictory beyond salvage
2236 : : */
2237 : :
2238 : 1 : int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2239 : : struct usb_interface *intf,
2240 : : u8 *buffer,
2241 : : int buflen)
2242 : : {
2243 : : /* duplicates are ignored */
2244 : : struct usb_cdc_union_desc *union_header = NULL;
2245 : :
2246 : : /* duplicates are not tolerated */
2247 : : struct usb_cdc_header_desc *header = NULL;
2248 : : struct usb_cdc_ether_desc *ether = NULL;
2249 : : struct usb_cdc_mdlm_detail_desc *detail = NULL;
2250 : : struct usb_cdc_mdlm_desc *desc = NULL;
2251 : :
2252 : : unsigned int elength;
2253 : : int cnt = 0;
2254 : :
2255 : 1 : memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2256 : 1 : hdr->phonet_magic_present = false;
2257 : 1 : while (buflen > 0) {
2258 : 1 : elength = buffer[0];
2259 : 1 : if (!elength) {
2260 : 0 : dev_err(&intf->dev, "skipping garbage byte\n");
2261 : : elength = 1;
2262 : 0 : goto next_desc;
2263 : : }
2264 : 1 : if ((buflen < elength) || (elength < 3)) {
2265 : 0 : dev_err(&intf->dev, "invalid descriptor buffer length\n");
2266 : 0 : break;
2267 : : }
2268 : 1 : if (buffer[1] != USB_DT_CS_INTERFACE) {
2269 : 0 : dev_err(&intf->dev, "skipping garbage\n");
2270 : 0 : goto next_desc;
2271 : : }
2272 : :
2273 : 1 : switch (buffer[2]) {
2274 : : case USB_CDC_UNION_TYPE: /* we've found it */
2275 : 1 : if (elength < sizeof(struct usb_cdc_union_desc))
2276 : : goto next_desc;
2277 : 1 : if (union_header) {
2278 : 0 : dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2279 : 0 : goto next_desc;
2280 : : }
2281 : : union_header = (struct usb_cdc_union_desc *)buffer;
2282 : : break;
2283 : : case USB_CDC_COUNTRY_TYPE:
2284 : 0 : if (elength < sizeof(struct usb_cdc_country_functional_desc))
2285 : : goto next_desc;
2286 : 0 : hdr->usb_cdc_country_functional_desc =
2287 : : (struct usb_cdc_country_functional_desc *)buffer;
2288 : 0 : break;
2289 : : case USB_CDC_HEADER_TYPE:
2290 : 1 : if (elength != sizeof(struct usb_cdc_header_desc))
2291 : : goto next_desc;
2292 : 1 : if (header)
2293 : : return -EINVAL;
2294 : : header = (struct usb_cdc_header_desc *)buffer;
2295 : : break;
2296 : : case USB_CDC_ACM_TYPE:
2297 : 0 : if (elength < sizeof(struct usb_cdc_acm_descriptor))
2298 : : goto next_desc;
2299 : 0 : hdr->usb_cdc_acm_descriptor =
2300 : : (struct usb_cdc_acm_descriptor *)buffer;
2301 : 0 : break;
2302 : : case USB_CDC_ETHERNET_TYPE:
2303 : 1 : if (elength != sizeof(struct usb_cdc_ether_desc))
2304 : : goto next_desc;
2305 : 1 : if (ether)
2306 : : return -EINVAL;
2307 : : ether = (struct usb_cdc_ether_desc *)buffer;
2308 : : break;
2309 : : case USB_CDC_CALL_MANAGEMENT_TYPE:
2310 : 0 : if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2311 : : goto next_desc;
2312 : 0 : hdr->usb_cdc_call_mgmt_descriptor =
2313 : : (struct usb_cdc_call_mgmt_descriptor *)buffer;
2314 : 0 : break;
2315 : : case USB_CDC_DMM_TYPE:
2316 : 0 : if (elength < sizeof(struct usb_cdc_dmm_desc))
2317 : : goto next_desc;
2318 : 0 : hdr->usb_cdc_dmm_desc =
2319 : : (struct usb_cdc_dmm_desc *)buffer;
2320 : 0 : break;
2321 : : case USB_CDC_MDLM_TYPE:
2322 : 0 : if (elength < sizeof(struct usb_cdc_mdlm_desc))
2323 : : goto next_desc;
2324 : 0 : if (desc)
2325 : : return -EINVAL;
2326 : : desc = (struct usb_cdc_mdlm_desc *)buffer;
2327 : : break;
2328 : : case USB_CDC_MDLM_DETAIL_TYPE:
2329 : 0 : if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2330 : : goto next_desc;
2331 : 0 : if (detail)
2332 : : return -EINVAL;
2333 : : detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2334 : : break;
2335 : : case USB_CDC_NCM_TYPE:
2336 : 0 : if (elength < sizeof(struct usb_cdc_ncm_desc))
2337 : : goto next_desc;
2338 : 0 : hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2339 : 0 : break;
2340 : : case USB_CDC_MBIM_TYPE:
2341 : 0 : if (elength < sizeof(struct usb_cdc_mbim_desc))
2342 : : goto next_desc;
2343 : :
2344 : 0 : hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2345 : 0 : break;
2346 : : case USB_CDC_MBIM_EXTENDED_TYPE:
2347 : 0 : if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2348 : : break;
2349 : 0 : hdr->usb_cdc_mbim_extended_desc =
2350 : : (struct usb_cdc_mbim_extended_desc *)buffer;
2351 : 0 : break;
2352 : : case CDC_PHONET_MAGIC_NUMBER:
2353 : 0 : hdr->phonet_magic_present = true;
2354 : 0 : break;
2355 : : default:
2356 : : /*
2357 : : * there are LOTS more CDC descriptors that
2358 : : * could legitimately be found here.
2359 : : */
2360 : : dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2361 : : buffer[2], elength);
2362 : : goto next_desc;
2363 : : }
2364 : 1 : cnt++;
2365 : : next_desc:
2366 : 1 : buflen -= elength;
2367 : 1 : buffer += elength;
2368 : : }
2369 : 1 : hdr->usb_cdc_union_desc = union_header;
2370 : 1 : hdr->usb_cdc_header_desc = header;
2371 : 1 : hdr->usb_cdc_mdlm_detail_desc = detail;
2372 : 1 : hdr->usb_cdc_mdlm_desc = desc;
2373 : 1 : hdr->usb_cdc_ether_desc = ether;
2374 : 1 : return cnt;
2375 : : }
2376 : :
2377 : : EXPORT_SYMBOL(cdc_parse_cdc_header);
|