Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0
2 : : /*
3 : : * linux/fs/ext4/inode.c
4 : : *
5 : : * Copyright (C) 1992, 1993, 1994, 1995
6 : : * Remy Card (card@masi.ibp.fr)
7 : : * Laboratoire MASI - Institut Blaise Pascal
8 : : * Universite Pierre et Marie Curie (Paris VI)
9 : : *
10 : : * from
11 : : *
12 : : * linux/fs/minix/inode.c
13 : : *
14 : : * Copyright (C) 1991, 1992 Linus Torvalds
15 : : *
16 : : * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 : : * (jj@sunsite.ms.mff.cuni.cz)
18 : : *
19 : : * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 : : */
21 : :
22 : : #include <linux/fs.h>
23 : : #include <linux/time.h>
24 : : #include <linux/highuid.h>
25 : : #include <linux/pagemap.h>
26 : : #include <linux/dax.h>
27 : : #include <linux/quotaops.h>
28 : : #include <linux/string.h>
29 : : #include <linux/buffer_head.h>
30 : : #include <linux/writeback.h>
31 : : #include <linux/pagevec.h>
32 : : #include <linux/mpage.h>
33 : : #include <linux/namei.h>
34 : : #include <linux/uio.h>
35 : : #include <linux/bio.h>
36 : : #include <linux/workqueue.h>
37 : : #include <linux/kernel.h>
38 : : #include <linux/printk.h>
39 : : #include <linux/slab.h>
40 : : #include <linux/bitops.h>
41 : : #include <linux/iomap.h>
42 : : #include <linux/iversion.h>
43 : :
44 : : #include "ext4_jbd2.h"
45 : : #include "xattr.h"
46 : : #include "acl.h"
47 : : #include "truncate.h"
48 : :
49 : : #include <trace/events/ext4.h>
50 : :
51 : : #define MPAGE_DA_EXTENT_TAIL 0x01
52 : :
53 : 0 : static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 : : struct ext4_inode_info *ei)
55 : : {
56 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 : : __u32 csum;
58 : 0 : __u16 dummy_csum = 0;
59 : : int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 : : unsigned int csum_size = sizeof(dummy_csum);
61 : :
62 : 0 : csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 : 0 : csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 : : offset += csum_size;
65 : 0 : csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 : : EXT4_GOOD_OLD_INODE_SIZE - offset);
67 : :
68 : 0 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 : : offset = offsetof(struct ext4_inode, i_checksum_hi);
70 : 0 : csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 : : EXT4_GOOD_OLD_INODE_SIZE,
72 : : offset - EXT4_GOOD_OLD_INODE_SIZE);
73 : 0 : if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 : 0 : csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 : : csum_size);
76 : : offset += csum_size;
77 : : }
78 : 0 : csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 : 0 : EXT4_INODE_SIZE(inode->i_sb) - offset);
80 : : }
81 : :
82 : 0 : return csum;
83 : : }
84 : :
85 : 3 : static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 : : struct ext4_inode_info *ei)
87 : : {
88 : : __u32 provided, calculated;
89 : :
90 : 3 : if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 : 3 : cpu_to_le32(EXT4_OS_LINUX) ||
92 : 3 : !ext4_has_metadata_csum(inode->i_sb))
93 : : return 1;
94 : :
95 : 0 : provided = le16_to_cpu(raw->i_checksum_lo);
96 : 0 : calculated = ext4_inode_csum(inode, raw, ei);
97 : 0 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 : 0 : EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 : 0 : provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 : : else
101 : 0 : calculated &= 0xFFFF;
102 : :
103 : 0 : return provided == calculated;
104 : : }
105 : :
106 : 3 : static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 : : struct ext4_inode_info *ei)
108 : : {
109 : : __u32 csum;
110 : :
111 : 3 : if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 : 3 : cpu_to_le32(EXT4_OS_LINUX) ||
113 : 3 : !ext4_has_metadata_csum(inode->i_sb))
114 : 3 : return;
115 : :
116 : 0 : csum = ext4_inode_csum(inode, raw, ei);
117 : 0 : raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 : 0 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 : 0 : EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 : 0 : raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 : : }
122 : :
123 : 3 : static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 : : loff_t new_size)
125 : : {
126 : 3 : trace_ext4_begin_ordered_truncate(inode, new_size);
127 : : /*
128 : : * If jinode is zero, then we never opened the file for
129 : : * writing, so there's no need to call
130 : : * jbd2_journal_begin_ordered_truncate() since there's no
131 : : * outstanding writes we need to flush.
132 : : */
133 : 3 : if (!EXT4_I(inode)->jinode)
134 : : return 0;
135 : 3 : return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 : : EXT4_I(inode)->jinode,
137 : : new_size);
138 : : }
139 : :
140 : : static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 : : unsigned int length);
142 : : static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 : : static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 : : static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 : : int pextents);
146 : :
147 : : /*
148 : : * Test whether an inode is a fast symlink.
149 : : * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 : : */
151 : 3 : int ext4_inode_is_fast_symlink(struct inode *inode)
152 : : {
153 : 3 : if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 : 3 : int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 : 0 : EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 : :
157 : 3 : if (ext4_has_inline_data(inode))
158 : : return 0;
159 : :
160 : 3 : return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 : : }
162 : 0 : return S_ISLNK(inode->i_mode) && inode->i_size &&
163 : : (inode->i_size < EXT4_N_BLOCKS * 4);
164 : : }
165 : :
166 : : /*
167 : : * Restart the transaction associated with *handle. This does a commit,
168 : : * so before we call here everything must be consistently dirtied against
169 : : * this transaction.
170 : : */
171 : 0 : int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 : : int nblocks)
173 : : {
174 : : int ret;
175 : :
176 : : /*
177 : : * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 : : * moment, get_block can be called only for blocks inside i_size since
179 : : * page cache has been already dropped and writes are blocked by
180 : : * i_mutex. So we can safely drop the i_data_sem here.
181 : : */
182 : 0 : BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 : : jbd_debug(2, "restarting handle %p\n", handle);
184 : 0 : up_write(&EXT4_I(inode)->i_data_sem);
185 : : ret = ext4_journal_restart(handle, nblocks);
186 : 0 : down_write(&EXT4_I(inode)->i_data_sem);
187 : 0 : ext4_discard_preallocations(inode);
188 : :
189 : 0 : return ret;
190 : : }
191 : :
192 : : /*
193 : : * Called at the last iput() if i_nlink is zero.
194 : : */
195 : 3 : void ext4_evict_inode(struct inode *inode)
196 : : {
197 : : handle_t *handle;
198 : : int err;
199 : : /*
200 : : * Credits for final inode cleanup and freeing:
201 : : * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202 : : * (xattr block freeing), bitmap, group descriptor (inode freeing)
203 : : */
204 : : int extra_credits = 6;
205 : 3 : struct ext4_xattr_inode_array *ea_inode_array = NULL;
206 : :
207 : 3 : trace_ext4_evict_inode(inode);
208 : :
209 : 3 : if (inode->i_nlink) {
210 : : /*
211 : : * When journalling data dirty buffers are tracked only in the
212 : : * journal. So although mm thinks everything is clean and
213 : : * ready for reaping the inode might still have some pages to
214 : : * write in the running transaction or waiting to be
215 : : * checkpointed. Thus calling jbd2_journal_invalidatepage()
216 : : * (via truncate_inode_pages()) to discard these buffers can
217 : : * cause data loss. Also even if we did not discard these
218 : : * buffers, we would have no way to find them after the inode
219 : : * is reaped and thus user could see stale data if he tries to
220 : : * read them before the transaction is checkpointed. So be
221 : : * careful and force everything to disk here... We use
222 : : * ei->i_datasync_tid to store the newest transaction
223 : : * containing inode's data.
224 : : *
225 : : * Note that directories do not have this problem because they
226 : : * don't use page cache.
227 : : */
228 : 0 : if (inode->i_ino != EXT4_JOURNAL_INO &&
229 : 0 : ext4_should_journal_data(inode) &&
230 : 0 : (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
231 : 0 : inode->i_data.nrpages) {
232 : 0 : journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
233 : 0 : tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
234 : :
235 : 0 : jbd2_complete_transaction(journal, commit_tid);
236 : 0 : filemap_write_and_wait(&inode->i_data);
237 : : }
238 : 0 : truncate_inode_pages_final(&inode->i_data);
239 : :
240 : 0 : goto no_delete;
241 : : }
242 : :
243 : 3 : if (is_bad_inode(inode))
244 : : goto no_delete;
245 : 3 : dquot_initialize(inode);
246 : :
247 : 3 : if (ext4_should_order_data(inode))
248 : 3 : ext4_begin_ordered_truncate(inode, 0);
249 : 3 : truncate_inode_pages_final(&inode->i_data);
250 : :
251 : : /*
252 : : * Protect us against freezing - iput() caller didn't have to have any
253 : : * protection against it
254 : : */
255 : 3 : sb_start_intwrite(inode->i_sb);
256 : :
257 : 3 : if (!IS_NOQUOTA(inode))
258 : 3 : extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
259 : :
260 : : /*
261 : : * Block bitmap, group descriptor, and inode are accounted in both
262 : : * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
263 : : */
264 : 3 : handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
265 : : ext4_blocks_for_truncate(inode) + extra_credits - 3);
266 : 3 : if (IS_ERR(handle)) {
267 : 0 : ext4_std_error(inode->i_sb, PTR_ERR(handle));
268 : : /*
269 : : * If we're going to skip the normal cleanup, we still need to
270 : : * make sure that the in-core orphan linked list is properly
271 : : * cleaned up.
272 : : */
273 : 0 : ext4_orphan_del(NULL, inode);
274 : 0 : sb_end_intwrite(inode->i_sb);
275 : : goto no_delete;
276 : : }
277 : :
278 : 3 : if (IS_SYNC(inode))
279 : : ext4_handle_sync(handle);
280 : :
281 : : /*
282 : : * Set inode->i_size to 0 before calling ext4_truncate(). We need
283 : : * special handling of symlinks here because i_size is used to
284 : : * determine whether ext4_inode_info->i_data contains symlink data or
285 : : * block mappings. Setting i_size to 0 will remove its fast symlink
286 : : * status. Erase i_data so that it becomes a valid empty block map.
287 : : */
288 : 3 : if (ext4_inode_is_fast_symlink(inode))
289 : 2 : memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
290 : 3 : inode->i_size = 0;
291 : 3 : err = ext4_mark_inode_dirty(handle, inode);
292 : 3 : if (err) {
293 : 0 : ext4_warning(inode->i_sb,
294 : : "couldn't mark inode dirty (err %d)", err);
295 : 0 : goto stop_handle;
296 : : }
297 : 3 : if (inode->i_blocks) {
298 : 3 : err = ext4_truncate(inode);
299 : 3 : if (err) {
300 : 0 : ext4_error(inode->i_sb,
301 : : "couldn't truncate inode %lu (err %d)",
302 : : inode->i_ino, err);
303 : 0 : goto stop_handle;
304 : : }
305 : : }
306 : :
307 : : /* Remove xattr references. */
308 : 3 : err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
309 : : extra_credits);
310 : 3 : if (err) {
311 : 0 : ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
312 : : stop_handle:
313 : 0 : ext4_journal_stop(handle);
314 : 0 : ext4_orphan_del(NULL, inode);
315 : 0 : sb_end_intwrite(inode->i_sb);
316 : 0 : ext4_xattr_inode_array_free(ea_inode_array);
317 : 0 : goto no_delete;
318 : : }
319 : :
320 : : /*
321 : : * Kill off the orphan record which ext4_truncate created.
322 : : * AKPM: I think this can be inside the above `if'.
323 : : * Note that ext4_orphan_del() has to be able to cope with the
324 : : * deletion of a non-existent orphan - this is because we don't
325 : : * know if ext4_truncate() actually created an orphan record.
326 : : * (Well, we could do this if we need to, but heck - it works)
327 : : */
328 : 3 : ext4_orphan_del(handle, inode);
329 : 3 : EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
330 : :
331 : : /*
332 : : * One subtle ordering requirement: if anything has gone wrong
333 : : * (transaction abort, IO errors, whatever), then we can still
334 : : * do these next steps (the fs will already have been marked as
335 : : * having errors), but we can't free the inode if the mark_dirty
336 : : * fails.
337 : : */
338 : 3 : if (ext4_mark_inode_dirty(handle, inode))
339 : : /* If that failed, just do the required in-core inode clear. */
340 : 0 : ext4_clear_inode(inode);
341 : : else
342 : 3 : ext4_free_inode(handle, inode);
343 : 3 : ext4_journal_stop(handle);
344 : 3 : sb_end_intwrite(inode->i_sb);
345 : 3 : ext4_xattr_inode_array_free(ea_inode_array);
346 : 3 : return;
347 : : no_delete:
348 : 0 : ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
349 : : }
350 : :
351 : : #ifdef CONFIG_QUOTA
352 : 3 : qsize_t *ext4_get_reserved_space(struct inode *inode)
353 : : {
354 : 3 : return &EXT4_I(inode)->i_reserved_quota;
355 : : }
356 : : #endif
357 : :
358 : : /*
359 : : * Called with i_data_sem down, which is important since we can call
360 : : * ext4_discard_preallocations() from here.
361 : : */
362 : 3 : void ext4_da_update_reserve_space(struct inode *inode,
363 : : int used, int quota_claim)
364 : : {
365 : 3 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
366 : : struct ext4_inode_info *ei = EXT4_I(inode);
367 : :
368 : : spin_lock(&ei->i_block_reservation_lock);
369 : 3 : trace_ext4_da_update_reserve_space(inode, used, quota_claim);
370 : 3 : if (unlikely(used > ei->i_reserved_data_blocks)) {
371 : 0 : ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
372 : : "with only %d reserved data blocks",
373 : : __func__, inode->i_ino, used,
374 : : ei->i_reserved_data_blocks);
375 : 0 : WARN_ON(1);
376 : 0 : used = ei->i_reserved_data_blocks;
377 : : }
378 : :
379 : : /* Update per-inode reservations */
380 : 3 : ei->i_reserved_data_blocks -= used;
381 : 3 : percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
382 : :
383 : : spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384 : :
385 : : /* Update quota subsystem for data blocks */
386 : 3 : if (quota_claim)
387 : 3 : dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 : : else {
389 : : /*
390 : : * We did fallocate with an offset that is already delayed
391 : : * allocated. So on delayed allocated writeback we should
392 : : * not re-claim the quota for fallocated blocks.
393 : : */
394 : 0 : dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395 : : }
396 : :
397 : : /*
398 : : * If we have done all the pending block allocations and if
399 : : * there aren't any writers on the inode, we can discard the
400 : : * inode's preallocations.
401 : : */
402 : 3 : if ((ei->i_reserved_data_blocks == 0) &&
403 : : !inode_is_open_for_write(inode))
404 : 3 : ext4_discard_preallocations(inode);
405 : 3 : }
406 : :
407 : 3 : static int __check_block_validity(struct inode *inode, const char *func,
408 : : unsigned int line,
409 : : struct ext4_map_blocks *map)
410 : : {
411 : 3 : if (ext4_has_feature_journal(inode->i_sb) &&
412 : 3 : (inode->i_ino ==
413 : 3 : le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
414 : : return 0;
415 : 3 : if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
416 : : map->m_len)) {
417 : 0 : ext4_error_inode(inode, func, line, map->m_pblk,
418 : : "lblock %lu mapped to illegal pblock %llu "
419 : : "(length %d)", (unsigned long) map->m_lblk,
420 : : map->m_pblk, map->m_len);
421 : 0 : return -EFSCORRUPTED;
422 : : }
423 : : return 0;
424 : : }
425 : :
426 : 0 : int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
427 : : ext4_lblk_t len)
428 : : {
429 : : int ret;
430 : :
431 : 0 : if (IS_ENCRYPTED(inode))
432 : 0 : return fscrypt_zeroout_range(inode, lblk, pblk, len);
433 : :
434 : 0 : ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
435 : 0 : if (ret > 0)
436 : : ret = 0;
437 : :
438 : 0 : return ret;
439 : : }
440 : :
441 : : #define check_block_validity(inode, map) \
442 : : __check_block_validity((inode), __func__, __LINE__, (map))
443 : :
444 : : #ifdef ES_AGGRESSIVE_TEST
445 : : static void ext4_map_blocks_es_recheck(handle_t *handle,
446 : : struct inode *inode,
447 : : struct ext4_map_blocks *es_map,
448 : : struct ext4_map_blocks *map,
449 : : int flags)
450 : : {
451 : : int retval;
452 : :
453 : : map->m_flags = 0;
454 : : /*
455 : : * There is a race window that the result is not the same.
456 : : * e.g. xfstests #223 when dioread_nolock enables. The reason
457 : : * is that we lookup a block mapping in extent status tree with
458 : : * out taking i_data_sem. So at the time the unwritten extent
459 : : * could be converted.
460 : : */
461 : : down_read(&EXT4_I(inode)->i_data_sem);
462 : : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
463 : : retval = ext4_ext_map_blocks(handle, inode, map, flags &
464 : : EXT4_GET_BLOCKS_KEEP_SIZE);
465 : : } else {
466 : : retval = ext4_ind_map_blocks(handle, inode, map, flags &
467 : : EXT4_GET_BLOCKS_KEEP_SIZE);
468 : : }
469 : : up_read((&EXT4_I(inode)->i_data_sem));
470 : :
471 : : /*
472 : : * We don't check m_len because extent will be collpased in status
473 : : * tree. So the m_len might not equal.
474 : : */
475 : : if (es_map->m_lblk != map->m_lblk ||
476 : : es_map->m_flags != map->m_flags ||
477 : : es_map->m_pblk != map->m_pblk) {
478 : : printk("ES cache assertion failed for inode: %lu "
479 : : "es_cached ex [%d/%d/%llu/%x] != "
480 : : "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
481 : : inode->i_ino, es_map->m_lblk, es_map->m_len,
482 : : es_map->m_pblk, es_map->m_flags, map->m_lblk,
483 : : map->m_len, map->m_pblk, map->m_flags,
484 : : retval, flags);
485 : : }
486 : : }
487 : : #endif /* ES_AGGRESSIVE_TEST */
488 : :
489 : : /*
490 : : * The ext4_map_blocks() function tries to look up the requested blocks,
491 : : * and returns if the blocks are already mapped.
492 : : *
493 : : * Otherwise it takes the write lock of the i_data_sem and allocate blocks
494 : : * and store the allocated blocks in the result buffer head and mark it
495 : : * mapped.
496 : : *
497 : : * If file type is extents based, it will call ext4_ext_map_blocks(),
498 : : * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
499 : : * based files
500 : : *
501 : : * On success, it returns the number of blocks being mapped or allocated. if
502 : : * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
503 : : * is marked as unwritten. If the create == 1, it will mark @map as mapped.
504 : : *
505 : : * It returns 0 if plain look up failed (blocks have not been allocated), in
506 : : * that case, @map is returned as unmapped but we still do fill map->m_len to
507 : : * indicate the length of a hole starting at map->m_lblk.
508 : : *
509 : : * It returns the error in case of allocation failure.
510 : : */
511 : 3 : int ext4_map_blocks(handle_t *handle, struct inode *inode,
512 : : struct ext4_map_blocks *map, int flags)
513 : : {
514 : : struct extent_status es;
515 : : int retval;
516 : : int ret = 0;
517 : : #ifdef ES_AGGRESSIVE_TEST
518 : : struct ext4_map_blocks orig_map;
519 : :
520 : : memcpy(&orig_map, map, sizeof(*map));
521 : : #endif
522 : :
523 : 3 : map->m_flags = 0;
524 : : ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
525 : : "logical block %lu\n", inode->i_ino, flags, map->m_len,
526 : : (unsigned long) map->m_lblk);
527 : :
528 : : /*
529 : : * ext4_map_blocks returns an int, and m_len is an unsigned int
530 : : */
531 : 3 : if (unlikely(map->m_len > INT_MAX))
532 : 0 : map->m_len = INT_MAX;
533 : :
534 : : /* We can handle the block number less than EXT_MAX_BLOCKS */
535 : 3 : if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
536 : : return -EFSCORRUPTED;
537 : :
538 : : /* Lookup extent status tree firstly */
539 : 3 : if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
540 : 3 : if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
541 : 3 : map->m_pblk = ext4_es_pblock(&es) +
542 : 3 : map->m_lblk - es.es_lblk;
543 : 3 : map->m_flags |= ext4_es_is_written(&es) ?
544 : 3 : EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
545 : 3 : retval = es.es_len - (map->m_lblk - es.es_lblk);
546 : 3 : if (retval > map->m_len)
547 : 3 : retval = map->m_len;
548 : 3 : map->m_len = retval;
549 : 3 : } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
550 : 3 : map->m_pblk = 0;
551 : 3 : retval = es.es_len - (map->m_lblk - es.es_lblk);
552 : 3 : if (retval > map->m_len)
553 : 3 : retval = map->m_len;
554 : 3 : map->m_len = retval;
555 : 3 : retval = 0;
556 : : } else {
557 : 0 : BUG();
558 : : }
559 : : #ifdef ES_AGGRESSIVE_TEST
560 : : ext4_map_blocks_es_recheck(handle, inode, map,
561 : : &orig_map, flags);
562 : : #endif
563 : : goto found;
564 : : }
565 : :
566 : : /*
567 : : * Try to see if we can get the block without requesting a new
568 : : * file system block.
569 : : */
570 : 3 : down_read(&EXT4_I(inode)->i_data_sem);
571 : 3 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
572 : 3 : retval = ext4_ext_map_blocks(handle, inode, map, flags &
573 : : EXT4_GET_BLOCKS_KEEP_SIZE);
574 : : } else {
575 : 0 : retval = ext4_ind_map_blocks(handle, inode, map, flags &
576 : : EXT4_GET_BLOCKS_KEEP_SIZE);
577 : : }
578 : 3 : if (retval > 0) {
579 : : unsigned int status;
580 : :
581 : 3 : if (unlikely(retval != map->m_len)) {
582 : 0 : ext4_warning(inode->i_sb,
583 : : "ES len assertion failed for inode "
584 : : "%lu: retval %d != map->m_len %d",
585 : : inode->i_ino, retval, map->m_len);
586 : 0 : WARN_ON(1);
587 : : }
588 : :
589 : 3 : status = map->m_flags & EXT4_MAP_UNWRITTEN ?
590 : : EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
591 : 3 : if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
592 : 3 : !(status & EXTENT_STATUS_WRITTEN) &&
593 : 0 : ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
594 : 0 : map->m_lblk + map->m_len - 1))
595 : 0 : status |= EXTENT_STATUS_DELAYED;
596 : 3 : ret = ext4_es_insert_extent(inode, map->m_lblk,
597 : : map->m_len, map->m_pblk, status);
598 : 3 : if (ret < 0)
599 : : retval = ret;
600 : : }
601 : 3 : up_read((&EXT4_I(inode)->i_data_sem));
602 : :
603 : : found:
604 : 3 : if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
605 : 3 : ret = check_block_validity(inode, map);
606 : 3 : if (ret != 0)
607 : : return ret;
608 : : }
609 : :
610 : : /* If it is only a block(s) look up */
611 : 3 : if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
612 : : return retval;
613 : :
614 : : /*
615 : : * Returns if the blocks have already allocated
616 : : *
617 : : * Note that if blocks have been preallocated
618 : : * ext4_ext_get_block() returns the create = 0
619 : : * with buffer head unmapped.
620 : : */
621 : 3 : if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
622 : : /*
623 : : * If we need to convert extent to unwritten
624 : : * we continue and do the actual work in
625 : : * ext4_ext_map_blocks()
626 : : */
627 : 0 : if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
628 : : return retval;
629 : :
630 : : /*
631 : : * Here we clear m_flags because after allocating an new extent,
632 : : * it will be set again.
633 : : */
634 : 3 : map->m_flags &= ~EXT4_MAP_FLAGS;
635 : :
636 : : /*
637 : : * New blocks allocate and/or writing to unwritten extent
638 : : * will possibly result in updating i_data, so we take
639 : : * the write lock of i_data_sem, and call get_block()
640 : : * with create == 1 flag.
641 : : */
642 : 3 : down_write(&EXT4_I(inode)->i_data_sem);
643 : :
644 : : /*
645 : : * We need to check for EXT4 here because migrate
646 : : * could have changed the inode type in between
647 : : */
648 : 3 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
649 : 3 : retval = ext4_ext_map_blocks(handle, inode, map, flags);
650 : : } else {
651 : 0 : retval = ext4_ind_map_blocks(handle, inode, map, flags);
652 : :
653 : 0 : if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
654 : : /*
655 : : * We allocated new blocks which will result in
656 : : * i_data's format changing. Force the migrate
657 : : * to fail by clearing migrate flags
658 : : */
659 : : ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
660 : : }
661 : :
662 : : /*
663 : : * Update reserved blocks/metadata blocks after successful
664 : : * block allocation which had been deferred till now. We don't
665 : : * support fallocate for non extent files. So we can update
666 : : * reserve space here.
667 : : */
668 : 0 : if ((retval > 0) &&
669 : 0 : (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
670 : 0 : ext4_da_update_reserve_space(inode, retval, 1);
671 : : }
672 : :
673 : 3 : if (retval > 0) {
674 : : unsigned int status;
675 : :
676 : 3 : if (unlikely(retval != map->m_len)) {
677 : 0 : ext4_warning(inode->i_sb,
678 : : "ES len assertion failed for inode "
679 : : "%lu: retval %d != map->m_len %d",
680 : : inode->i_ino, retval, map->m_len);
681 : 0 : WARN_ON(1);
682 : : }
683 : :
684 : : /*
685 : : * We have to zeroout blocks before inserting them into extent
686 : : * status tree. Otherwise someone could look them up there and
687 : : * use them before they are really zeroed. We also have to
688 : : * unmap metadata before zeroing as otherwise writeback can
689 : : * overwrite zeros with stale data from block device.
690 : : */
691 : 3 : if (flags & EXT4_GET_BLOCKS_ZERO &&
692 : 0 : map->m_flags & EXT4_MAP_MAPPED &&
693 : : map->m_flags & EXT4_MAP_NEW) {
694 : 0 : ret = ext4_issue_zeroout(inode, map->m_lblk,
695 : : map->m_pblk, map->m_len);
696 : 0 : if (ret) {
697 : : retval = ret;
698 : : goto out_sem;
699 : : }
700 : : }
701 : :
702 : : /*
703 : : * If the extent has been zeroed out, we don't need to update
704 : : * extent status tree.
705 : : */
706 : 3 : if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
707 : 0 : ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
708 : 0 : if (ext4_es_is_written(&es))
709 : : goto out_sem;
710 : : }
711 : 3 : status = map->m_flags & EXT4_MAP_UNWRITTEN ?
712 : : EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
713 : 3 : if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
714 : 3 : !(status & EXTENT_STATUS_WRITTEN) &&
715 : 3 : ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
716 : 3 : map->m_lblk + map->m_len - 1))
717 : 0 : status |= EXTENT_STATUS_DELAYED;
718 : 3 : ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
719 : : map->m_pblk, status);
720 : 3 : if (ret < 0) {
721 : : retval = ret;
722 : 0 : goto out_sem;
723 : : }
724 : : }
725 : :
726 : : out_sem:
727 : 3 : up_write((&EXT4_I(inode)->i_data_sem));
728 : 3 : if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
729 : 3 : ret = check_block_validity(inode, map);
730 : 3 : if (ret != 0)
731 : : return ret;
732 : :
733 : : /*
734 : : * Inodes with freshly allocated blocks where contents will be
735 : : * visible after transaction commit must be on transaction's
736 : : * ordered data list.
737 : : */
738 : 3 : if (map->m_flags & EXT4_MAP_NEW &&
739 : 3 : !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
740 : 3 : !(flags & EXT4_GET_BLOCKS_ZERO) &&
741 : 3 : !ext4_is_quota_file(inode) &&
742 : : ext4_should_order_data(inode)) {
743 : 3 : loff_t start_byte =
744 : 3 : (loff_t)map->m_lblk << inode->i_blkbits;
745 : 3 : loff_t length = (loff_t)map->m_len << inode->i_blkbits;
746 : :
747 : 3 : if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
748 : : ret = ext4_jbd2_inode_add_wait(handle, inode,
749 : : start_byte, length);
750 : : else
751 : : ret = ext4_jbd2_inode_add_write(handle, inode,
752 : : start_byte, length);
753 : 3 : if (ret)
754 : : return ret;
755 : : }
756 : : }
757 : 3 : return retval;
758 : : }
759 : :
760 : : /*
761 : : * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
762 : : * we have to be careful as someone else may be manipulating b_state as well.
763 : : */
764 : 3 : static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
765 : : {
766 : : unsigned long old_state;
767 : : unsigned long new_state;
768 : :
769 : 3 : flags &= EXT4_MAP_FLAGS;
770 : :
771 : : /* Dummy buffer_head? Set non-atomically. */
772 : 3 : if (!bh->b_page) {
773 : 3 : bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
774 : 3 : return;
775 : : }
776 : : /*
777 : : * Someone else may be modifying b_state. Be careful! This is ugly but
778 : : * once we get rid of using bh as a container for mapping information
779 : : * to pass to / from get_block functions, this can go away.
780 : : */
781 : : do {
782 : : old_state = READ_ONCE(bh->b_state);
783 : 3 : new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
784 : 3 : } while (unlikely(
785 : : cmpxchg(&bh->b_state, old_state, new_state) != old_state));
786 : : }
787 : :
788 : 3 : static int _ext4_get_block(struct inode *inode, sector_t iblock,
789 : : struct buffer_head *bh, int flags)
790 : : {
791 : : struct ext4_map_blocks map;
792 : : int ret = 0;
793 : :
794 : 3 : if (ext4_has_inline_data(inode))
795 : : return -ERANGE;
796 : :
797 : 3 : map.m_lblk = iblock;
798 : 3 : map.m_len = bh->b_size >> inode->i_blkbits;
799 : :
800 : 3 : ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
801 : : flags);
802 : 3 : if (ret > 0) {
803 : 3 : map_bh(bh, inode->i_sb, map.m_pblk);
804 : 3 : ext4_update_bh_state(bh, map.m_flags);
805 : 3 : bh->b_size = inode->i_sb->s_blocksize * map.m_len;
806 : : ret = 0;
807 : 0 : } else if (ret == 0) {
808 : : /* hole case, need to fill in bh->b_size */
809 : 0 : bh->b_size = inode->i_sb->s_blocksize * map.m_len;
810 : : }
811 : 3 : return ret;
812 : : }
813 : :
814 : 3 : int ext4_get_block(struct inode *inode, sector_t iblock,
815 : : struct buffer_head *bh, int create)
816 : : {
817 : 3 : return _ext4_get_block(inode, iblock, bh,
818 : : create ? EXT4_GET_BLOCKS_CREATE : 0);
819 : : }
820 : :
821 : : /*
822 : : * Get block function used when preparing for buffered write if we require
823 : : * creating an unwritten extent if blocks haven't been allocated. The extent
824 : : * will be converted to written after the IO is complete.
825 : : */
826 : 0 : int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
827 : : struct buffer_head *bh_result, int create)
828 : : {
829 : : ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 : : inode->i_ino, create);
831 : 0 : return _ext4_get_block(inode, iblock, bh_result,
832 : : EXT4_GET_BLOCKS_IO_CREATE_EXT);
833 : : }
834 : :
835 : : /* Maximum number of blocks we map for direct IO at once. */
836 : : #define DIO_MAX_BLOCKS 4096
837 : :
838 : : /*
839 : : * Get blocks function for the cases that need to start a transaction -
840 : : * generally difference cases of direct IO and DAX IO. It also handles retries
841 : : * in case of ENOSPC.
842 : : */
843 : 0 : static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
844 : : struct buffer_head *bh_result, int flags)
845 : : {
846 : : int dio_credits;
847 : : handle_t *handle;
848 : 0 : int retries = 0;
849 : : int ret;
850 : :
851 : : /* Trim mapping request to maximum we can map at once for DIO */
852 : 0 : if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
853 : 0 : bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
854 : 0 : dio_credits = ext4_chunk_trans_blocks(inode,
855 : 0 : bh_result->b_size >> inode->i_blkbits);
856 : : retry:
857 : : handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
858 : 0 : if (IS_ERR(handle))
859 : 0 : return PTR_ERR(handle);
860 : :
861 : 0 : ret = _ext4_get_block(inode, iblock, bh_result, flags);
862 : 0 : ext4_journal_stop(handle);
863 : :
864 : 0 : if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
865 : : goto retry;
866 : 0 : return ret;
867 : : }
868 : :
869 : : /* Get block function for DIO reads and writes to inodes without extents */
870 : 0 : int ext4_dio_get_block(struct inode *inode, sector_t iblock,
871 : : struct buffer_head *bh, int create)
872 : : {
873 : : /* We don't expect handle for direct IO */
874 : 0 : WARN_ON_ONCE(ext4_journal_current_handle());
875 : :
876 : 0 : if (!create)
877 : 0 : return _ext4_get_block(inode, iblock, bh, 0);
878 : 0 : return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
879 : : }
880 : :
881 : : /*
882 : : * Get block function for AIO DIO writes when we create unwritten extent if
883 : : * blocks are not allocated yet. The extent will be converted to written
884 : : * after IO is complete.
885 : : */
886 : 0 : static int ext4_dio_get_block_unwritten_async(struct inode *inode,
887 : : sector_t iblock, struct buffer_head *bh_result, int create)
888 : : {
889 : : int ret;
890 : :
891 : : /* We don't expect handle for direct IO */
892 : 0 : WARN_ON_ONCE(ext4_journal_current_handle());
893 : :
894 : 0 : ret = ext4_get_block_trans(inode, iblock, bh_result,
895 : : EXT4_GET_BLOCKS_IO_CREATE_EXT);
896 : :
897 : : /*
898 : : * When doing DIO using unwritten extents, we need io_end to convert
899 : : * unwritten extents to written on IO completion. We allocate io_end
900 : : * once we spot unwritten extent and store it in b_private. Generic
901 : : * DIO code keeps b_private set and furthermore passes the value to
902 : : * our completion callback in 'private' argument.
903 : : */
904 : 0 : if (!ret && buffer_unwritten(bh_result)) {
905 : 0 : if (!bh_result->b_private) {
906 : : ext4_io_end_t *io_end;
907 : :
908 : 0 : io_end = ext4_init_io_end(inode, GFP_KERNEL);
909 : 0 : if (!io_end)
910 : : return -ENOMEM;
911 : 0 : bh_result->b_private = io_end;
912 : 0 : ext4_set_io_unwritten_flag(inode, io_end);
913 : : }
914 : : set_buffer_defer_completion(bh_result);
915 : : }
916 : :
917 : 0 : return ret;
918 : : }
919 : :
920 : : /*
921 : : * Get block function for non-AIO DIO writes when we create unwritten extent if
922 : : * blocks are not allocated yet. The extent will be converted to written
923 : : * after IO is complete by ext4_direct_IO_write().
924 : : */
925 : 0 : static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
926 : : sector_t iblock, struct buffer_head *bh_result, int create)
927 : : {
928 : : int ret;
929 : :
930 : : /* We don't expect handle for direct IO */
931 : 0 : WARN_ON_ONCE(ext4_journal_current_handle());
932 : :
933 : 0 : ret = ext4_get_block_trans(inode, iblock, bh_result,
934 : : EXT4_GET_BLOCKS_IO_CREATE_EXT);
935 : :
936 : : /*
937 : : * Mark inode as having pending DIO writes to unwritten extents.
938 : : * ext4_direct_IO_write() checks this flag and converts extents to
939 : : * written.
940 : : */
941 : 0 : if (!ret && buffer_unwritten(bh_result))
942 : : ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
943 : :
944 : 0 : return ret;
945 : : }
946 : :
947 : 0 : static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
948 : : struct buffer_head *bh_result, int create)
949 : : {
950 : : int ret;
951 : :
952 : : ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
953 : : inode->i_ino, create);
954 : : /* We don't expect handle for direct IO */
955 : 0 : WARN_ON_ONCE(ext4_journal_current_handle());
956 : :
957 : 0 : ret = _ext4_get_block(inode, iblock, bh_result, 0);
958 : : /*
959 : : * Blocks should have been preallocated! ext4_file_write_iter() checks
960 : : * that.
961 : : */
962 : 0 : WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
963 : :
964 : 0 : return ret;
965 : : }
966 : :
967 : :
968 : : /*
969 : : * `handle' can be NULL if create is zero
970 : : */
971 : 3 : struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
972 : : ext4_lblk_t block, int map_flags)
973 : : {
974 : : struct ext4_map_blocks map;
975 : : struct buffer_head *bh;
976 : 3 : int create = map_flags & EXT4_GET_BLOCKS_CREATE;
977 : : int err;
978 : :
979 : 3 : J_ASSERT(handle != NULL || create == 0);
980 : :
981 : 3 : map.m_lblk = block;
982 : 3 : map.m_len = 1;
983 : 3 : err = ext4_map_blocks(handle, inode, &map, map_flags);
984 : :
985 : 3 : if (err == 0)
986 : 0 : return create ? ERR_PTR(-ENOSPC) : NULL;
987 : 3 : if (err < 0)
988 : 0 : return ERR_PTR(err);
989 : :
990 : 3 : bh = sb_getblk(inode->i_sb, map.m_pblk);
991 : 3 : if (unlikely(!bh))
992 : : return ERR_PTR(-ENOMEM);
993 : 3 : if (map.m_flags & EXT4_MAP_NEW) {
994 : 3 : J_ASSERT(create != 0);
995 : 3 : J_ASSERT(handle != NULL);
996 : :
997 : : /*
998 : : * Now that we do not always journal data, we should
999 : : * keep in mind whether this should always journal the
1000 : : * new buffer as metadata. For now, regular file
1001 : : * writes use ext4_get_block instead, so it's not a
1002 : : * problem.
1003 : : */
1004 : 3 : lock_buffer(bh);
1005 : : BUFFER_TRACE(bh, "call get_create_access");
1006 : 3 : err = ext4_journal_get_create_access(handle, bh);
1007 : 3 : if (unlikely(err)) {
1008 : 0 : unlock_buffer(bh);
1009 : 0 : goto errout;
1010 : : }
1011 : 3 : if (!buffer_uptodate(bh)) {
1012 : 3 : memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1013 : : set_buffer_uptodate(bh);
1014 : : }
1015 : 3 : unlock_buffer(bh);
1016 : : BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1017 : 3 : err = ext4_handle_dirty_metadata(handle, inode, bh);
1018 : 3 : if (unlikely(err))
1019 : : goto errout;
1020 : : } else
1021 : : BUFFER_TRACE(bh, "not a new buffer");
1022 : 3 : return bh;
1023 : : errout:
1024 : : brelse(bh);
1025 : 0 : return ERR_PTR(err);
1026 : : }
1027 : :
1028 : 3 : struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1029 : : ext4_lblk_t block, int map_flags)
1030 : : {
1031 : : struct buffer_head *bh;
1032 : :
1033 : 3 : bh = ext4_getblk(handle, inode, block, map_flags);
1034 : 3 : if (IS_ERR(bh))
1035 : : return bh;
1036 : 3 : if (!bh || ext4_buffer_uptodate(bh))
1037 : 3 : return bh;
1038 : 3 : ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1039 : 3 : wait_on_buffer(bh);
1040 : 3 : if (buffer_uptodate(bh))
1041 : 3 : return bh;
1042 : 0 : put_bh(bh);
1043 : 0 : return ERR_PTR(-EIO);
1044 : : }
1045 : :
1046 : : /* Read a contiguous batch of blocks. */
1047 : 3 : int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1048 : : bool wait, struct buffer_head **bhs)
1049 : : {
1050 : : int i, err;
1051 : :
1052 : 3 : for (i = 0; i < bh_count; i++) {
1053 : 3 : bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1054 : 3 : if (IS_ERR(bhs[i])) {
1055 : 0 : err = PTR_ERR(bhs[i]);
1056 : 0 : bh_count = i;
1057 : 0 : goto out_brelse;
1058 : : }
1059 : : }
1060 : :
1061 : 3 : for (i = 0; i < bh_count; i++)
1062 : : /* Note that NULL bhs[i] is valid because of holes. */
1063 : 3 : if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1064 : 3 : ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1065 : : &bhs[i]);
1066 : :
1067 : 3 : if (!wait)
1068 : : return 0;
1069 : :
1070 : 0 : for (i = 0; i < bh_count; i++)
1071 : 0 : if (bhs[i])
1072 : 0 : wait_on_buffer(bhs[i]);
1073 : :
1074 : 0 : for (i = 0; i < bh_count; i++) {
1075 : 0 : if (bhs[i] && !buffer_uptodate(bhs[i])) {
1076 : : err = -EIO;
1077 : : goto out_brelse;
1078 : : }
1079 : : }
1080 : : return 0;
1081 : :
1082 : : out_brelse:
1083 : 0 : for (i = 0; i < bh_count; i++) {
1084 : 0 : brelse(bhs[i]);
1085 : 0 : bhs[i] = NULL;
1086 : : }
1087 : : return err;
1088 : : }
1089 : :
1090 : 0 : int ext4_walk_page_buffers(handle_t *handle,
1091 : : struct buffer_head *head,
1092 : : unsigned from,
1093 : : unsigned to,
1094 : : int *partial,
1095 : : int (*fn)(handle_t *handle,
1096 : : struct buffer_head *bh))
1097 : : {
1098 : : struct buffer_head *bh;
1099 : : unsigned block_start, block_end;
1100 : 0 : unsigned blocksize = head->b_size;
1101 : : int err, ret = 0;
1102 : : struct buffer_head *next;
1103 : :
1104 : 0 : for (bh = head, block_start = 0;
1105 : 0 : ret == 0 && (bh != head || !block_start);
1106 : : block_start = block_end, bh = next) {
1107 : 0 : next = bh->b_this_page;
1108 : 0 : block_end = block_start + blocksize;
1109 : 0 : if (block_end <= from || block_start >= to) {
1110 : 0 : if (partial && !buffer_uptodate(bh))
1111 : 0 : *partial = 1;
1112 : 0 : continue;
1113 : : }
1114 : 0 : err = (*fn)(handle, bh);
1115 : 0 : if (!ret)
1116 : : ret = err;
1117 : : }
1118 : 0 : return ret;
1119 : : }
1120 : :
1121 : : /*
1122 : : * To preserve ordering, it is essential that the hole instantiation and
1123 : : * the data write be encapsulated in a single transaction. We cannot
1124 : : * close off a transaction and start a new one between the ext4_get_block()
1125 : : * and the commit_write(). So doing the jbd2_journal_start at the start of
1126 : : * prepare_write() is the right place.
1127 : : *
1128 : : * Also, this function can nest inside ext4_writepage(). In that case, we
1129 : : * *know* that ext4_writepage() has generated enough buffer credits to do the
1130 : : * whole page. So we won't block on the journal in that case, which is good,
1131 : : * because the caller may be PF_MEMALLOC.
1132 : : *
1133 : : * By accident, ext4 can be reentered when a transaction is open via
1134 : : * quota file writes. If we were to commit the transaction while thus
1135 : : * reentered, there can be a deadlock - we would be holding a quota
1136 : : * lock, and the commit would never complete if another thread had a
1137 : : * transaction open and was blocking on the quota lock - a ranking
1138 : : * violation.
1139 : : *
1140 : : * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1141 : : * will _not_ run commit under these circumstances because handle->h_ref
1142 : : * is elevated. We'll still have enough credits for the tiny quotafile
1143 : : * write.
1144 : : */
1145 : 0 : int do_journal_get_write_access(handle_t *handle,
1146 : : struct buffer_head *bh)
1147 : : {
1148 : : int dirty = buffer_dirty(bh);
1149 : : int ret;
1150 : :
1151 : 0 : if (!buffer_mapped(bh) || buffer_freed(bh))
1152 : : return 0;
1153 : : /*
1154 : : * __block_write_begin() could have dirtied some buffers. Clean
1155 : : * the dirty bit as jbd2_journal_get_write_access() could complain
1156 : : * otherwise about fs integrity issues. Setting of the dirty bit
1157 : : * by __block_write_begin() isn't a real problem here as we clear
1158 : : * the bit before releasing a page lock and thus writeback cannot
1159 : : * ever write the buffer.
1160 : : */
1161 : 0 : if (dirty)
1162 : : clear_buffer_dirty(bh);
1163 : : BUFFER_TRACE(bh, "get write access");
1164 : 0 : ret = ext4_journal_get_write_access(handle, bh);
1165 : 0 : if (!ret && dirty)
1166 : 0 : ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1167 : 0 : return ret;
1168 : : }
1169 : :
1170 : : #ifdef CONFIG_FS_ENCRYPTION
1171 : 3 : static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1172 : : get_block_t *get_block)
1173 : : {
1174 : 3 : unsigned from = pos & (PAGE_SIZE - 1);
1175 : 3 : unsigned to = from + len;
1176 : 3 : struct inode *inode = page->mapping->host;
1177 : : unsigned block_start, block_end;
1178 : : sector_t block;
1179 : : int err = 0;
1180 : 3 : unsigned blocksize = inode->i_sb->s_blocksize;
1181 : : unsigned bbits;
1182 : : struct buffer_head *bh, *head, *wait[2];
1183 : : int nr_wait = 0;
1184 : : int i;
1185 : :
1186 : 3 : BUG_ON(!PageLocked(page));
1187 : : BUG_ON(from > PAGE_SIZE);
1188 : 3 : BUG_ON(to > PAGE_SIZE);
1189 : 3 : BUG_ON(from > to);
1190 : :
1191 : 3 : if (!page_has_buffers(page))
1192 : 3 : create_empty_buffers(page, blocksize, 0);
1193 : 3 : head = page_buffers(page);
1194 : 3 : bbits = ilog2(blocksize);
1195 : 3 : block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1196 : :
1197 : 3 : for (bh = head, block_start = 0; bh != head || !block_start;
1198 : 3 : block++, block_start = block_end, bh = bh->b_this_page) {
1199 : 3 : block_end = block_start + blocksize;
1200 : 3 : if (block_end <= from || block_start >= to) {
1201 : 2 : if (PageUptodate(page)) {
1202 : 0 : if (!buffer_uptodate(bh))
1203 : 0 : set_buffer_uptodate(bh);
1204 : : }
1205 : 2 : continue;
1206 : : }
1207 : 3 : if (buffer_new(bh))
1208 : 0 : clear_buffer_new(bh);
1209 : 3 : if (!buffer_mapped(bh)) {
1210 : 3 : WARN_ON(bh->b_size != blocksize);
1211 : 3 : err = get_block(inode, block, bh, 1);
1212 : 3 : if (err)
1213 : : break;
1214 : 3 : if (buffer_new(bh)) {
1215 : 3 : if (PageUptodate(page)) {
1216 : 3 : clear_buffer_new(bh);
1217 : 3 : set_buffer_uptodate(bh);
1218 : 3 : mark_buffer_dirty(bh);
1219 : 3 : continue;
1220 : : }
1221 : 3 : if (block_end > to || block_start < from)
1222 : 3 : zero_user_segments(page, to, block_end,
1223 : : block_start, from);
1224 : 3 : continue;
1225 : : }
1226 : : }
1227 : 3 : if (PageUptodate(page)) {
1228 : 3 : if (!buffer_uptodate(bh))
1229 : 0 : set_buffer_uptodate(bh);
1230 : 3 : continue;
1231 : : }
1232 : 3 : if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1233 : 3 : !buffer_unwritten(bh) &&
1234 : 3 : (block_start < from || block_end > to)) {
1235 : 3 : ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1236 : 3 : wait[nr_wait++] = bh;
1237 : : }
1238 : : }
1239 : : /*
1240 : : * If we issued read requests, let them complete.
1241 : : */
1242 : 3 : for (i = 0; i < nr_wait; i++) {
1243 : 3 : wait_on_buffer(wait[i]);
1244 : 3 : if (!buffer_uptodate(wait[i]))
1245 : : err = -EIO;
1246 : : }
1247 : 3 : if (unlikely(err)) {
1248 : 0 : page_zero_new_buffers(page, from, to);
1249 : 3 : } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1250 : 0 : for (i = 0; i < nr_wait; i++) {
1251 : : int err2;
1252 : :
1253 : 0 : err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1254 : 0 : bh_offset(wait[i]));
1255 : 0 : if (err2) {
1256 : : clear_buffer_uptodate(wait[i]);
1257 : : err = err2;
1258 : : }
1259 : : }
1260 : : }
1261 : :
1262 : 3 : return err;
1263 : : }
1264 : : #endif
1265 : :
1266 : 0 : static int ext4_write_begin(struct file *file, struct address_space *mapping,
1267 : : loff_t pos, unsigned len, unsigned flags,
1268 : : struct page **pagep, void **fsdata)
1269 : : {
1270 : 0 : struct inode *inode = mapping->host;
1271 : : int ret, needed_blocks;
1272 : : handle_t *handle;
1273 : 0 : int retries = 0;
1274 : : struct page *page;
1275 : : pgoff_t index;
1276 : : unsigned from, to;
1277 : :
1278 : 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1279 : : return -EIO;
1280 : :
1281 : 0 : trace_ext4_write_begin(inode, pos, len, flags);
1282 : : /*
1283 : : * Reserve one block more for addition to orphan list in case
1284 : : * we allocate blocks but write fails for some reason
1285 : : */
1286 : 0 : needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1287 : 0 : index = pos >> PAGE_SHIFT;
1288 : 0 : from = pos & (PAGE_SIZE - 1);
1289 : 0 : to = from + len;
1290 : :
1291 : 0 : if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1292 : 0 : ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1293 : : flags, pagep);
1294 : 0 : if (ret < 0)
1295 : : return ret;
1296 : 0 : if (ret == 1)
1297 : : return 0;
1298 : : }
1299 : :
1300 : : /*
1301 : : * grab_cache_page_write_begin() can take a long time if the
1302 : : * system is thrashing due to memory pressure, or if the page
1303 : : * is being written back. So grab it first before we start
1304 : : * the transaction handle. This also allows us to allocate
1305 : : * the page (if needed) without using GFP_NOFS.
1306 : : */
1307 : : retry_grab:
1308 : 0 : page = grab_cache_page_write_begin(mapping, index, flags);
1309 : 0 : if (!page)
1310 : : return -ENOMEM;
1311 : 0 : unlock_page(page);
1312 : :
1313 : : retry_journal:
1314 : : handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1315 : 0 : if (IS_ERR(handle)) {
1316 : 0 : put_page(page);
1317 : 0 : return PTR_ERR(handle);
1318 : : }
1319 : :
1320 : 0 : lock_page(page);
1321 : 0 : if (page->mapping != mapping) {
1322 : : /* The page got truncated from under us */
1323 : 0 : unlock_page(page);
1324 : 0 : put_page(page);
1325 : 0 : ext4_journal_stop(handle);
1326 : 0 : goto retry_grab;
1327 : : }
1328 : : /* In case writeback began while the page was unlocked */
1329 : 0 : wait_for_stable_page(page);
1330 : :
1331 : : #ifdef CONFIG_FS_ENCRYPTION
1332 : 0 : if (ext4_should_dioread_nolock(inode))
1333 : 0 : ret = ext4_block_write_begin(page, pos, len,
1334 : : ext4_get_block_unwritten);
1335 : : else
1336 : 0 : ret = ext4_block_write_begin(page, pos, len,
1337 : : ext4_get_block);
1338 : : #else
1339 : : if (ext4_should_dioread_nolock(inode))
1340 : : ret = __block_write_begin(page, pos, len,
1341 : : ext4_get_block_unwritten);
1342 : : else
1343 : : ret = __block_write_begin(page, pos, len, ext4_get_block);
1344 : : #endif
1345 : 0 : if (!ret && ext4_should_journal_data(inode)) {
1346 : 0 : ret = ext4_walk_page_buffers(handle, page_buffers(page),
1347 : : from, to, NULL,
1348 : : do_journal_get_write_access);
1349 : : }
1350 : :
1351 : 0 : if (ret) {
1352 : 0 : bool extended = (pos + len > inode->i_size) &&
1353 : : !ext4_verity_in_progress(inode);
1354 : :
1355 : 0 : unlock_page(page);
1356 : : /*
1357 : : * __block_write_begin may have instantiated a few blocks
1358 : : * outside i_size. Trim these off again. Don't need
1359 : : * i_size_read because we hold i_mutex.
1360 : : *
1361 : : * Add inode to orphan list in case we crash before
1362 : : * truncate finishes
1363 : : */
1364 : 0 : if (extended && ext4_can_truncate(inode))
1365 : 0 : ext4_orphan_add(handle, inode);
1366 : :
1367 : 0 : ext4_journal_stop(handle);
1368 : 0 : if (extended) {
1369 : 0 : ext4_truncate_failed_write(inode);
1370 : : /*
1371 : : * If truncate failed early the inode might
1372 : : * still be on the orphan list; we need to
1373 : : * make sure the inode is removed from the
1374 : : * orphan list in that case.
1375 : : */
1376 : 0 : if (inode->i_nlink)
1377 : 0 : ext4_orphan_del(NULL, inode);
1378 : : }
1379 : :
1380 : 0 : if (ret == -ENOSPC &&
1381 : 0 : ext4_should_retry_alloc(inode->i_sb, &retries))
1382 : : goto retry_journal;
1383 : 0 : put_page(page);
1384 : 0 : return ret;
1385 : : }
1386 : 0 : *pagep = page;
1387 : 0 : return ret;
1388 : : }
1389 : :
1390 : : /* For write_end() in data=journal mode */
1391 : 0 : static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1392 : : {
1393 : : int ret;
1394 : 0 : if (!buffer_mapped(bh) || buffer_freed(bh))
1395 : : return 0;
1396 : : set_buffer_uptodate(bh);
1397 : 0 : ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1398 : : clear_buffer_meta(bh);
1399 : : clear_buffer_prio(bh);
1400 : 0 : return ret;
1401 : : }
1402 : :
1403 : : /*
1404 : : * We need to pick up the new inode size which generic_commit_write gave us
1405 : : * `file' can be NULL - eg, when called from page_symlink().
1406 : : *
1407 : : * ext4 never places buffers on inode->i_mapping->private_list. metadata
1408 : : * buffers are managed internally.
1409 : : */
1410 : 0 : static int ext4_write_end(struct file *file,
1411 : : struct address_space *mapping,
1412 : : loff_t pos, unsigned len, unsigned copied,
1413 : : struct page *page, void *fsdata)
1414 : : {
1415 : : handle_t *handle = ext4_journal_current_handle();
1416 : 0 : struct inode *inode = mapping->host;
1417 : 0 : loff_t old_size = inode->i_size;
1418 : : int ret = 0, ret2;
1419 : : int i_size_changed = 0;
1420 : : int inline_data = ext4_has_inline_data(inode);
1421 : : bool verity = ext4_verity_in_progress(inode);
1422 : :
1423 : 0 : trace_ext4_write_end(inode, pos, len, copied);
1424 : 0 : if (inline_data) {
1425 : 0 : ret = ext4_write_inline_data_end(inode, pos, len,
1426 : : copied, page);
1427 : 0 : if (ret < 0) {
1428 : 0 : unlock_page(page);
1429 : 0 : put_page(page);
1430 : 0 : goto errout;
1431 : : }
1432 : 0 : copied = ret;
1433 : : } else
1434 : 0 : copied = block_write_end(file, mapping, pos,
1435 : : len, copied, page, fsdata);
1436 : : /*
1437 : : * it's important to update i_size while still holding page lock:
1438 : : * page writeout could otherwise come in and zero beyond i_size.
1439 : : *
1440 : : * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1441 : : * blocks are being written past EOF, so skip the i_size update.
1442 : : */
1443 : : if (!verity)
1444 : 0 : i_size_changed = ext4_update_inode_size(inode, pos + copied);
1445 : 0 : unlock_page(page);
1446 : 0 : put_page(page);
1447 : :
1448 : 0 : if (old_size < pos && !verity)
1449 : 0 : pagecache_isize_extended(inode, old_size, pos);
1450 : : /*
1451 : : * Don't mark the inode dirty under page lock. First, it unnecessarily
1452 : : * makes the holding time of page lock longer. Second, it forces lock
1453 : : * ordering of page lock and transaction start for journaling
1454 : : * filesystems.
1455 : : */
1456 : 0 : if (i_size_changed || inline_data)
1457 : 0 : ext4_mark_inode_dirty(handle, inode);
1458 : :
1459 : 0 : if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1460 : : /* if we have allocated more blocks and copied
1461 : : * less. We will have blocks allocated outside
1462 : : * inode->i_size. So truncate them
1463 : : */
1464 : 0 : ext4_orphan_add(handle, inode);
1465 : : errout:
1466 : 0 : ret2 = ext4_journal_stop(handle);
1467 : 0 : if (!ret)
1468 : : ret = ret2;
1469 : :
1470 : 0 : if (pos + len > inode->i_size && !verity) {
1471 : 0 : ext4_truncate_failed_write(inode);
1472 : : /*
1473 : : * If truncate failed early the inode might still be
1474 : : * on the orphan list; we need to make sure the inode
1475 : : * is removed from the orphan list in that case.
1476 : : */
1477 : 0 : if (inode->i_nlink)
1478 : 0 : ext4_orphan_del(NULL, inode);
1479 : : }
1480 : :
1481 : 0 : return ret ? ret : copied;
1482 : : }
1483 : :
1484 : : /*
1485 : : * This is a private version of page_zero_new_buffers() which doesn't
1486 : : * set the buffer to be dirty, since in data=journalled mode we need
1487 : : * to call ext4_handle_dirty_metadata() instead.
1488 : : */
1489 : 0 : static void ext4_journalled_zero_new_buffers(handle_t *handle,
1490 : : struct page *page,
1491 : : unsigned from, unsigned to)
1492 : : {
1493 : : unsigned int block_start = 0, block_end;
1494 : : struct buffer_head *head, *bh;
1495 : :
1496 : 0 : bh = head = page_buffers(page);
1497 : : do {
1498 : 0 : block_end = block_start + bh->b_size;
1499 : 0 : if (buffer_new(bh)) {
1500 : 0 : if (block_end > from && block_start < to) {
1501 : 0 : if (!PageUptodate(page)) {
1502 : : unsigned start, size;
1503 : :
1504 : 0 : start = max(from, block_start);
1505 : 0 : size = min(to, block_end) - start;
1506 : :
1507 : : zero_user(page, start, size);
1508 : 0 : write_end_fn(handle, bh);
1509 : : }
1510 : : clear_buffer_new(bh);
1511 : : }
1512 : : }
1513 : : block_start = block_end;
1514 : 0 : bh = bh->b_this_page;
1515 : 0 : } while (bh != head);
1516 : 0 : }
1517 : :
1518 : 0 : static int ext4_journalled_write_end(struct file *file,
1519 : : struct address_space *mapping,
1520 : : loff_t pos, unsigned len, unsigned copied,
1521 : : struct page *page, void *fsdata)
1522 : : {
1523 : : handle_t *handle = ext4_journal_current_handle();
1524 : 0 : struct inode *inode = mapping->host;
1525 : 0 : loff_t old_size = inode->i_size;
1526 : : int ret = 0, ret2;
1527 : 0 : int partial = 0;
1528 : : unsigned from, to;
1529 : : int size_changed = 0;
1530 : : int inline_data = ext4_has_inline_data(inode);
1531 : : bool verity = ext4_verity_in_progress(inode);
1532 : :
1533 : 0 : trace_ext4_journalled_write_end(inode, pos, len, copied);
1534 : 0 : from = pos & (PAGE_SIZE - 1);
1535 : 0 : to = from + len;
1536 : :
1537 : 0 : BUG_ON(!ext4_handle_valid(handle));
1538 : :
1539 : 0 : if (inline_data) {
1540 : 0 : ret = ext4_write_inline_data_end(inode, pos, len,
1541 : : copied, page);
1542 : 0 : if (ret < 0) {
1543 : 0 : unlock_page(page);
1544 : 0 : put_page(page);
1545 : 0 : goto errout;
1546 : : }
1547 : 0 : copied = ret;
1548 : 0 : } else if (unlikely(copied < len) && !PageUptodate(page)) {
1549 : : copied = 0;
1550 : 0 : ext4_journalled_zero_new_buffers(handle, page, from, to);
1551 : : } else {
1552 : 0 : if (unlikely(copied < len))
1553 : 0 : ext4_journalled_zero_new_buffers(handle, page,
1554 : : from + copied, to);
1555 : 0 : ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1556 : : from + copied, &partial,
1557 : : write_end_fn);
1558 : 0 : if (!partial)
1559 : : SetPageUptodate(page);
1560 : : }
1561 : : if (!verity)
1562 : 0 : size_changed = ext4_update_inode_size(inode, pos + copied);
1563 : : ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1564 : 0 : EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1565 : 0 : unlock_page(page);
1566 : 0 : put_page(page);
1567 : :
1568 : 0 : if (old_size < pos && !verity)
1569 : 0 : pagecache_isize_extended(inode, old_size, pos);
1570 : :
1571 : 0 : if (size_changed || inline_data) {
1572 : 0 : ret2 = ext4_mark_inode_dirty(handle, inode);
1573 : 0 : if (!ret)
1574 : : ret = ret2;
1575 : : }
1576 : :
1577 : 0 : if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1578 : : /* if we have allocated more blocks and copied
1579 : : * less. We will have blocks allocated outside
1580 : : * inode->i_size. So truncate them
1581 : : */
1582 : 0 : ext4_orphan_add(handle, inode);
1583 : :
1584 : : errout:
1585 : 0 : ret2 = ext4_journal_stop(handle);
1586 : 0 : if (!ret)
1587 : : ret = ret2;
1588 : 0 : if (pos + len > inode->i_size && !verity) {
1589 : 0 : ext4_truncate_failed_write(inode);
1590 : : /*
1591 : : * If truncate failed early the inode might still be
1592 : : * on the orphan list; we need to make sure the inode
1593 : : * is removed from the orphan list in that case.
1594 : : */
1595 : 0 : if (inode->i_nlink)
1596 : 0 : ext4_orphan_del(NULL, inode);
1597 : : }
1598 : :
1599 : 0 : return ret ? ret : copied;
1600 : : }
1601 : :
1602 : : /*
1603 : : * Reserve space for a single cluster
1604 : : */
1605 : 3 : static int ext4_da_reserve_space(struct inode *inode)
1606 : : {
1607 : 3 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1608 : : struct ext4_inode_info *ei = EXT4_I(inode);
1609 : : int ret;
1610 : :
1611 : : /*
1612 : : * We will charge metadata quota at writeout time; this saves
1613 : : * us from metadata over-estimation, though we may go over by
1614 : : * a small amount in the end. Here we just reserve for data.
1615 : : */
1616 : 3 : ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1617 : 3 : if (ret)
1618 : : return ret;
1619 : :
1620 : : spin_lock(&ei->i_block_reservation_lock);
1621 : 3 : if (ext4_claim_free_clusters(sbi, 1, 0)) {
1622 : : spin_unlock(&ei->i_block_reservation_lock);
1623 : 0 : dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1624 : 0 : return -ENOSPC;
1625 : : }
1626 : 3 : ei->i_reserved_data_blocks++;
1627 : 3 : trace_ext4_da_reserve_space(inode);
1628 : : spin_unlock(&ei->i_block_reservation_lock);
1629 : :
1630 : 3 : return 0; /* success */
1631 : : }
1632 : :
1633 : 3 : void ext4_da_release_space(struct inode *inode, int to_free)
1634 : : {
1635 : 3 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1636 : : struct ext4_inode_info *ei = EXT4_I(inode);
1637 : :
1638 : 3 : if (!to_free)
1639 : 3 : return; /* Nothing to release, exit */
1640 : :
1641 : : spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1642 : :
1643 : 3 : trace_ext4_da_release_space(inode, to_free);
1644 : 3 : if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1645 : : /*
1646 : : * if there aren't enough reserved blocks, then the
1647 : : * counter is messed up somewhere. Since this
1648 : : * function is called from invalidate page, it's
1649 : : * harmless to return without any action.
1650 : : */
1651 : 0 : ext4_warning(inode->i_sb, "ext4_da_release_space: "
1652 : : "ino %lu, to_free %d with only %d reserved "
1653 : : "data blocks", inode->i_ino, to_free,
1654 : : ei->i_reserved_data_blocks);
1655 : 0 : WARN_ON(1);
1656 : 0 : to_free = ei->i_reserved_data_blocks;
1657 : : }
1658 : 3 : ei->i_reserved_data_blocks -= to_free;
1659 : :
1660 : : /* update fs dirty data blocks counter */
1661 : 3 : percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1662 : :
1663 : : spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1664 : :
1665 : 3 : dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1666 : : }
1667 : :
1668 : : /*
1669 : : * Delayed allocation stuff
1670 : : */
1671 : :
1672 : : struct mpage_da_data {
1673 : : struct inode *inode;
1674 : : struct writeback_control *wbc;
1675 : :
1676 : : pgoff_t first_page; /* The first page to write */
1677 : : pgoff_t next_page; /* Current page to examine */
1678 : : pgoff_t last_page; /* Last page to examine */
1679 : : /*
1680 : : * Extent to map - this can be after first_page because that can be
1681 : : * fully mapped. We somewhat abuse m_flags to store whether the extent
1682 : : * is delalloc or unwritten.
1683 : : */
1684 : : struct ext4_map_blocks map;
1685 : : struct ext4_io_submit io_submit; /* IO submission data */
1686 : : unsigned int do_map:1;
1687 : : };
1688 : :
1689 : 3 : static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1690 : : bool invalidate)
1691 : : {
1692 : : int nr_pages, i;
1693 : : pgoff_t index, end;
1694 : : struct pagevec pvec;
1695 : 3 : struct inode *inode = mpd->inode;
1696 : 3 : struct address_space *mapping = inode->i_mapping;
1697 : :
1698 : : /* This is necessary when next_page == 0. */
1699 : 3 : if (mpd->first_page >= mpd->next_page)
1700 : 3 : return;
1701 : :
1702 : 3 : index = mpd->first_page;
1703 : 3 : end = mpd->next_page - 1;
1704 : 3 : if (invalidate) {
1705 : : ext4_lblk_t start, last;
1706 : 0 : start = index << (PAGE_SHIFT - inode->i_blkbits);
1707 : 0 : last = end << (PAGE_SHIFT - inode->i_blkbits);
1708 : 0 : ext4_es_remove_extent(inode, start, last - start + 1);
1709 : : }
1710 : :
1711 : : pagevec_init(&pvec);
1712 : 3 : while (index <= end) {
1713 : 3 : nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1714 : 3 : if (nr_pages == 0)
1715 : : break;
1716 : 3 : for (i = 0; i < nr_pages; i++) {
1717 : 3 : struct page *page = pvec.pages[i];
1718 : :
1719 : 3 : BUG_ON(!PageLocked(page));
1720 : 3 : BUG_ON(PageWriteback(page));
1721 : 3 : if (invalidate) {
1722 : 0 : if (page_mapped(page))
1723 : 0 : clear_page_dirty_for_io(page);
1724 : 0 : block_invalidatepage(page, 0, PAGE_SIZE);
1725 : : ClearPageUptodate(page);
1726 : : }
1727 : 3 : unlock_page(page);
1728 : : }
1729 : : pagevec_release(&pvec);
1730 : : }
1731 : : }
1732 : :
1733 : 0 : static void ext4_print_free_blocks(struct inode *inode)
1734 : : {
1735 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1736 : : struct super_block *sb = inode->i_sb;
1737 : : struct ext4_inode_info *ei = EXT4_I(inode);
1738 : :
1739 : 0 : ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1740 : : EXT4_C2B(EXT4_SB(inode->i_sb),
1741 : : ext4_count_free_clusters(sb)));
1742 : 0 : ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1743 : 0 : ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1744 : : (long long) EXT4_C2B(EXT4_SB(sb),
1745 : : percpu_counter_sum(&sbi->s_freeclusters_counter)));
1746 : 0 : ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1747 : : (long long) EXT4_C2B(EXT4_SB(sb),
1748 : : percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1749 : 0 : ext4_msg(sb, KERN_CRIT, "Block reservation details");
1750 : 0 : ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1751 : : ei->i_reserved_data_blocks);
1752 : 0 : return;
1753 : : }
1754 : :
1755 : 0 : static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1756 : : {
1757 : 0 : return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1758 : : }
1759 : :
1760 : : /*
1761 : : * ext4_insert_delayed_block - adds a delayed block to the extents status
1762 : : * tree, incrementing the reserved cluster/block
1763 : : * count or making a pending reservation
1764 : : * where needed
1765 : : *
1766 : : * @inode - file containing the newly added block
1767 : : * @lblk - logical block to be added
1768 : : *
1769 : : * Returns 0 on success, negative error code on failure.
1770 : : */
1771 : 3 : static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1772 : : {
1773 : 3 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1774 : : int ret;
1775 : : bool allocated = false;
1776 : :
1777 : : /*
1778 : : * If the cluster containing lblk is shared with a delayed,
1779 : : * written, or unwritten extent in a bigalloc file system, it's
1780 : : * already been accounted for and does not need to be reserved.
1781 : : * A pending reservation must be made for the cluster if it's
1782 : : * shared with a written or unwritten extent and doesn't already
1783 : : * have one. Written and unwritten extents can be purged from the
1784 : : * extents status tree if the system is under memory pressure, so
1785 : : * it's necessary to examine the extent tree if a search of the
1786 : : * extents status tree doesn't get a match.
1787 : : */
1788 : 3 : if (sbi->s_cluster_ratio == 1) {
1789 : 3 : ret = ext4_da_reserve_space(inode);
1790 : 3 : if (ret != 0) /* ENOSPC */
1791 : : goto errout;
1792 : : } else { /* bigalloc */
1793 : 0 : if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1794 : 0 : if (!ext4_es_scan_clu(inode,
1795 : : &ext4_es_is_mapped, lblk)) {
1796 : 0 : ret = ext4_clu_mapped(inode,
1797 : 0 : EXT4_B2C(sbi, lblk));
1798 : 0 : if (ret < 0)
1799 : : goto errout;
1800 : 0 : if (ret == 0) {
1801 : 0 : ret = ext4_da_reserve_space(inode);
1802 : 0 : if (ret != 0) /* ENOSPC */
1803 : : goto errout;
1804 : : } else {
1805 : : allocated = true;
1806 : : }
1807 : : } else {
1808 : : allocated = true;
1809 : : }
1810 : : }
1811 : : }
1812 : :
1813 : 3 : ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1814 : :
1815 : : errout:
1816 : 3 : return ret;
1817 : : }
1818 : :
1819 : : /*
1820 : : * This function is grabs code from the very beginning of
1821 : : * ext4_map_blocks, but assumes that the caller is from delayed write
1822 : : * time. This function looks up the requested blocks and sets the
1823 : : * buffer delay bit under the protection of i_data_sem.
1824 : : */
1825 : 3 : static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1826 : : struct ext4_map_blocks *map,
1827 : : struct buffer_head *bh)
1828 : : {
1829 : : struct extent_status es;
1830 : : int retval;
1831 : : sector_t invalid_block = ~((sector_t) 0xffff);
1832 : : #ifdef ES_AGGRESSIVE_TEST
1833 : : struct ext4_map_blocks orig_map;
1834 : :
1835 : : memcpy(&orig_map, map, sizeof(*map));
1836 : : #endif
1837 : :
1838 : 3 : if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1839 : : invalid_block = ~0;
1840 : :
1841 : 3 : map->m_flags = 0;
1842 : : ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1843 : : "logical block %lu\n", inode->i_ino, map->m_len,
1844 : : (unsigned long) map->m_lblk);
1845 : :
1846 : : /* Lookup extent status tree firstly */
1847 : 3 : if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1848 : 3 : if (ext4_es_is_hole(&es)) {
1849 : : retval = 0;
1850 : 3 : down_read(&EXT4_I(inode)->i_data_sem);
1851 : 3 : goto add_delayed;
1852 : : }
1853 : :
1854 : : /*
1855 : : * Delayed extent could be allocated by fallocate.
1856 : : * So we need to check it.
1857 : : */
1858 : 3 : if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1859 : 0 : map_bh(bh, inode->i_sb, invalid_block);
1860 : : set_buffer_new(bh);
1861 : : set_buffer_delay(bh);
1862 : : return 0;
1863 : : }
1864 : :
1865 : 3 : map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1866 : 3 : retval = es.es_len - (iblock - es.es_lblk);
1867 : 3 : if (retval > map->m_len)
1868 : 3 : retval = map->m_len;
1869 : 3 : map->m_len = retval;
1870 : 3 : if (ext4_es_is_written(&es))
1871 : 3 : map->m_flags |= EXT4_MAP_MAPPED;
1872 : 3 : else if (ext4_es_is_unwritten(&es))
1873 : 3 : map->m_flags |= EXT4_MAP_UNWRITTEN;
1874 : : else
1875 : 0 : BUG();
1876 : :
1877 : : #ifdef ES_AGGRESSIVE_TEST
1878 : : ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1879 : : #endif
1880 : 3 : return retval;
1881 : : }
1882 : :
1883 : : /*
1884 : : * Try to see if we can get the block without requesting a new
1885 : : * file system block.
1886 : : */
1887 : 3 : down_read(&EXT4_I(inode)->i_data_sem);
1888 : 3 : if (ext4_has_inline_data(inode))
1889 : : retval = 0;
1890 : 3 : else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1891 : 3 : retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1892 : : else
1893 : 0 : retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1894 : :
1895 : : add_delayed:
1896 : 3 : if (retval == 0) {
1897 : : int ret;
1898 : :
1899 : : /*
1900 : : * XXX: __block_prepare_write() unmaps passed block,
1901 : : * is it OK?
1902 : : */
1903 : :
1904 : 3 : ret = ext4_insert_delayed_block(inode, map->m_lblk);
1905 : 3 : if (ret != 0) {
1906 : : retval = ret;
1907 : : goto out_unlock;
1908 : : }
1909 : :
1910 : 3 : map_bh(bh, inode->i_sb, invalid_block);
1911 : : set_buffer_new(bh);
1912 : : set_buffer_delay(bh);
1913 : 3 : } else if (retval > 0) {
1914 : : int ret;
1915 : : unsigned int status;
1916 : :
1917 : 3 : if (unlikely(retval != map->m_len)) {
1918 : 0 : ext4_warning(inode->i_sb,
1919 : : "ES len assertion failed for inode "
1920 : : "%lu: retval %d != map->m_len %d",
1921 : : inode->i_ino, retval, map->m_len);
1922 : 0 : WARN_ON(1);
1923 : : }
1924 : :
1925 : 3 : status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1926 : : EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1927 : 3 : ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1928 : : map->m_pblk, status);
1929 : 3 : if (ret != 0)
1930 : : retval = ret;
1931 : : }
1932 : :
1933 : : out_unlock:
1934 : 3 : up_read((&EXT4_I(inode)->i_data_sem));
1935 : :
1936 : 3 : return retval;
1937 : : }
1938 : :
1939 : : /*
1940 : : * This is a special get_block_t callback which is used by
1941 : : * ext4_da_write_begin(). It will either return mapped block or
1942 : : * reserve space for a single block.
1943 : : *
1944 : : * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1945 : : * We also have b_blocknr = -1 and b_bdev initialized properly
1946 : : *
1947 : : * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1948 : : * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1949 : : * initialized properly.
1950 : : */
1951 : 3 : int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1952 : : struct buffer_head *bh, int create)
1953 : : {
1954 : : struct ext4_map_blocks map;
1955 : : int ret = 0;
1956 : :
1957 : 3 : BUG_ON(create == 0);
1958 : 3 : BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1959 : :
1960 : 3 : map.m_lblk = iblock;
1961 : 3 : map.m_len = 1;
1962 : :
1963 : : /*
1964 : : * first, we need to know whether the block is allocated already
1965 : : * preallocated blocks are unmapped but should treated
1966 : : * the same as allocated blocks.
1967 : : */
1968 : 3 : ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1969 : 3 : if (ret <= 0)
1970 : : return ret;
1971 : :
1972 : 3 : map_bh(bh, inode->i_sb, map.m_pblk);
1973 : 3 : ext4_update_bh_state(bh, map.m_flags);
1974 : :
1975 : 3 : if (buffer_unwritten(bh)) {
1976 : : /* A delayed write to unwritten bh should be marked
1977 : : * new and mapped. Mapped ensures that we don't do
1978 : : * get_block multiple times when we write to the same
1979 : : * offset and new ensures that we do proper zero out
1980 : : * for partial write.
1981 : : */
1982 : : set_buffer_new(bh);
1983 : : set_buffer_mapped(bh);
1984 : : }
1985 : : return 0;
1986 : : }
1987 : :
1988 : 0 : static int bget_one(handle_t *handle, struct buffer_head *bh)
1989 : : {
1990 : : get_bh(bh);
1991 : 0 : return 0;
1992 : : }
1993 : :
1994 : 0 : static int bput_one(handle_t *handle, struct buffer_head *bh)
1995 : : {
1996 : 0 : put_bh(bh);
1997 : 0 : return 0;
1998 : : }
1999 : :
2000 : 0 : static int __ext4_journalled_writepage(struct page *page,
2001 : : unsigned int len)
2002 : : {
2003 : 0 : struct address_space *mapping = page->mapping;
2004 : 0 : struct inode *inode = mapping->host;
2005 : : struct buffer_head *page_bufs = NULL;
2006 : : handle_t *handle = NULL;
2007 : : int ret = 0, err = 0;
2008 : : int inline_data = ext4_has_inline_data(inode);
2009 : : struct buffer_head *inode_bh = NULL;
2010 : :
2011 : : ClearPageChecked(page);
2012 : :
2013 : 0 : if (inline_data) {
2014 : 0 : BUG_ON(page->index != 0);
2015 : 0 : BUG_ON(len > ext4_get_max_inline_size(inode));
2016 : 0 : inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2017 : 0 : if (inode_bh == NULL)
2018 : : goto out;
2019 : : } else {
2020 : 0 : page_bufs = page_buffers(page);
2021 : 0 : if (!page_bufs) {
2022 : 0 : BUG();
2023 : : goto out;
2024 : : }
2025 : 0 : ext4_walk_page_buffers(handle, page_bufs, 0, len,
2026 : : NULL, bget_one);
2027 : : }
2028 : : /*
2029 : : * We need to release the page lock before we start the
2030 : : * journal, so grab a reference so the page won't disappear
2031 : : * out from under us.
2032 : : */
2033 : 0 : get_page(page);
2034 : 0 : unlock_page(page);
2035 : :
2036 : 0 : handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2037 : : ext4_writepage_trans_blocks(inode));
2038 : 0 : if (IS_ERR(handle)) {
2039 : : ret = PTR_ERR(handle);
2040 : 0 : put_page(page);
2041 : 0 : goto out_no_pagelock;
2042 : : }
2043 : 0 : BUG_ON(!ext4_handle_valid(handle));
2044 : :
2045 : 0 : lock_page(page);
2046 : 0 : put_page(page);
2047 : 0 : if (page->mapping != mapping) {
2048 : : /* The page got truncated from under us */
2049 : 0 : ext4_journal_stop(handle);
2050 : : ret = 0;
2051 : 0 : goto out;
2052 : : }
2053 : :
2054 : 0 : if (inline_data) {
2055 : 0 : ret = ext4_mark_inode_dirty(handle, inode);
2056 : : } else {
2057 : 0 : ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2058 : : do_journal_get_write_access);
2059 : :
2060 : 0 : err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2061 : : write_end_fn);
2062 : : }
2063 : 0 : if (ret == 0)
2064 : : ret = err;
2065 : 0 : EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2066 : 0 : err = ext4_journal_stop(handle);
2067 : 0 : if (!ret)
2068 : : ret = err;
2069 : :
2070 : 0 : if (!ext4_has_inline_data(inode))
2071 : 0 : ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2072 : : NULL, bput_one);
2073 : : ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2074 : : out:
2075 : 0 : unlock_page(page);
2076 : : out_no_pagelock:
2077 : : brelse(inode_bh);
2078 : 0 : return ret;
2079 : : }
2080 : :
2081 : : /*
2082 : : * Note that we don't need to start a transaction unless we're journaling data
2083 : : * because we should have holes filled from ext4_page_mkwrite(). We even don't
2084 : : * need to file the inode to the transaction's list in ordered mode because if
2085 : : * we are writing back data added by write(), the inode is already there and if
2086 : : * we are writing back data modified via mmap(), no one guarantees in which
2087 : : * transaction the data will hit the disk. In case we are journaling data, we
2088 : : * cannot start transaction directly because transaction start ranks above page
2089 : : * lock so we have to do some magic.
2090 : : *
2091 : : * This function can get called via...
2092 : : * - ext4_writepages after taking page lock (have journal handle)
2093 : : * - journal_submit_inode_data_buffers (no journal handle)
2094 : : * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2095 : : * - grab_page_cache when doing write_begin (have journal handle)
2096 : : *
2097 : : * We don't do any block allocation in this function. If we have page with
2098 : : * multiple blocks we need to write those buffer_heads that are mapped. This
2099 : : * is important for mmaped based write. So if we do with blocksize 1K
2100 : : * truncate(f, 1024);
2101 : : * a = mmap(f, 0, 4096);
2102 : : * a[0] = 'a';
2103 : : * truncate(f, 4096);
2104 : : * we have in the page first buffer_head mapped via page_mkwrite call back
2105 : : * but other buffer_heads would be unmapped but dirty (dirty done via the
2106 : : * do_wp_page). So writepage should write the first block. If we modify
2107 : : * the mmap area beyond 1024 we will again get a page_fault and the
2108 : : * page_mkwrite callback will do the block allocation and mark the
2109 : : * buffer_heads mapped.
2110 : : *
2111 : : * We redirty the page if we have any buffer_heads that is either delay or
2112 : : * unwritten in the page.
2113 : : *
2114 : : * We can get recursively called as show below.
2115 : : *
2116 : : * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2117 : : * ext4_writepage()
2118 : : *
2119 : : * But since we don't do any block allocation we should not deadlock.
2120 : : * Page also have the dirty flag cleared so we don't get recurive page_lock.
2121 : : */
2122 : 0 : static int ext4_writepage(struct page *page,
2123 : : struct writeback_control *wbc)
2124 : : {
2125 : : int ret = 0;
2126 : : loff_t size;
2127 : : unsigned int len;
2128 : : struct buffer_head *page_bufs = NULL;
2129 : 0 : struct inode *inode = page->mapping->host;
2130 : : struct ext4_io_submit io_submit;
2131 : : bool keep_towrite = false;
2132 : :
2133 : 0 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2134 : 0 : inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2135 : 0 : unlock_page(page);
2136 : 0 : return -EIO;
2137 : : }
2138 : :
2139 : 0 : trace_ext4_writepage(page);
2140 : : size = i_size_read(inode);
2141 : 0 : if (page->index == size >> PAGE_SHIFT &&
2142 : : !ext4_verity_in_progress(inode))
2143 : 0 : len = size & ~PAGE_MASK;
2144 : : else
2145 : : len = PAGE_SIZE;
2146 : :
2147 : 0 : page_bufs = page_buffers(page);
2148 : : /*
2149 : : * We cannot do block allocation or other extent handling in this
2150 : : * function. If there are buffers needing that, we have to redirty
2151 : : * the page. But we may reach here when we do a journal commit via
2152 : : * journal_submit_inode_data_buffers() and in that case we must write
2153 : : * allocated buffers to achieve data=ordered mode guarantees.
2154 : : *
2155 : : * Also, if there is only one buffer per page (the fs block
2156 : : * size == the page size), if one buffer needs block
2157 : : * allocation or needs to modify the extent tree to clear the
2158 : : * unwritten flag, we know that the page can't be written at
2159 : : * all, so we might as well refuse the write immediately.
2160 : : * Unfortunately if the block size != page size, we can't as
2161 : : * easily detect this case using ext4_walk_page_buffers(), but
2162 : : * for the extremely common case, this is an optimization that
2163 : : * skips a useless round trip through ext4_bio_write_page().
2164 : : */
2165 : 0 : if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2166 : : ext4_bh_delay_or_unwritten)) {
2167 : 0 : redirty_page_for_writepage(wbc, page);
2168 : 0 : if ((current->flags & PF_MEMALLOC) ||
2169 : 0 : (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2170 : : /*
2171 : : * For memory cleaning there's no point in writing only
2172 : : * some buffers. So just bail out. Warn if we came here
2173 : : * from direct reclaim.
2174 : : */
2175 : 0 : WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2176 : : == PF_MEMALLOC);
2177 : 0 : unlock_page(page);
2178 : 0 : return 0;
2179 : : }
2180 : : keep_towrite = true;
2181 : : }
2182 : :
2183 : 0 : if (PageChecked(page) && ext4_should_journal_data(inode))
2184 : : /*
2185 : : * It's mmapped pagecache. Add buffers and journal it. There
2186 : : * doesn't seem much point in redirtying the page here.
2187 : : */
2188 : 0 : return __ext4_journalled_writepage(page, len);
2189 : :
2190 : 0 : ext4_io_submit_init(&io_submit, wbc);
2191 : 0 : io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2192 : 0 : if (!io_submit.io_end) {
2193 : 0 : redirty_page_for_writepage(wbc, page);
2194 : 0 : unlock_page(page);
2195 : 0 : return -ENOMEM;
2196 : : }
2197 : 0 : ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2198 : 0 : ext4_io_submit(&io_submit);
2199 : : /* Drop io_end reference we got from init */
2200 : 0 : ext4_put_io_end_defer(io_submit.io_end);
2201 : 0 : return ret;
2202 : : }
2203 : :
2204 : 3 : static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2205 : : {
2206 : : int len;
2207 : : loff_t size;
2208 : : int err;
2209 : :
2210 : 3 : BUG_ON(page->index != mpd->first_page);
2211 : 3 : clear_page_dirty_for_io(page);
2212 : : /*
2213 : : * We have to be very careful here! Nothing protects writeback path
2214 : : * against i_size changes and the page can be writeably mapped into
2215 : : * page tables. So an application can be growing i_size and writing
2216 : : * data through mmap while writeback runs. clear_page_dirty_for_io()
2217 : : * write-protects our page in page tables and the page cannot get
2218 : : * written to again until we release page lock. So only after
2219 : : * clear_page_dirty_for_io() we are safe to sample i_size for
2220 : : * ext4_bio_write_page() to zero-out tail of the written page. We rely
2221 : : * on the barrier provided by TestClearPageDirty in
2222 : : * clear_page_dirty_for_io() to make sure i_size is really sampled only
2223 : : * after page tables are updated.
2224 : : */
2225 : 3 : size = i_size_read(mpd->inode);
2226 : 3 : if (page->index == size >> PAGE_SHIFT &&
2227 : : !ext4_verity_in_progress(mpd->inode))
2228 : 3 : len = size & ~PAGE_MASK;
2229 : : else
2230 : : len = PAGE_SIZE;
2231 : 3 : err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2232 : 3 : if (!err)
2233 : 3 : mpd->wbc->nr_to_write--;
2234 : 3 : mpd->first_page++;
2235 : :
2236 : 3 : return err;
2237 : : }
2238 : :
2239 : : #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2240 : :
2241 : : /*
2242 : : * mballoc gives us at most this number of blocks...
2243 : : * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2244 : : * The rest of mballoc seems to handle chunks up to full group size.
2245 : : */
2246 : : #define MAX_WRITEPAGES_EXTENT_LEN 2048
2247 : :
2248 : : /*
2249 : : * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2250 : : *
2251 : : * @mpd - extent of blocks
2252 : : * @lblk - logical number of the block in the file
2253 : : * @bh - buffer head we want to add to the extent
2254 : : *
2255 : : * The function is used to collect contig. blocks in the same state. If the
2256 : : * buffer doesn't require mapping for writeback and we haven't started the
2257 : : * extent of buffers to map yet, the function returns 'true' immediately - the
2258 : : * caller can write the buffer right away. Otherwise the function returns true
2259 : : * if the block has been added to the extent, false if the block couldn't be
2260 : : * added.
2261 : : */
2262 : 3 : static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2263 : : struct buffer_head *bh)
2264 : : {
2265 : : struct ext4_map_blocks *map = &mpd->map;
2266 : :
2267 : : /* Buffer that doesn't need mapping for writeback? */
2268 : 3 : if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2269 : 3 : (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2270 : : /* So far no extent to map => we write the buffer right away */
2271 : 3 : if (map->m_len == 0)
2272 : : return true;
2273 : 0 : return false;
2274 : : }
2275 : :
2276 : : /* First block in the extent? */
2277 : 3 : if (map->m_len == 0) {
2278 : : /* We cannot map unless handle is started... */
2279 : 3 : if (!mpd->do_map)
2280 : : return false;
2281 : 3 : map->m_lblk = lblk;
2282 : 3 : map->m_len = 1;
2283 : 3 : map->m_flags = bh->b_state & BH_FLAGS;
2284 : 3 : return true;
2285 : : }
2286 : :
2287 : : /* Don't go larger than mballoc is willing to allocate */
2288 : 3 : if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2289 : : return false;
2290 : :
2291 : : /* Can we merge the block to our big extent? */
2292 : 3 : if (lblk == map->m_lblk + map->m_len &&
2293 : 3 : (bh->b_state & BH_FLAGS) == map->m_flags) {
2294 : 3 : map->m_len++;
2295 : 3 : return true;
2296 : : }
2297 : : return false;
2298 : : }
2299 : :
2300 : : /*
2301 : : * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2302 : : *
2303 : : * @mpd - extent of blocks for mapping
2304 : : * @head - the first buffer in the page
2305 : : * @bh - buffer we should start processing from
2306 : : * @lblk - logical number of the block in the file corresponding to @bh
2307 : : *
2308 : : * Walk through page buffers from @bh upto @head (exclusive) and either submit
2309 : : * the page for IO if all buffers in this page were mapped and there's no
2310 : : * accumulated extent of buffers to map or add buffers in the page to the
2311 : : * extent of buffers to map. The function returns 1 if the caller can continue
2312 : : * by processing the next page, 0 if it should stop adding buffers to the
2313 : : * extent to map because we cannot extend it anymore. It can also return value
2314 : : * < 0 in case of error during IO submission.
2315 : : */
2316 : 3 : static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2317 : : struct buffer_head *head,
2318 : : struct buffer_head *bh,
2319 : : ext4_lblk_t lblk)
2320 : : {
2321 : 3 : struct inode *inode = mpd->inode;
2322 : : int err;
2323 : 3 : ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2324 : 3 : >> inode->i_blkbits;
2325 : :
2326 : : if (ext4_verity_in_progress(inode))
2327 : : blocks = EXT_MAX_BLOCKS;
2328 : :
2329 : : do {
2330 : 3 : BUG_ON(buffer_locked(bh));
2331 : :
2332 : 3 : if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2333 : : /* Found extent to map? */
2334 : 3 : if (mpd->map.m_len)
2335 : : return 0;
2336 : : /* Buffer needs mapping and handle is not started? */
2337 : 3 : if (!mpd->do_map)
2338 : : return 0;
2339 : : /* Everything mapped so far and we hit EOF */
2340 : : break;
2341 : : }
2342 : 3 : } while (lblk++, (bh = bh->b_this_page) != head);
2343 : : /* So far everything mapped? Submit the page for IO. */
2344 : 3 : if (mpd->map.m_len == 0) {
2345 : 3 : err = mpage_submit_page(mpd, head->b_page);
2346 : 3 : if (err < 0)
2347 : : return err;
2348 : : }
2349 : 3 : return lblk < blocks;
2350 : : }
2351 : :
2352 : : /*
2353 : : * mpage_map_buffers - update buffers corresponding to changed extent and
2354 : : * submit fully mapped pages for IO
2355 : : *
2356 : : * @mpd - description of extent to map, on return next extent to map
2357 : : *
2358 : : * Scan buffers corresponding to changed extent (we expect corresponding pages
2359 : : * to be already locked) and update buffer state according to new extent state.
2360 : : * We map delalloc buffers to their physical location, clear unwritten bits,
2361 : : * and mark buffers as uninit when we perform writes to unwritten extents
2362 : : * and do extent conversion after IO is finished. If the last page is not fully
2363 : : * mapped, we update @map to the next extent in the last page that needs
2364 : : * mapping. Otherwise we submit the page for IO.
2365 : : */
2366 : 3 : static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2367 : : {
2368 : : struct pagevec pvec;
2369 : : int nr_pages, i;
2370 : 3 : struct inode *inode = mpd->inode;
2371 : : struct buffer_head *head, *bh;
2372 : 3 : int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2373 : : pgoff_t start, end;
2374 : : ext4_lblk_t lblk;
2375 : : sector_t pblock;
2376 : : int err;
2377 : :
2378 : 3 : start = mpd->map.m_lblk >> bpp_bits;
2379 : 3 : end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2380 : 3 : lblk = start << bpp_bits;
2381 : 3 : pblock = mpd->map.m_pblk;
2382 : :
2383 : : pagevec_init(&pvec);
2384 : 3 : while (start <= end) {
2385 : 3 : nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2386 : : &start, end);
2387 : 3 : if (nr_pages == 0)
2388 : : break;
2389 : 3 : for (i = 0; i < nr_pages; i++) {
2390 : 3 : struct page *page = pvec.pages[i];
2391 : :
2392 : 3 : bh = head = page_buffers(page);
2393 : : do {
2394 : 3 : if (lblk < mpd->map.m_lblk)
2395 : 0 : continue;
2396 : 3 : if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2397 : : /*
2398 : : * Buffer after end of mapped extent.
2399 : : * Find next buffer in the page to map.
2400 : : */
2401 : 0 : mpd->map.m_len = 0;
2402 : 0 : mpd->map.m_flags = 0;
2403 : : /*
2404 : : * FIXME: If dioread_nolock supports
2405 : : * blocksize < pagesize, we need to make
2406 : : * sure we add size mapped so far to
2407 : : * io_end->size as the following call
2408 : : * can submit the page for IO.
2409 : : */
2410 : 0 : err = mpage_process_page_bufs(mpd, head,
2411 : : bh, lblk);
2412 : : pagevec_release(&pvec);
2413 : 0 : if (err > 0)
2414 : : err = 0;
2415 : 0 : return err;
2416 : : }
2417 : 3 : if (buffer_delay(bh)) {
2418 : : clear_buffer_delay(bh);
2419 : 3 : bh->b_blocknr = pblock++;
2420 : : }
2421 : : clear_buffer_unwritten(bh);
2422 : 3 : } while (lblk++, (bh = bh->b_this_page) != head);
2423 : :
2424 : : /*
2425 : : * FIXME: This is going to break if dioread_nolock
2426 : : * supports blocksize < pagesize as we will try to
2427 : : * convert potentially unmapped parts of inode.
2428 : : */
2429 : 3 : mpd->io_submit.io_end->size += PAGE_SIZE;
2430 : : /* Page fully mapped - let IO run! */
2431 : 3 : err = mpage_submit_page(mpd, page);
2432 : 3 : if (err < 0) {
2433 : : pagevec_release(&pvec);
2434 : 0 : return err;
2435 : : }
2436 : : }
2437 : : pagevec_release(&pvec);
2438 : : }
2439 : : /* Extent fully mapped and matches with page boundary. We are done. */
2440 : 3 : mpd->map.m_len = 0;
2441 : 3 : mpd->map.m_flags = 0;
2442 : 3 : return 0;
2443 : : }
2444 : :
2445 : 3 : static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2446 : : {
2447 : 3 : struct inode *inode = mpd->inode;
2448 : 3 : struct ext4_map_blocks *map = &mpd->map;
2449 : : int get_blocks_flags;
2450 : : int err, dioread_nolock;
2451 : :
2452 : 3 : trace_ext4_da_write_pages_extent(inode, map);
2453 : : /*
2454 : : * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2455 : : * to convert an unwritten extent to be initialized (in the case
2456 : : * where we have written into one or more preallocated blocks). It is
2457 : : * possible that we're going to need more metadata blocks than
2458 : : * previously reserved. However we must not fail because we're in
2459 : : * writeback and there is nothing we can do about it so it might result
2460 : : * in data loss. So use reserved blocks to allocate metadata if
2461 : : * possible.
2462 : : *
2463 : : * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2464 : : * the blocks in question are delalloc blocks. This indicates
2465 : : * that the blocks and quotas has already been checked when
2466 : : * the data was copied into the page cache.
2467 : : */
2468 : : get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2469 : : EXT4_GET_BLOCKS_METADATA_NOFAIL |
2470 : : EXT4_GET_BLOCKS_IO_SUBMIT;
2471 : 3 : dioread_nolock = ext4_should_dioread_nolock(inode);
2472 : 3 : if (dioread_nolock)
2473 : : get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2474 : 3 : if (map->m_flags & (1 << BH_Delay))
2475 : 3 : get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2476 : :
2477 : 3 : err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2478 : 3 : if (err < 0)
2479 : : return err;
2480 : 3 : if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2481 : 0 : if (!mpd->io_submit.io_end->handle &&
2482 : : ext4_handle_valid(handle)) {
2483 : 0 : mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2484 : 0 : handle->h_rsv_handle = NULL;
2485 : : }
2486 : 0 : ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2487 : : }
2488 : :
2489 : 3 : BUG_ON(map->m_len == 0);
2490 : : return 0;
2491 : : }
2492 : :
2493 : : /*
2494 : : * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2495 : : * mpd->len and submit pages underlying it for IO
2496 : : *
2497 : : * @handle - handle for journal operations
2498 : : * @mpd - extent to map
2499 : : * @give_up_on_write - we set this to true iff there is a fatal error and there
2500 : : * is no hope of writing the data. The caller should discard
2501 : : * dirty pages to avoid infinite loops.
2502 : : *
2503 : : * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2504 : : * delayed, blocks are allocated, if it is unwritten, we may need to convert
2505 : : * them to initialized or split the described range from larger unwritten
2506 : : * extent. Note that we need not map all the described range since allocation
2507 : : * can return less blocks or the range is covered by more unwritten extents. We
2508 : : * cannot map more because we are limited by reserved transaction credits. On
2509 : : * the other hand we always make sure that the last touched page is fully
2510 : : * mapped so that it can be written out (and thus forward progress is
2511 : : * guaranteed). After mapping we submit all mapped pages for IO.
2512 : : */
2513 : 3 : static int mpage_map_and_submit_extent(handle_t *handle,
2514 : : struct mpage_da_data *mpd,
2515 : : bool *give_up_on_write)
2516 : : {
2517 : 3 : struct inode *inode = mpd->inode;
2518 : : struct ext4_map_blocks *map = &mpd->map;
2519 : : int err;
2520 : : loff_t disksize;
2521 : : int progress = 0;
2522 : :
2523 : 3 : mpd->io_submit.io_end->offset =
2524 : 3 : ((loff_t)map->m_lblk) << inode->i_blkbits;
2525 : : do {
2526 : 3 : err = mpage_map_one_extent(handle, mpd);
2527 : 3 : if (err < 0) {
2528 : 0 : struct super_block *sb = inode->i_sb;
2529 : :
2530 : 0 : if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2531 : 0 : EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2532 : : goto invalidate_dirty_pages;
2533 : : /*
2534 : : * Let the uper layers retry transient errors.
2535 : : * In the case of ENOSPC, if ext4_count_free_blocks()
2536 : : * is non-zero, a commit should free up blocks.
2537 : : */
2538 : 0 : if ((err == -ENOMEM) ||
2539 : 0 : (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2540 : 0 : if (progress)
2541 : : goto update_disksize;
2542 : 0 : return err;
2543 : : }
2544 : 0 : ext4_msg(sb, KERN_CRIT,
2545 : : "Delayed block allocation failed for "
2546 : : "inode %lu at logical offset %llu with"
2547 : : " max blocks %u with error %d",
2548 : : inode->i_ino,
2549 : : (unsigned long long)map->m_lblk,
2550 : : (unsigned)map->m_len, -err);
2551 : 0 : ext4_msg(sb, KERN_CRIT,
2552 : : "This should not happen!! Data will "
2553 : : "be lost\n");
2554 : 0 : if (err == -ENOSPC)
2555 : 0 : ext4_print_free_blocks(inode);
2556 : : invalidate_dirty_pages:
2557 : 0 : *give_up_on_write = true;
2558 : 0 : return err;
2559 : : }
2560 : : progress = 1;
2561 : : /*
2562 : : * Update buffer state, submit mapped pages, and get us new
2563 : : * extent to map
2564 : : */
2565 : 3 : err = mpage_map_and_submit_buffers(mpd);
2566 : 3 : if (err < 0)
2567 : : goto update_disksize;
2568 : 3 : } while (map->m_len);
2569 : :
2570 : : update_disksize:
2571 : : /*
2572 : : * Update on-disk size after IO is submitted. Races with
2573 : : * truncate are avoided by checking i_size under i_data_sem.
2574 : : */
2575 : 3 : disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2576 : 3 : if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2577 : : int err2;
2578 : : loff_t i_size;
2579 : :
2580 : 3 : down_write(&EXT4_I(inode)->i_data_sem);
2581 : : i_size = i_size_read(inode);
2582 : 3 : if (disksize > i_size)
2583 : : disksize = i_size;
2584 : 3 : if (disksize > EXT4_I(inode)->i_disksize)
2585 : 3 : EXT4_I(inode)->i_disksize = disksize;
2586 : 3 : up_write(&EXT4_I(inode)->i_data_sem);
2587 : 3 : err2 = ext4_mark_inode_dirty(handle, inode);
2588 : 3 : if (err2)
2589 : 0 : ext4_error(inode->i_sb,
2590 : : "Failed to mark inode %lu dirty",
2591 : : inode->i_ino);
2592 : 3 : if (!err)
2593 : : err = err2;
2594 : : }
2595 : 3 : return err;
2596 : : }
2597 : :
2598 : : /*
2599 : : * Calculate the total number of credits to reserve for one writepages
2600 : : * iteration. This is called from ext4_writepages(). We map an extent of
2601 : : * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2602 : : * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2603 : : * bpp - 1 blocks in bpp different extents.
2604 : : */
2605 : 3 : static int ext4_da_writepages_trans_blocks(struct inode *inode)
2606 : : {
2607 : : int bpp = ext4_journal_blocks_per_page(inode);
2608 : :
2609 : 3 : return ext4_meta_trans_blocks(inode,
2610 : : MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2611 : : }
2612 : :
2613 : : /*
2614 : : * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2615 : : * and underlying extent to map
2616 : : *
2617 : : * @mpd - where to look for pages
2618 : : *
2619 : : * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2620 : : * IO immediately. When we find a page which isn't mapped we start accumulating
2621 : : * extent of buffers underlying these pages that needs mapping (formed by
2622 : : * either delayed or unwritten buffers). We also lock the pages containing
2623 : : * these buffers. The extent found is returned in @mpd structure (starting at
2624 : : * mpd->lblk with length mpd->len blocks).
2625 : : *
2626 : : * Note that this function can attach bios to one io_end structure which are
2627 : : * neither logically nor physically contiguous. Although it may seem as an
2628 : : * unnecessary complication, it is actually inevitable in blocksize < pagesize
2629 : : * case as we need to track IO to all buffers underlying a page in one io_end.
2630 : : */
2631 : 3 : static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2632 : : {
2633 : 3 : struct address_space *mapping = mpd->inode->i_mapping;
2634 : : struct pagevec pvec;
2635 : : unsigned int nr_pages;
2636 : 3 : long left = mpd->wbc->nr_to_write;
2637 : 3 : pgoff_t index = mpd->first_page;
2638 : 3 : pgoff_t end = mpd->last_page;
2639 : : xa_mark_t tag;
2640 : : int i, err = 0;
2641 : 3 : int blkbits = mpd->inode->i_blkbits;
2642 : : ext4_lblk_t lblk;
2643 : : struct buffer_head *head;
2644 : :
2645 : 3 : if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2646 : : tag = PAGECACHE_TAG_TOWRITE;
2647 : : else
2648 : : tag = PAGECACHE_TAG_DIRTY;
2649 : :
2650 : : pagevec_init(&pvec);
2651 : 3 : mpd->map.m_len = 0;
2652 : 3 : mpd->next_page = index;
2653 : 3 : while (index <= end) {
2654 : 3 : nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2655 : : tag);
2656 : 3 : if (nr_pages == 0)
2657 : : goto out;
2658 : :
2659 : 3 : for (i = 0; i < nr_pages; i++) {
2660 : 3 : struct page *page = pvec.pages[i];
2661 : :
2662 : : /*
2663 : : * Accumulated enough dirty pages? This doesn't apply
2664 : : * to WB_SYNC_ALL mode. For integrity sync we have to
2665 : : * keep going because someone may be concurrently
2666 : : * dirtying pages, and we might have synced a lot of
2667 : : * newly appeared dirty pages, but have not synced all
2668 : : * of the old dirty pages.
2669 : : */
2670 : 3 : if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2671 : : goto out;
2672 : :
2673 : : /* If we can't merge this page, we are done. */
2674 : 3 : if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2675 : : goto out;
2676 : :
2677 : 3 : lock_page(page);
2678 : : /*
2679 : : * If the page is no longer dirty, or its mapping no
2680 : : * longer corresponds to inode we are writing (which
2681 : : * means it has been truncated or invalidated), or the
2682 : : * page is already under writeback and we are not doing
2683 : : * a data integrity writeback, skip the page
2684 : : */
2685 : 3 : if (!PageDirty(page) ||
2686 : 3 : (PageWriteback(page) &&
2687 : 3 : (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2688 : 3 : unlikely(page->mapping != mapping)) {
2689 : 3 : unlock_page(page);
2690 : 3 : continue;
2691 : : }
2692 : :
2693 : 3 : wait_on_page_writeback(page);
2694 : 3 : BUG_ON(PageWriteback(page));
2695 : :
2696 : 3 : if (mpd->map.m_len == 0)
2697 : 3 : mpd->first_page = page->index;
2698 : 3 : mpd->next_page = page->index + 1;
2699 : : /* Add all dirty buffers to mpd */
2700 : 3 : lblk = ((ext4_lblk_t)page->index) <<
2701 : 3 : (PAGE_SHIFT - blkbits);
2702 : 3 : head = page_buffers(page);
2703 : 3 : err = mpage_process_page_bufs(mpd, head, head, lblk);
2704 : 3 : if (err <= 0)
2705 : : goto out;
2706 : : err = 0;
2707 : 3 : left--;
2708 : : }
2709 : : pagevec_release(&pvec);
2710 : 3 : cond_resched();
2711 : : }
2712 : : return 0;
2713 : : out:
2714 : : pagevec_release(&pvec);
2715 : 3 : return err;
2716 : : }
2717 : :
2718 : 3 : static int ext4_writepages(struct address_space *mapping,
2719 : : struct writeback_control *wbc)
2720 : : {
2721 : : pgoff_t writeback_index = 0;
2722 : 3 : long nr_to_write = wbc->nr_to_write;
2723 : : int range_whole = 0;
2724 : : int cycled = 1;
2725 : : handle_t *handle = NULL;
2726 : : struct mpage_da_data mpd;
2727 : 3 : struct inode *inode = mapping->host;
2728 : : int needed_blocks, rsv_blocks = 0, ret = 0;
2729 : 3 : struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2730 : : bool done;
2731 : : struct blk_plug plug;
2732 : 3 : bool give_up_on_write = false;
2733 : :
2734 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2735 : : return -EIO;
2736 : :
2737 : 3 : percpu_down_read(&sbi->s_writepages_rwsem);
2738 : 3 : trace_ext4_writepages(inode, wbc);
2739 : :
2740 : : /*
2741 : : * No pages to write? This is mainly a kludge to avoid starting
2742 : : * a transaction for special inodes like journal inode on last iput()
2743 : : * because that could violate lock ordering on umount
2744 : : */
2745 : 3 : if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2746 : : goto out_writepages;
2747 : :
2748 : 3 : if (ext4_should_journal_data(inode)) {
2749 : 0 : ret = generic_writepages(mapping, wbc);
2750 : 0 : goto out_writepages;
2751 : : }
2752 : :
2753 : : /*
2754 : : * If the filesystem has aborted, it is read-only, so return
2755 : : * right away instead of dumping stack traces later on that
2756 : : * will obscure the real source of the problem. We test
2757 : : * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2758 : : * the latter could be true if the filesystem is mounted
2759 : : * read-only, and in that case, ext4_writepages should
2760 : : * *never* be called, so if that ever happens, we would want
2761 : : * the stack trace.
2762 : : */
2763 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2764 : : sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2765 : : ret = -EROFS;
2766 : : goto out_writepages;
2767 : : }
2768 : :
2769 : : /*
2770 : : * If we have inline data and arrive here, it means that
2771 : : * we will soon create the block for the 1st page, so
2772 : : * we'd better clear the inline data here.
2773 : : */
2774 : 3 : if (ext4_has_inline_data(inode)) {
2775 : : /* Just inode will be modified... */
2776 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2777 : 0 : if (IS_ERR(handle)) {
2778 : : ret = PTR_ERR(handle);
2779 : 0 : goto out_writepages;
2780 : : }
2781 : 0 : BUG_ON(ext4_test_inode_state(inode,
2782 : : EXT4_STATE_MAY_INLINE_DATA));
2783 : 0 : ext4_destroy_inline_data(handle, inode);
2784 : 0 : ext4_journal_stop(handle);
2785 : : }
2786 : :
2787 : 3 : if (ext4_should_dioread_nolock(inode)) {
2788 : : /*
2789 : : * We may need to convert up to one extent per block in
2790 : : * the page and we may dirty the inode.
2791 : : */
2792 : 0 : rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2793 : 0 : PAGE_SIZE >> inode->i_blkbits);
2794 : : }
2795 : :
2796 : 3 : if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2797 : : range_whole = 1;
2798 : :
2799 : 3 : if (wbc->range_cyclic) {
2800 : 3 : writeback_index = mapping->writeback_index;
2801 : 3 : if (writeback_index)
2802 : : cycled = 0;
2803 : 3 : mpd.first_page = writeback_index;
2804 : 3 : mpd.last_page = -1;
2805 : : } else {
2806 : 3 : mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2807 : 3 : mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2808 : : }
2809 : :
2810 : 3 : mpd.inode = inode;
2811 : 3 : mpd.wbc = wbc;
2812 : 3 : ext4_io_submit_init(&mpd.io_submit, wbc);
2813 : : retry:
2814 : 3 : if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2815 : 3 : tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2816 : : done = false;
2817 : 3 : blk_start_plug(&plug);
2818 : :
2819 : : /*
2820 : : * First writeback pages that don't need mapping - we can avoid
2821 : : * starting a transaction unnecessarily and also avoid being blocked
2822 : : * in the block layer on device congestion while having transaction
2823 : : * started.
2824 : : */
2825 : 3 : mpd.do_map = 0;
2826 : 3 : mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2827 : 3 : if (!mpd.io_submit.io_end) {
2828 : : ret = -ENOMEM;
2829 : : goto unplug;
2830 : : }
2831 : 3 : ret = mpage_prepare_extent_to_map(&mpd);
2832 : : /* Unlock pages we didn't use */
2833 : 3 : mpage_release_unused_pages(&mpd, false);
2834 : : /* Submit prepared bio */
2835 : 3 : ext4_io_submit(&mpd.io_submit);
2836 : 3 : ext4_put_io_end_defer(mpd.io_submit.io_end);
2837 : 3 : mpd.io_submit.io_end = NULL;
2838 : 3 : if (ret < 0)
2839 : : goto unplug;
2840 : :
2841 : 3 : while (!done && mpd.first_page <= mpd.last_page) {
2842 : : /* For each extent of pages we use new io_end */
2843 : 3 : mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2844 : 3 : if (!mpd.io_submit.io_end) {
2845 : : ret = -ENOMEM;
2846 : : break;
2847 : : }
2848 : :
2849 : : /*
2850 : : * We have two constraints: We find one extent to map and we
2851 : : * must always write out whole page (makes a difference when
2852 : : * blocksize < pagesize) so that we don't block on IO when we
2853 : : * try to write out the rest of the page. Journalled mode is
2854 : : * not supported by delalloc.
2855 : : */
2856 : 3 : BUG_ON(ext4_should_journal_data(inode));
2857 : 3 : needed_blocks = ext4_da_writepages_trans_blocks(inode);
2858 : :
2859 : : /* start a new transaction */
2860 : : handle = ext4_journal_start_with_reserve(inode,
2861 : : EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2862 : 3 : if (IS_ERR(handle)) {
2863 : : ret = PTR_ERR(handle);
2864 : 0 : ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2865 : : "%ld pages, ino %lu; err %d", __func__,
2866 : : wbc->nr_to_write, inode->i_ino, ret);
2867 : : /* Release allocated io_end */
2868 : 0 : ext4_put_io_end(mpd.io_submit.io_end);
2869 : 0 : mpd.io_submit.io_end = NULL;
2870 : 0 : break;
2871 : : }
2872 : 3 : mpd.do_map = 1;
2873 : :
2874 : 3 : trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2875 : 3 : ret = mpage_prepare_extent_to_map(&mpd);
2876 : 3 : if (!ret) {
2877 : 3 : if (mpd.map.m_len)
2878 : 3 : ret = mpage_map_and_submit_extent(handle, &mpd,
2879 : : &give_up_on_write);
2880 : : else {
2881 : : /*
2882 : : * We scanned the whole range (or exhausted
2883 : : * nr_to_write), submitted what was mapped and
2884 : : * didn't find anything needing mapping. We are
2885 : : * done.
2886 : : */
2887 : : done = true;
2888 : : }
2889 : : }
2890 : : /*
2891 : : * Caution: If the handle is synchronous,
2892 : : * ext4_journal_stop() can wait for transaction commit
2893 : : * to finish which may depend on writeback of pages to
2894 : : * complete or on page lock to be released. In that
2895 : : * case, we have to wait until after after we have
2896 : : * submitted all the IO, released page locks we hold,
2897 : : * and dropped io_end reference (for extent conversion
2898 : : * to be able to complete) before stopping the handle.
2899 : : */
2900 : 3 : if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2901 : 3 : ext4_journal_stop(handle);
2902 : : handle = NULL;
2903 : 3 : mpd.do_map = 0;
2904 : : }
2905 : : /* Unlock pages we didn't use */
2906 : 3 : mpage_release_unused_pages(&mpd, give_up_on_write);
2907 : : /* Submit prepared bio */
2908 : 3 : ext4_io_submit(&mpd.io_submit);
2909 : :
2910 : : /*
2911 : : * Drop our io_end reference we got from init. We have
2912 : : * to be careful and use deferred io_end finishing if
2913 : : * we are still holding the transaction as we can
2914 : : * release the last reference to io_end which may end
2915 : : * up doing unwritten extent conversion.
2916 : : */
2917 : 3 : if (handle) {
2918 : 0 : ext4_put_io_end_defer(mpd.io_submit.io_end);
2919 : 0 : ext4_journal_stop(handle);
2920 : : } else
2921 : 3 : ext4_put_io_end(mpd.io_submit.io_end);
2922 : 3 : mpd.io_submit.io_end = NULL;
2923 : :
2924 : 3 : if (ret == -ENOSPC && sbi->s_journal) {
2925 : : /*
2926 : : * Commit the transaction which would
2927 : : * free blocks released in the transaction
2928 : : * and try again
2929 : : */
2930 : 0 : jbd2_journal_force_commit_nested(sbi->s_journal);
2931 : : ret = 0;
2932 : 0 : continue;
2933 : : }
2934 : : /* Fatal error - ENOMEM, EIO... */
2935 : 3 : if (ret)
2936 : : break;
2937 : : }
2938 : : unplug:
2939 : 3 : blk_finish_plug(&plug);
2940 : 3 : if (!ret && !cycled && wbc->nr_to_write > 0) {
2941 : : cycled = 1;
2942 : 3 : mpd.last_page = writeback_index - 1;
2943 : 3 : mpd.first_page = 0;
2944 : 3 : goto retry;
2945 : : }
2946 : :
2947 : : /* Update index */
2948 : 3 : if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2949 : : /*
2950 : : * Set the writeback_index so that range_cyclic
2951 : : * mode will write it back later
2952 : : */
2953 : 3 : mapping->writeback_index = mpd.first_page;
2954 : :
2955 : : out_writepages:
2956 : 3 : trace_ext4_writepages_result(inode, wbc, ret,
2957 : 3 : nr_to_write - wbc->nr_to_write);
2958 : 3 : percpu_up_read(&sbi->s_writepages_rwsem);
2959 : 3 : return ret;
2960 : : }
2961 : :
2962 : : static int ext4_dax_writepages(struct address_space *mapping,
2963 : : struct writeback_control *wbc)
2964 : : {
2965 : : int ret;
2966 : : long nr_to_write = wbc->nr_to_write;
2967 : : struct inode *inode = mapping->host;
2968 : : struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2969 : :
2970 : : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2971 : : return -EIO;
2972 : :
2973 : : percpu_down_read(&sbi->s_writepages_rwsem);
2974 : : trace_ext4_writepages(inode, wbc);
2975 : :
2976 : : ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2977 : : trace_ext4_writepages_result(inode, wbc, ret,
2978 : : nr_to_write - wbc->nr_to_write);
2979 : : percpu_up_read(&sbi->s_writepages_rwsem);
2980 : : return ret;
2981 : : }
2982 : :
2983 : 3 : static int ext4_nonda_switch(struct super_block *sb)
2984 : : {
2985 : : s64 free_clusters, dirty_clusters;
2986 : : struct ext4_sb_info *sbi = EXT4_SB(sb);
2987 : :
2988 : : /*
2989 : : * switch to non delalloc mode if we are running low
2990 : : * on free block. The free block accounting via percpu
2991 : : * counters can get slightly wrong with percpu_counter_batch getting
2992 : : * accumulated on each CPU without updating global counters
2993 : : * Delalloc need an accurate free block accounting. So switch
2994 : : * to non delalloc when we are near to error range.
2995 : : */
2996 : : free_clusters =
2997 : : percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2998 : : dirty_clusters =
2999 : : percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3000 : : /*
3001 : : * Start pushing delalloc when 1/2 of free blocks are dirty.
3002 : : */
3003 : 3 : if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3004 : 0 : try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3005 : :
3006 : 3 : if (2 * free_clusters < 3 * dirty_clusters ||
3007 : 3 : free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3008 : : /*
3009 : : * free block count is less than 150% of dirty blocks
3010 : : * or free blocks is less than watermark
3011 : : */
3012 : : return 1;
3013 : : }
3014 : 3 : return 0;
3015 : : }
3016 : :
3017 : : /* We always reserve for an inode update; the superblock could be there too */
3018 : : static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3019 : : {
3020 : 3 : if (likely(ext4_has_feature_large_file(inode->i_sb)))
3021 : : return 1;
3022 : :
3023 : 0 : if (pos + len <= 0x7fffffffULL)
3024 : : return 1;
3025 : :
3026 : : /* We might need to update the superblock to set LARGE_FILE */
3027 : : return 2;
3028 : : }
3029 : :
3030 : 3 : static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3031 : : loff_t pos, unsigned len, unsigned flags,
3032 : : struct page **pagep, void **fsdata)
3033 : : {
3034 : 3 : int ret, retries = 0;
3035 : : struct page *page;
3036 : : pgoff_t index;
3037 : 3 : struct inode *inode = mapping->host;
3038 : : handle_t *handle;
3039 : :
3040 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3041 : : return -EIO;
3042 : :
3043 : 3 : index = pos >> PAGE_SHIFT;
3044 : :
3045 : 3 : if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3046 : : ext4_verity_in_progress(inode)) {
3047 : 3 : *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048 : 3 : return ext4_write_begin(file, mapping, pos,
3049 : : len, flags, pagep, fsdata);
3050 : : }
3051 : 3 : *fsdata = (void *)0;
3052 : 3 : trace_ext4_da_write_begin(inode, pos, len, flags);
3053 : :
3054 : 3 : if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3055 : 0 : ret = ext4_da_write_inline_data_begin(mapping, inode,
3056 : : pos, len, flags,
3057 : : pagep, fsdata);
3058 : 0 : if (ret < 0)
3059 : : return ret;
3060 : 0 : if (ret == 1)
3061 : : return 0;
3062 : : }
3063 : :
3064 : : /*
3065 : : * grab_cache_page_write_begin() can take a long time if the
3066 : : * system is thrashing due to memory pressure, or if the page
3067 : : * is being written back. So grab it first before we start
3068 : : * the transaction handle. This also allows us to allocate
3069 : : * the page (if needed) without using GFP_NOFS.
3070 : : */
3071 : : retry_grab:
3072 : 3 : page = grab_cache_page_write_begin(mapping, index, flags);
3073 : 3 : if (!page)
3074 : : return -ENOMEM;
3075 : 3 : unlock_page(page);
3076 : :
3077 : : /*
3078 : : * With delayed allocation, we don't log the i_disksize update
3079 : : * if there is delayed block allocation. But we still need
3080 : : * to journalling the i_disksize update if writes to the end
3081 : : * of file which has an already mapped buffer.
3082 : : */
3083 : : retry_journal:
3084 : : handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3085 : : ext4_da_write_credits(inode, pos, len));
3086 : 3 : if (IS_ERR(handle)) {
3087 : 0 : put_page(page);
3088 : 0 : return PTR_ERR(handle);
3089 : : }
3090 : :
3091 : 3 : lock_page(page);
3092 : 3 : if (page->mapping != mapping) {
3093 : : /* The page got truncated from under us */
3094 : 0 : unlock_page(page);
3095 : 0 : put_page(page);
3096 : 0 : ext4_journal_stop(handle);
3097 : 0 : goto retry_grab;
3098 : : }
3099 : : /* In case writeback began while the page was unlocked */
3100 : 3 : wait_for_stable_page(page);
3101 : :
3102 : : #ifdef CONFIG_FS_ENCRYPTION
3103 : 3 : ret = ext4_block_write_begin(page, pos, len,
3104 : : ext4_da_get_block_prep);
3105 : : #else
3106 : : ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3107 : : #endif
3108 : 3 : if (ret < 0) {
3109 : 0 : unlock_page(page);
3110 : 0 : ext4_journal_stop(handle);
3111 : : /*
3112 : : * block_write_begin may have instantiated a few blocks
3113 : : * outside i_size. Trim these off again. Don't need
3114 : : * i_size_read because we hold i_mutex.
3115 : : */
3116 : 0 : if (pos + len > inode->i_size)
3117 : 0 : ext4_truncate_failed_write(inode);
3118 : :
3119 : 0 : if (ret == -ENOSPC &&
3120 : 0 : ext4_should_retry_alloc(inode->i_sb, &retries))
3121 : : goto retry_journal;
3122 : :
3123 : 0 : put_page(page);
3124 : 0 : return ret;
3125 : : }
3126 : :
3127 : 3 : *pagep = page;
3128 : 3 : return ret;
3129 : : }
3130 : :
3131 : : /*
3132 : : * Check if we should update i_disksize
3133 : : * when write to the end of file but not require block allocation
3134 : : */
3135 : 3 : static int ext4_da_should_update_i_disksize(struct page *page,
3136 : : unsigned long offset)
3137 : : {
3138 : : struct buffer_head *bh;
3139 : 3 : struct inode *inode = page->mapping->host;
3140 : : unsigned int idx;
3141 : : int i;
3142 : :
3143 : 3 : bh = page_buffers(page);
3144 : 3 : idx = offset >> inode->i_blkbits;
3145 : :
3146 : 3 : for (i = 0; i < idx; i++)
3147 : 0 : bh = bh->b_this_page;
3148 : :
3149 : 3 : if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3150 : : return 0;
3151 : : return 1;
3152 : : }
3153 : :
3154 : 3 : static int ext4_da_write_end(struct file *file,
3155 : : struct address_space *mapping,
3156 : : loff_t pos, unsigned len, unsigned copied,
3157 : : struct page *page, void *fsdata)
3158 : : {
3159 : 3 : struct inode *inode = mapping->host;
3160 : : int ret = 0, ret2;
3161 : : handle_t *handle = ext4_journal_current_handle();
3162 : : loff_t new_i_size;
3163 : : unsigned long start, end;
3164 : 3 : int write_mode = (int)(unsigned long)fsdata;
3165 : :
3166 : 3 : if (write_mode == FALL_BACK_TO_NONDELALLOC)
3167 : 0 : return ext4_write_end(file, mapping, pos,
3168 : : len, copied, page, fsdata);
3169 : :
3170 : 3 : trace_ext4_da_write_end(inode, pos, len, copied);
3171 : 3 : start = pos & (PAGE_SIZE - 1);
3172 : 3 : end = start + copied - 1;
3173 : :
3174 : : /*
3175 : : * generic_write_end() will run mark_inode_dirty() if i_size
3176 : : * changes. So let's piggyback the i_disksize mark_inode_dirty
3177 : : * into that.
3178 : : */
3179 : 3 : new_i_size = pos + copied;
3180 : 3 : if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3181 : 3 : if (ext4_has_inline_data(inode) ||
3182 : 3 : ext4_da_should_update_i_disksize(page, end)) {
3183 : 3 : ext4_update_i_disksize(inode, new_i_size);
3184 : : /* We need to mark inode dirty even if
3185 : : * new_i_size is less that inode->i_size
3186 : : * bu greater than i_disksize.(hint delalloc)
3187 : : */
3188 : 3 : ext4_mark_inode_dirty(handle, inode);
3189 : : }
3190 : : }
3191 : :
3192 : 3 : if (write_mode != CONVERT_INLINE_DATA &&
3193 : 0 : ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3194 : : ext4_has_inline_data(inode))
3195 : 0 : ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3196 : : page);
3197 : : else
3198 : 3 : ret2 = generic_write_end(file, mapping, pos, len, copied,
3199 : : page, fsdata);
3200 : :
3201 : : copied = ret2;
3202 : 3 : if (ret2 < 0)
3203 : : ret = ret2;
3204 : 3 : ret2 = ext4_journal_stop(handle);
3205 : 3 : if (!ret)
3206 : : ret = ret2;
3207 : :
3208 : 3 : return ret ? ret : copied;
3209 : : }
3210 : :
3211 : : /*
3212 : : * Force all delayed allocation blocks to be allocated for a given inode.
3213 : : */
3214 : 3 : int ext4_alloc_da_blocks(struct inode *inode)
3215 : : {
3216 : 3 : trace_ext4_alloc_da_blocks(inode);
3217 : :
3218 : 3 : if (!EXT4_I(inode)->i_reserved_data_blocks)
3219 : : return 0;
3220 : :
3221 : : /*
3222 : : * We do something simple for now. The filemap_flush() will
3223 : : * also start triggering a write of the data blocks, which is
3224 : : * not strictly speaking necessary (and for users of
3225 : : * laptop_mode, not even desirable). However, to do otherwise
3226 : : * would require replicating code paths in:
3227 : : *
3228 : : * ext4_writepages() ->
3229 : : * write_cache_pages() ---> (via passed in callback function)
3230 : : * __mpage_da_writepage() -->
3231 : : * mpage_add_bh_to_extent()
3232 : : * mpage_da_map_blocks()
3233 : : *
3234 : : * The problem is that write_cache_pages(), located in
3235 : : * mm/page-writeback.c, marks pages clean in preparation for
3236 : : * doing I/O, which is not desirable if we're not planning on
3237 : : * doing I/O at all.
3238 : : *
3239 : : * We could call write_cache_pages(), and then redirty all of
3240 : : * the pages by calling redirty_page_for_writepage() but that
3241 : : * would be ugly in the extreme. So instead we would need to
3242 : : * replicate parts of the code in the above functions,
3243 : : * simplifying them because we wouldn't actually intend to
3244 : : * write out the pages, but rather only collect contiguous
3245 : : * logical block extents, call the multi-block allocator, and
3246 : : * then update the buffer heads with the block allocations.
3247 : : *
3248 : : * For now, though, we'll cheat by calling filemap_flush(),
3249 : : * which will map the blocks, and start the I/O, but not
3250 : : * actually wait for the I/O to complete.
3251 : : */
3252 : 3 : return filemap_flush(inode->i_mapping);
3253 : : }
3254 : :
3255 : : /*
3256 : : * bmap() is special. It gets used by applications such as lilo and by
3257 : : * the swapper to find the on-disk block of a specific piece of data.
3258 : : *
3259 : : * Naturally, this is dangerous if the block concerned is still in the
3260 : : * journal. If somebody makes a swapfile on an ext4 data-journaling
3261 : : * filesystem and enables swap, then they may get a nasty shock when the
3262 : : * data getting swapped to that swapfile suddenly gets overwritten by
3263 : : * the original zero's written out previously to the journal and
3264 : : * awaiting writeback in the kernel's buffer cache.
3265 : : *
3266 : : * So, if we see any bmap calls here on a modified, data-journaled file,
3267 : : * take extra steps to flush any blocks which might be in the cache.
3268 : : */
3269 : 3 : static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3270 : : {
3271 : 3 : struct inode *inode = mapping->host;
3272 : : journal_t *journal;
3273 : : int err;
3274 : :
3275 : : /*
3276 : : * We can get here for an inline file via the FIBMAP ioctl
3277 : : */
3278 : 3 : if (ext4_has_inline_data(inode))
3279 : : return 0;
3280 : :
3281 : 3 : if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3282 : 0 : test_opt(inode->i_sb, DELALLOC)) {
3283 : : /*
3284 : : * With delalloc we want to sync the file
3285 : : * so that we can make sure we allocate
3286 : : * blocks for file
3287 : : */
3288 : 0 : filemap_write_and_wait(mapping);
3289 : : }
3290 : :
3291 : 3 : if (EXT4_JOURNAL(inode) &&
3292 : : ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3293 : : /*
3294 : : * This is a REALLY heavyweight approach, but the use of
3295 : : * bmap on dirty files is expected to be extremely rare:
3296 : : * only if we run lilo or swapon on a freshly made file
3297 : : * do we expect this to happen.
3298 : : *
3299 : : * (bmap requires CAP_SYS_RAWIO so this does not
3300 : : * represent an unprivileged user DOS attack --- we'd be
3301 : : * in trouble if mortal users could trigger this path at
3302 : : * will.)
3303 : : *
3304 : : * NB. EXT4_STATE_JDATA is not set on files other than
3305 : : * regular files. If somebody wants to bmap a directory
3306 : : * or symlink and gets confused because the buffer
3307 : : * hasn't yet been flushed to disk, they deserve
3308 : : * everything they get.
3309 : : */
3310 : :
3311 : : ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3312 : 0 : journal = EXT4_JOURNAL(inode);
3313 : 0 : jbd2_journal_lock_updates(journal);
3314 : 0 : err = jbd2_journal_flush(journal);
3315 : 0 : jbd2_journal_unlock_updates(journal);
3316 : :
3317 : 0 : if (err)
3318 : : return 0;
3319 : : }
3320 : :
3321 : 3 : return generic_block_bmap(mapping, block, ext4_get_block);
3322 : : }
3323 : :
3324 : 3 : static int ext4_readpage(struct file *file, struct page *page)
3325 : : {
3326 : : int ret = -EAGAIN;
3327 : 3 : struct inode *inode = page->mapping->host;
3328 : :
3329 : 3 : trace_ext4_readpage(page);
3330 : :
3331 : 3 : if (ext4_has_inline_data(inode))
3332 : 0 : ret = ext4_readpage_inline(inode, page);
3333 : :
3334 : 3 : if (ret == -EAGAIN)
3335 : 3 : return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3336 : : false);
3337 : :
3338 : : return ret;
3339 : : }
3340 : :
3341 : : static int
3342 : 3 : ext4_readpages(struct file *file, struct address_space *mapping,
3343 : : struct list_head *pages, unsigned nr_pages)
3344 : : {
3345 : 3 : struct inode *inode = mapping->host;
3346 : :
3347 : : /* If the file has inline data, no need to do readpages. */
3348 : 3 : if (ext4_has_inline_data(inode))
3349 : : return 0;
3350 : :
3351 : 3 : return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3352 : : }
3353 : :
3354 : 3 : static void ext4_invalidatepage(struct page *page, unsigned int offset,
3355 : : unsigned int length)
3356 : : {
3357 : 3 : trace_ext4_invalidatepage(page, offset, length);
3358 : :
3359 : : /* No journalling happens on data buffers when this function is used */
3360 : 3 : WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3361 : :
3362 : 3 : block_invalidatepage(page, offset, length);
3363 : 3 : }
3364 : :
3365 : 0 : static int __ext4_journalled_invalidatepage(struct page *page,
3366 : : unsigned int offset,
3367 : : unsigned int length)
3368 : : {
3369 : 0 : journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3370 : :
3371 : 0 : trace_ext4_journalled_invalidatepage(page, offset, length);
3372 : :
3373 : : /*
3374 : : * If it's a full truncate we just forget about the pending dirtying
3375 : : */
3376 : 0 : if (offset == 0 && length == PAGE_SIZE)
3377 : : ClearPageChecked(page);
3378 : :
3379 : 0 : return jbd2_journal_invalidatepage(journal, page, offset, length);
3380 : : }
3381 : :
3382 : : /* Wrapper for aops... */
3383 : 0 : static void ext4_journalled_invalidatepage(struct page *page,
3384 : : unsigned int offset,
3385 : : unsigned int length)
3386 : : {
3387 : 0 : WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3388 : 0 : }
3389 : :
3390 : 3 : static int ext4_releasepage(struct page *page, gfp_t wait)
3391 : : {
3392 : 3 : journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3393 : :
3394 : 3 : trace_ext4_releasepage(page);
3395 : :
3396 : : /* Page has dirty journalled data -> cannot release */
3397 : 3 : if (PageChecked(page))
3398 : : return 0;
3399 : 3 : if (journal)
3400 : 3 : return jbd2_journal_try_to_free_buffers(journal, page, wait);
3401 : : else
3402 : 0 : return try_to_free_buffers(page);
3403 : : }
3404 : :
3405 : 0 : static bool ext4_inode_datasync_dirty(struct inode *inode)
3406 : : {
3407 : 0 : journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3408 : :
3409 : 0 : if (journal)
3410 : 0 : return !jbd2_transaction_committed(journal,
3411 : : EXT4_I(inode)->i_datasync_tid);
3412 : : /* Any metadata buffers to write? */
3413 : 0 : if (!list_empty(&inode->i_mapping->private_list))
3414 : : return true;
3415 : 0 : return inode->i_state & I_DIRTY_DATASYNC;
3416 : : }
3417 : :
3418 : 0 : static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3419 : : unsigned flags, struct iomap *iomap)
3420 : : {
3421 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3422 : 0 : unsigned int blkbits = inode->i_blkbits;
3423 : : unsigned long first_block, last_block;
3424 : : struct ext4_map_blocks map;
3425 : : bool delalloc = false;
3426 : : int ret;
3427 : :
3428 : 0 : if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429 : : return -EINVAL;
3430 : 0 : first_block = offset >> blkbits;
3431 : 0 : last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3432 : : EXT4_MAX_LOGICAL_BLOCK);
3433 : :
3434 : 0 : if (flags & IOMAP_REPORT) {
3435 : 0 : if (ext4_has_inline_data(inode)) {
3436 : 0 : ret = ext4_inline_data_iomap(inode, iomap);
3437 : 0 : if (ret != -EAGAIN) {
3438 : 0 : if (ret == 0 && offset >= iomap->length)
3439 : : ret = -ENOENT;
3440 : 0 : return ret;
3441 : : }
3442 : : }
3443 : : } else {
3444 : 0 : if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3445 : : return -ERANGE;
3446 : : }
3447 : :
3448 : 0 : map.m_lblk = first_block;
3449 : 0 : map.m_len = last_block - first_block + 1;
3450 : :
3451 : 0 : if (flags & IOMAP_REPORT) {
3452 : 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
3453 : 0 : if (ret < 0)
3454 : : return ret;
3455 : :
3456 : 0 : if (ret == 0) {
3457 : 0 : ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3458 : : struct extent_status es;
3459 : :
3460 : 0 : ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3461 : : map.m_lblk, end, &es);
3462 : :
3463 : 0 : if (!es.es_len || es.es_lblk > end) {
3464 : : /* entire range is a hole */
3465 : 0 : } else if (es.es_lblk > map.m_lblk) {
3466 : : /* range starts with a hole */
3467 : 0 : map.m_len = es.es_lblk - map.m_lblk;
3468 : : } else {
3469 : : ext4_lblk_t offs = 0;
3470 : :
3471 : 0 : if (es.es_lblk < map.m_lblk)
3472 : 0 : offs = map.m_lblk - es.es_lblk;
3473 : 0 : map.m_lblk = es.es_lblk + offs;
3474 : 0 : map.m_len = es.es_len - offs;
3475 : : delalloc = true;
3476 : : }
3477 : : }
3478 : 0 : } else if (flags & IOMAP_WRITE) {
3479 : : int dio_credits;
3480 : : handle_t *handle;
3481 : 0 : int retries = 0;
3482 : :
3483 : : /* Trim mapping request to maximum we can map at once for DIO */
3484 : 0 : if (map.m_len > DIO_MAX_BLOCKS)
3485 : 0 : map.m_len = DIO_MAX_BLOCKS;
3486 : 0 : dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3487 : : retry:
3488 : : /*
3489 : : * Either we allocate blocks and then we don't get unwritten
3490 : : * extent so we have reserved enough credits, or the blocks
3491 : : * are already allocated and unwritten and in that case
3492 : : * extent conversion fits in the credits as well.
3493 : : */
3494 : : handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3495 : : dio_credits);
3496 : 0 : if (IS_ERR(handle))
3497 : 0 : return PTR_ERR(handle);
3498 : :
3499 : 0 : ret = ext4_map_blocks(handle, inode, &map,
3500 : : EXT4_GET_BLOCKS_CREATE_ZERO);
3501 : 0 : if (ret < 0) {
3502 : 0 : ext4_journal_stop(handle);
3503 : 0 : if (ret == -ENOSPC &&
3504 : 0 : ext4_should_retry_alloc(inode->i_sb, &retries))
3505 : : goto retry;
3506 : 0 : return ret;
3507 : : }
3508 : :
3509 : : /*
3510 : : * If we added blocks beyond i_size, we need to make sure they
3511 : : * will get truncated if we crash before updating i_size in
3512 : : * ext4_iomap_end(). For faults we don't need to do that (and
3513 : : * even cannot because for orphan list operations inode_lock is
3514 : : * required) - if we happen to instantiate block beyond i_size,
3515 : : * it is because we race with truncate which has already added
3516 : : * the inode to the orphan list.
3517 : : */
3518 : 0 : if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3519 : 0 : (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3520 : : int err;
3521 : :
3522 : 0 : err = ext4_orphan_add(handle, inode);
3523 : 0 : if (err < 0) {
3524 : 0 : ext4_journal_stop(handle);
3525 : 0 : return err;
3526 : : }
3527 : : }
3528 : 0 : ext4_journal_stop(handle);
3529 : : } else {
3530 : 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
3531 : 0 : if (ret < 0)
3532 : : return ret;
3533 : : }
3534 : :
3535 : : /*
3536 : : * Writes that span EOF might trigger an I/O size update on completion,
3537 : : * so consider them to be dirty for the purposes of O_DSYNC, even if
3538 : : * there is no other metadata changes being made or are pending here.
3539 : : */
3540 : 0 : iomap->flags = 0;
3541 : 0 : if (ext4_inode_datasync_dirty(inode) ||
3542 : : offset + length > i_size_read(inode))
3543 : 0 : iomap->flags |= IOMAP_F_DIRTY;
3544 : 0 : iomap->bdev = inode->i_sb->s_bdev;
3545 : 0 : iomap->dax_dev = sbi->s_daxdev;
3546 : 0 : iomap->offset = (u64)first_block << blkbits;
3547 : 0 : iomap->length = (u64)map.m_len << blkbits;
3548 : :
3549 : 0 : if (ret == 0) {
3550 : 0 : iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3551 : 0 : iomap->addr = IOMAP_NULL_ADDR;
3552 : : } else {
3553 : 0 : if (map.m_flags & EXT4_MAP_MAPPED) {
3554 : 0 : iomap->type = IOMAP_MAPPED;
3555 : 0 : } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3556 : 0 : iomap->type = IOMAP_UNWRITTEN;
3557 : : } else {
3558 : 0 : WARN_ON_ONCE(1);
3559 : : return -EIO;
3560 : : }
3561 : 0 : iomap->addr = (u64)map.m_pblk << blkbits;
3562 : : }
3563 : :
3564 : 0 : if (map.m_flags & EXT4_MAP_NEW)
3565 : 0 : iomap->flags |= IOMAP_F_NEW;
3566 : :
3567 : : return 0;
3568 : : }
3569 : :
3570 : 0 : static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3571 : : ssize_t written, unsigned flags, struct iomap *iomap)
3572 : : {
3573 : : int ret = 0;
3574 : : handle_t *handle;
3575 : 0 : int blkbits = inode->i_blkbits;
3576 : : bool truncate = false;
3577 : :
3578 : 0 : if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3579 : : return 0;
3580 : :
3581 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3582 : 0 : if (IS_ERR(handle)) {
3583 : : ret = PTR_ERR(handle);
3584 : 0 : goto orphan_del;
3585 : : }
3586 : 0 : if (ext4_update_inode_size(inode, offset + written))
3587 : 0 : ext4_mark_inode_dirty(handle, inode);
3588 : : /*
3589 : : * We may need to truncate allocated but not written blocks beyond EOF.
3590 : : */
3591 : 0 : if (iomap->offset + iomap->length >
3592 : 0 : ALIGN(inode->i_size, 1 << blkbits)) {
3593 : : ext4_lblk_t written_blk, end_blk;
3594 : :
3595 : 0 : written_blk = (offset + written) >> blkbits;
3596 : 0 : end_blk = (offset + length) >> blkbits;
3597 : 0 : if (written_blk < end_blk && ext4_can_truncate(inode))
3598 : : truncate = true;
3599 : : }
3600 : : /*
3601 : : * Remove inode from orphan list if we were extending a inode and
3602 : : * everything went fine.
3603 : : */
3604 : 0 : if (!truncate && inode->i_nlink &&
3605 : 0 : !list_empty(&EXT4_I(inode)->i_orphan))
3606 : 0 : ext4_orphan_del(handle, inode);
3607 : 0 : ext4_journal_stop(handle);
3608 : 0 : if (truncate) {
3609 : 0 : ext4_truncate_failed_write(inode);
3610 : : orphan_del:
3611 : : /*
3612 : : * If truncate failed early the inode might still be on the
3613 : : * orphan list; we need to make sure the inode is removed from
3614 : : * the orphan list in that case.
3615 : : */
3616 : 0 : if (inode->i_nlink)
3617 : 0 : ext4_orphan_del(NULL, inode);
3618 : : }
3619 : 0 : return ret;
3620 : : }
3621 : :
3622 : : const struct iomap_ops ext4_iomap_ops = {
3623 : : .iomap_begin = ext4_iomap_begin,
3624 : : .iomap_end = ext4_iomap_end,
3625 : : };
3626 : :
3627 : 0 : static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3628 : : ssize_t size, void *private)
3629 : : {
3630 : : ext4_io_end_t *io_end = private;
3631 : :
3632 : : /* if not async direct IO just return */
3633 : 0 : if (!io_end)
3634 : : return 0;
3635 : :
3636 : : ext_debug("ext4_end_io_dio(): io_end 0x%p "
3637 : : "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3638 : : io_end, io_end->inode->i_ino, iocb, offset, size);
3639 : :
3640 : : /*
3641 : : * Error during AIO DIO. We cannot convert unwritten extents as the
3642 : : * data was not written. Just clear the unwritten flag and drop io_end.
3643 : : */
3644 : 0 : if (size <= 0) {
3645 : 0 : ext4_clear_io_unwritten_flag(io_end);
3646 : : size = 0;
3647 : : }
3648 : 0 : io_end->offset = offset;
3649 : 0 : io_end->size = size;
3650 : 0 : ext4_put_io_end(io_end);
3651 : :
3652 : 0 : return 0;
3653 : : }
3654 : :
3655 : : /*
3656 : : * Handling of direct IO writes.
3657 : : *
3658 : : * For ext4 extent files, ext4 will do direct-io write even to holes,
3659 : : * preallocated extents, and those write extend the file, no need to
3660 : : * fall back to buffered IO.
3661 : : *
3662 : : * For holes, we fallocate those blocks, mark them as unwritten
3663 : : * If those blocks were preallocated, we mark sure they are split, but
3664 : : * still keep the range to write as unwritten.
3665 : : *
3666 : : * The unwritten extents will be converted to written when DIO is completed.
3667 : : * For async direct IO, since the IO may still pending when return, we
3668 : : * set up an end_io call back function, which will do the conversion
3669 : : * when async direct IO completed.
3670 : : *
3671 : : * If the O_DIRECT write will extend the file then add this inode to the
3672 : : * orphan list. So recovery will truncate it back to the original size
3673 : : * if the machine crashes during the write.
3674 : : *
3675 : : */
3676 : 0 : static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3677 : : {
3678 : 0 : struct file *file = iocb->ki_filp;
3679 : 0 : struct inode *inode = file->f_mapping->host;
3680 : : struct ext4_inode_info *ei = EXT4_I(inode);
3681 : : ssize_t ret;
3682 : 0 : loff_t offset = iocb->ki_pos;
3683 : : size_t count = iov_iter_count(iter);
3684 : : int overwrite = 0;
3685 : : get_block_t *get_block_func = NULL;
3686 : : int dio_flags = 0;
3687 : 0 : loff_t final_size = offset + count;
3688 : : int orphan = 0;
3689 : : handle_t *handle;
3690 : :
3691 : 0 : if (final_size > inode->i_size || final_size > ei->i_disksize) {
3692 : : /* Credits for sb + inode write */
3693 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3694 : 0 : if (IS_ERR(handle)) {
3695 : : ret = PTR_ERR(handle);
3696 : 0 : goto out;
3697 : : }
3698 : 0 : ret = ext4_orphan_add(handle, inode);
3699 : 0 : if (ret) {
3700 : 0 : ext4_journal_stop(handle);
3701 : 0 : goto out;
3702 : : }
3703 : : orphan = 1;
3704 : 0 : ext4_update_i_disksize(inode, inode->i_size);
3705 : 0 : ext4_journal_stop(handle);
3706 : : }
3707 : :
3708 : 0 : BUG_ON(iocb->private == NULL);
3709 : :
3710 : : /*
3711 : : * Make all waiters for direct IO properly wait also for extent
3712 : : * conversion. This also disallows race between truncate() and
3713 : : * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3714 : : */
3715 : : inode_dio_begin(inode);
3716 : :
3717 : : /* If we do a overwrite dio, i_mutex locking can be released */
3718 : 0 : overwrite = *((int *)iocb->private);
3719 : :
3720 : 0 : if (overwrite)
3721 : : inode_unlock(inode);
3722 : :
3723 : : /*
3724 : : * For extent mapped files we could direct write to holes and fallocate.
3725 : : *
3726 : : * Allocated blocks to fill the hole are marked as unwritten to prevent
3727 : : * parallel buffered read to expose the stale data before DIO complete
3728 : : * the data IO.
3729 : : *
3730 : : * As to previously fallocated extents, ext4 get_block will just simply
3731 : : * mark the buffer mapped but still keep the extents unwritten.
3732 : : *
3733 : : * For non AIO case, we will convert those unwritten extents to written
3734 : : * after return back from blockdev_direct_IO. That way we save us from
3735 : : * allocating io_end structure and also the overhead of offloading
3736 : : * the extent convertion to a workqueue.
3737 : : *
3738 : : * For async DIO, the conversion needs to be deferred when the
3739 : : * IO is completed. The ext4 end_io callback function will be
3740 : : * called to take care of the conversion work. Here for async
3741 : : * case, we allocate an io_end structure to hook to the iocb.
3742 : : */
3743 : 0 : iocb->private = NULL;
3744 : 0 : if (overwrite)
3745 : : get_block_func = ext4_dio_get_block_overwrite;
3746 : 0 : else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3747 : 0 : round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3748 : : get_block_func = ext4_dio_get_block;
3749 : : dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3750 : 0 : } else if (is_sync_kiocb(iocb)) {
3751 : : get_block_func = ext4_dio_get_block_unwritten_sync;
3752 : : dio_flags = DIO_LOCKING;
3753 : : } else {
3754 : : get_block_func = ext4_dio_get_block_unwritten_async;
3755 : : dio_flags = DIO_LOCKING;
3756 : : }
3757 : 0 : ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3758 : : get_block_func, ext4_end_io_dio, NULL,
3759 : : dio_flags);
3760 : :
3761 : 0 : if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3762 : : EXT4_STATE_DIO_UNWRITTEN)) {
3763 : : int err;
3764 : : /*
3765 : : * for non AIO case, since the IO is already
3766 : : * completed, we could do the conversion right here
3767 : : */
3768 : 0 : err = ext4_convert_unwritten_extents(NULL, inode,
3769 : : offset, ret);
3770 : 0 : if (err < 0)
3771 : : ret = err;
3772 : : ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3773 : : }
3774 : :
3775 : 0 : inode_dio_end(inode);
3776 : : /* take i_mutex locking again if we do a ovewrite dio */
3777 : 0 : if (overwrite)
3778 : : inode_lock(inode);
3779 : :
3780 : 0 : if (ret < 0 && final_size > inode->i_size)
3781 : 0 : ext4_truncate_failed_write(inode);
3782 : :
3783 : : /* Handle extending of i_size after direct IO write */
3784 : 0 : if (orphan) {
3785 : : int err;
3786 : :
3787 : : /* Credits for sb + inode write */
3788 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3789 : 0 : if (IS_ERR(handle)) {
3790 : : /*
3791 : : * We wrote the data but cannot extend
3792 : : * i_size. Bail out. In async io case, we do
3793 : : * not return error here because we have
3794 : : * already submmitted the corresponding
3795 : : * bio. Returning error here makes the caller
3796 : : * think that this IO is done and failed
3797 : : * resulting in race with bio's completion
3798 : : * handler.
3799 : : */
3800 : 0 : if (!ret)
3801 : : ret = PTR_ERR(handle);
3802 : 0 : if (inode->i_nlink)
3803 : 0 : ext4_orphan_del(NULL, inode);
3804 : :
3805 : : goto out;
3806 : : }
3807 : 0 : if (inode->i_nlink)
3808 : 0 : ext4_orphan_del(handle, inode);
3809 : 0 : if (ret > 0) {
3810 : 0 : loff_t end = offset + ret;
3811 : 0 : if (end > inode->i_size || end > ei->i_disksize) {
3812 : 0 : ext4_update_i_disksize(inode, end);
3813 : 0 : if (end > inode->i_size)
3814 : : i_size_write(inode, end);
3815 : : /*
3816 : : * We're going to return a positive `ret'
3817 : : * here due to non-zero-length I/O, so there's
3818 : : * no way of reporting error returns from
3819 : : * ext4_mark_inode_dirty() to userspace. So
3820 : : * ignore it.
3821 : : */
3822 : 0 : ext4_mark_inode_dirty(handle, inode);
3823 : : }
3824 : : }
3825 : 0 : err = ext4_journal_stop(handle);
3826 : 0 : if (ret == 0)
3827 : : ret = err;
3828 : : }
3829 : : out:
3830 : 0 : return ret;
3831 : : }
3832 : :
3833 : 0 : static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3834 : : {
3835 : 0 : struct address_space *mapping = iocb->ki_filp->f_mapping;
3836 : 0 : struct inode *inode = mapping->host;
3837 : : size_t count = iov_iter_count(iter);
3838 : : ssize_t ret;
3839 : 0 : loff_t offset = iocb->ki_pos;
3840 : : loff_t size = i_size_read(inode);
3841 : :
3842 : 0 : if (offset >= size)
3843 : : return 0;
3844 : :
3845 : : /*
3846 : : * Shared inode_lock is enough for us - it protects against concurrent
3847 : : * writes & truncates and since we take care of writing back page cache,
3848 : : * we are protected against page writeback as well.
3849 : : */
3850 : 0 : if (iocb->ki_flags & IOCB_NOWAIT) {
3851 : 0 : if (!inode_trylock_shared(inode))
3852 : : return -EAGAIN;
3853 : : } else {
3854 : : inode_lock_shared(inode);
3855 : : }
3856 : :
3857 : 0 : ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3858 : 0 : iocb->ki_pos + count - 1);
3859 : 0 : if (ret)
3860 : : goto out_unlock;
3861 : 0 : ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3862 : : iter, ext4_dio_get_block, NULL, NULL, 0);
3863 : : out_unlock:
3864 : : inode_unlock_shared(inode);
3865 : 0 : return ret;
3866 : : }
3867 : :
3868 : 0 : static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3869 : : {
3870 : 0 : struct file *file = iocb->ki_filp;
3871 : 0 : struct inode *inode = file->f_mapping->host;
3872 : : size_t count = iov_iter_count(iter);
3873 : 0 : loff_t offset = iocb->ki_pos;
3874 : : ssize_t ret;
3875 : :
3876 : : #ifdef CONFIG_FS_ENCRYPTION
3877 : 0 : if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3878 : : return 0;
3879 : : #endif
3880 : : if (fsverity_active(inode))
3881 : : return 0;
3882 : :
3883 : : /*
3884 : : * If we are doing data journalling we don't support O_DIRECT
3885 : : */
3886 : 0 : if (ext4_should_journal_data(inode))
3887 : : return 0;
3888 : :
3889 : : /* Let buffer I/O handle the inline data case. */
3890 : 0 : if (ext4_has_inline_data(inode))
3891 : : return 0;
3892 : :
3893 : 0 : trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3894 : 0 : if (iov_iter_rw(iter) == READ)
3895 : 0 : ret = ext4_direct_IO_read(iocb, iter);
3896 : : else
3897 : 0 : ret = ext4_direct_IO_write(iocb, iter);
3898 : 0 : trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3899 : 0 : return ret;
3900 : : }
3901 : :
3902 : : /*
3903 : : * Pages can be marked dirty completely asynchronously from ext4's journalling
3904 : : * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3905 : : * much here because ->set_page_dirty is called under VFS locks. The page is
3906 : : * not necessarily locked.
3907 : : *
3908 : : * We cannot just dirty the page and leave attached buffers clean, because the
3909 : : * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3910 : : * or jbddirty because all the journalling code will explode.
3911 : : *
3912 : : * So what we do is to mark the page "pending dirty" and next time writepage
3913 : : * is called, propagate that into the buffers appropriately.
3914 : : */
3915 : 0 : static int ext4_journalled_set_page_dirty(struct page *page)
3916 : : {
3917 : : SetPageChecked(page);
3918 : 0 : return __set_page_dirty_nobuffers(page);
3919 : : }
3920 : :
3921 : 3 : static int ext4_set_page_dirty(struct page *page)
3922 : : {
3923 : 3 : WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3924 : 3 : WARN_ON_ONCE(!page_has_buffers(page));
3925 : 3 : return __set_page_dirty_buffers(page);
3926 : : }
3927 : :
3928 : : static const struct address_space_operations ext4_aops = {
3929 : : .readpage = ext4_readpage,
3930 : : .readpages = ext4_readpages,
3931 : : .writepage = ext4_writepage,
3932 : : .writepages = ext4_writepages,
3933 : : .write_begin = ext4_write_begin,
3934 : : .write_end = ext4_write_end,
3935 : : .set_page_dirty = ext4_set_page_dirty,
3936 : : .bmap = ext4_bmap,
3937 : : .invalidatepage = ext4_invalidatepage,
3938 : : .releasepage = ext4_releasepage,
3939 : : .direct_IO = ext4_direct_IO,
3940 : : .migratepage = buffer_migrate_page,
3941 : : .is_partially_uptodate = block_is_partially_uptodate,
3942 : : .error_remove_page = generic_error_remove_page,
3943 : : };
3944 : :
3945 : : static const struct address_space_operations ext4_journalled_aops = {
3946 : : .readpage = ext4_readpage,
3947 : : .readpages = ext4_readpages,
3948 : : .writepage = ext4_writepage,
3949 : : .writepages = ext4_writepages,
3950 : : .write_begin = ext4_write_begin,
3951 : : .write_end = ext4_journalled_write_end,
3952 : : .set_page_dirty = ext4_journalled_set_page_dirty,
3953 : : .bmap = ext4_bmap,
3954 : : .invalidatepage = ext4_journalled_invalidatepage,
3955 : : .releasepage = ext4_releasepage,
3956 : : .direct_IO = ext4_direct_IO,
3957 : : .is_partially_uptodate = block_is_partially_uptodate,
3958 : : .error_remove_page = generic_error_remove_page,
3959 : : };
3960 : :
3961 : : static const struct address_space_operations ext4_da_aops = {
3962 : : .readpage = ext4_readpage,
3963 : : .readpages = ext4_readpages,
3964 : : .writepage = ext4_writepage,
3965 : : .writepages = ext4_writepages,
3966 : : .write_begin = ext4_da_write_begin,
3967 : : .write_end = ext4_da_write_end,
3968 : : .set_page_dirty = ext4_set_page_dirty,
3969 : : .bmap = ext4_bmap,
3970 : : .invalidatepage = ext4_invalidatepage,
3971 : : .releasepage = ext4_releasepage,
3972 : : .direct_IO = ext4_direct_IO,
3973 : : .migratepage = buffer_migrate_page,
3974 : : .is_partially_uptodate = block_is_partially_uptodate,
3975 : : .error_remove_page = generic_error_remove_page,
3976 : : };
3977 : :
3978 : : static const struct address_space_operations ext4_dax_aops = {
3979 : : .writepages = ext4_dax_writepages,
3980 : : .direct_IO = noop_direct_IO,
3981 : : .set_page_dirty = noop_set_page_dirty,
3982 : : .bmap = ext4_bmap,
3983 : : .invalidatepage = noop_invalidatepage,
3984 : : };
3985 : :
3986 : 3 : void ext4_set_aops(struct inode *inode)
3987 : : {
3988 : 3 : switch (ext4_inode_journal_mode(inode)) {
3989 : : case EXT4_INODE_ORDERED_DATA_MODE:
3990 : : case EXT4_INODE_WRITEBACK_DATA_MODE:
3991 : : break;
3992 : : case EXT4_INODE_JOURNAL_DATA_MODE:
3993 : 3 : inode->i_mapping->a_ops = &ext4_journalled_aops;
3994 : 3 : return;
3995 : : default:
3996 : 0 : BUG();
3997 : : }
3998 : : if (IS_DAX(inode))
3999 : : inode->i_mapping->a_ops = &ext4_dax_aops;
4000 : 3 : else if (test_opt(inode->i_sb, DELALLOC))
4001 : 3 : inode->i_mapping->a_ops = &ext4_da_aops;
4002 : : else
4003 : 0 : inode->i_mapping->a_ops = &ext4_aops;
4004 : : }
4005 : :
4006 : 0 : static int __ext4_block_zero_page_range(handle_t *handle,
4007 : : struct address_space *mapping, loff_t from, loff_t length)
4008 : : {
4009 : 0 : ext4_fsblk_t index = from >> PAGE_SHIFT;
4010 : 0 : unsigned offset = from & (PAGE_SIZE-1);
4011 : : unsigned blocksize, pos;
4012 : : ext4_lblk_t iblock;
4013 : 0 : struct inode *inode = mapping->host;
4014 : : struct buffer_head *bh;
4015 : : struct page *page;
4016 : : int err = 0;
4017 : :
4018 : 0 : page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4019 : : mapping_gfp_constraint(mapping, ~__GFP_FS));
4020 : 0 : if (!page)
4021 : : return -ENOMEM;
4022 : :
4023 : 0 : blocksize = inode->i_sb->s_blocksize;
4024 : :
4025 : 0 : iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4026 : :
4027 : 0 : if (!page_has_buffers(page))
4028 : 0 : create_empty_buffers(page, blocksize, 0);
4029 : :
4030 : : /* Find the buffer that contains "offset" */
4031 : 0 : bh = page_buffers(page);
4032 : : pos = blocksize;
4033 : 0 : while (offset >= pos) {
4034 : 0 : bh = bh->b_this_page;
4035 : 0 : iblock++;
4036 : 0 : pos += blocksize;
4037 : : }
4038 : 0 : if (buffer_freed(bh)) {
4039 : : BUFFER_TRACE(bh, "freed: skip");
4040 : : goto unlock;
4041 : : }
4042 : 0 : if (!buffer_mapped(bh)) {
4043 : : BUFFER_TRACE(bh, "unmapped");
4044 : 0 : ext4_get_block(inode, iblock, bh, 0);
4045 : : /* unmapped? It's a hole - nothing to do */
4046 : 0 : if (!buffer_mapped(bh)) {
4047 : : BUFFER_TRACE(bh, "still unmapped");
4048 : : goto unlock;
4049 : : }
4050 : : }
4051 : :
4052 : : /* Ok, it's mapped. Make sure it's up-to-date */
4053 : 0 : if (PageUptodate(page))
4054 : 0 : set_buffer_uptodate(bh);
4055 : :
4056 : 0 : if (!buffer_uptodate(bh)) {
4057 : : err = -EIO;
4058 : 0 : ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4059 : 0 : wait_on_buffer(bh);
4060 : : /* Uhhuh. Read error. Complain and punt. */
4061 : 0 : if (!buffer_uptodate(bh))
4062 : : goto unlock;
4063 : 0 : if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4064 : : /* We expect the key to be set. */
4065 : 0 : BUG_ON(!fscrypt_has_encryption_key(inode));
4066 : 0 : WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4067 : : page, blocksize, bh_offset(bh)));
4068 : : }
4069 : : }
4070 : 0 : if (ext4_should_journal_data(inode)) {
4071 : : BUFFER_TRACE(bh, "get write access");
4072 : 0 : err = ext4_journal_get_write_access(handle, bh);
4073 : 0 : if (err)
4074 : : goto unlock;
4075 : : }
4076 : 0 : zero_user(page, offset, length);
4077 : : BUFFER_TRACE(bh, "zeroed end of block");
4078 : :
4079 : 0 : if (ext4_should_journal_data(inode)) {
4080 : 0 : err = ext4_handle_dirty_metadata(handle, inode, bh);
4081 : : } else {
4082 : : err = 0;
4083 : 0 : mark_buffer_dirty(bh);
4084 : 0 : if (ext4_should_order_data(inode))
4085 : : err = ext4_jbd2_inode_add_write(handle, inode, from,
4086 : : length);
4087 : : }
4088 : :
4089 : : unlock:
4090 : 0 : unlock_page(page);
4091 : 0 : put_page(page);
4092 : 0 : return err;
4093 : : }
4094 : :
4095 : : /*
4096 : : * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4097 : : * starting from file offset 'from'. The range to be zero'd must
4098 : : * be contained with in one block. If the specified range exceeds
4099 : : * the end of the block it will be shortened to end of the block
4100 : : * that cooresponds to 'from'
4101 : : */
4102 : 0 : static int ext4_block_zero_page_range(handle_t *handle,
4103 : : struct address_space *mapping, loff_t from, loff_t length)
4104 : : {
4105 : 0 : struct inode *inode = mapping->host;
4106 : 0 : unsigned offset = from & (PAGE_SIZE-1);
4107 : 0 : unsigned blocksize = inode->i_sb->s_blocksize;
4108 : 0 : unsigned max = blocksize - (offset & (blocksize - 1));
4109 : :
4110 : : /*
4111 : : * correct length if it does not fall between
4112 : : * 'from' and the end of the block
4113 : : */
4114 : 0 : if (length > max || length < 0)
4115 : : length = max;
4116 : :
4117 : : if (IS_DAX(inode)) {
4118 : : return iomap_zero_range(inode, from, length, NULL,
4119 : : &ext4_iomap_ops);
4120 : : }
4121 : 0 : return __ext4_block_zero_page_range(handle, mapping, from, length);
4122 : : }
4123 : :
4124 : : /*
4125 : : * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4126 : : * up to the end of the block which corresponds to `from'.
4127 : : * This required during truncate. We need to physically zero the tail end
4128 : : * of that block so it doesn't yield old data if the file is later grown.
4129 : : */
4130 : 0 : static int ext4_block_truncate_page(handle_t *handle,
4131 : : struct address_space *mapping, loff_t from)
4132 : : {
4133 : 0 : unsigned offset = from & (PAGE_SIZE-1);
4134 : : unsigned length;
4135 : : unsigned blocksize;
4136 : 0 : struct inode *inode = mapping->host;
4137 : :
4138 : : /* If we are processing an encrypted inode during orphan list handling */
4139 : 0 : if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4140 : : return 0;
4141 : :
4142 : 0 : blocksize = inode->i_sb->s_blocksize;
4143 : 0 : length = blocksize - (offset & (blocksize - 1));
4144 : :
4145 : 0 : return ext4_block_zero_page_range(handle, mapping, from, length);
4146 : : }
4147 : :
4148 : 0 : int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4149 : : loff_t lstart, loff_t length)
4150 : : {
4151 : 0 : struct super_block *sb = inode->i_sb;
4152 : 0 : struct address_space *mapping = inode->i_mapping;
4153 : : unsigned partial_start, partial_end;
4154 : : ext4_fsblk_t start, end;
4155 : 0 : loff_t byte_end = (lstart + length - 1);
4156 : : int err = 0;
4157 : :
4158 : 0 : partial_start = lstart & (sb->s_blocksize - 1);
4159 : 0 : partial_end = byte_end & (sb->s_blocksize - 1);
4160 : :
4161 : 0 : start = lstart >> sb->s_blocksize_bits;
4162 : 0 : end = byte_end >> sb->s_blocksize_bits;
4163 : :
4164 : : /* Handle partial zero within the single block */
4165 : 0 : if (start == end &&
4166 : 0 : (partial_start || (partial_end != sb->s_blocksize - 1))) {
4167 : 0 : err = ext4_block_zero_page_range(handle, mapping,
4168 : : lstart, length);
4169 : 0 : return err;
4170 : : }
4171 : : /* Handle partial zero out on the start of the range */
4172 : 0 : if (partial_start) {
4173 : 0 : err = ext4_block_zero_page_range(handle, mapping,
4174 : : lstart, sb->s_blocksize);
4175 : 0 : if (err)
4176 : : return err;
4177 : : }
4178 : : /* Handle partial zero out on the end of the range */
4179 : 0 : if (partial_end != sb->s_blocksize - 1)
4180 : 0 : err = ext4_block_zero_page_range(handle, mapping,
4181 : : byte_end - partial_end,
4182 : 0 : partial_end + 1);
4183 : 0 : return err;
4184 : : }
4185 : :
4186 : 3 : int ext4_can_truncate(struct inode *inode)
4187 : : {
4188 : 3 : if (S_ISREG(inode->i_mode))
4189 : : return 1;
4190 : 3 : if (S_ISDIR(inode->i_mode))
4191 : : return 1;
4192 : 0 : if (S_ISLNK(inode->i_mode))
4193 : 0 : return !ext4_inode_is_fast_symlink(inode);
4194 : : return 0;
4195 : : }
4196 : :
4197 : : /*
4198 : : * We have to make sure i_disksize gets properly updated before we truncate
4199 : : * page cache due to hole punching or zero range. Otherwise i_disksize update
4200 : : * can get lost as it may have been postponed to submission of writeback but
4201 : : * that will never happen after we truncate page cache.
4202 : : */
4203 : 0 : int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4204 : : loff_t len)
4205 : : {
4206 : : handle_t *handle;
4207 : : loff_t size = i_size_read(inode);
4208 : :
4209 : 0 : WARN_ON(!inode_is_locked(inode));
4210 : 0 : if (offset > size || offset + len < size)
4211 : : return 0;
4212 : :
4213 : 0 : if (EXT4_I(inode)->i_disksize >= size)
4214 : : return 0;
4215 : :
4216 : : handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4217 : 0 : if (IS_ERR(handle))
4218 : 0 : return PTR_ERR(handle);
4219 : 0 : ext4_update_i_disksize(inode, size);
4220 : 0 : ext4_mark_inode_dirty(handle, inode);
4221 : 0 : ext4_journal_stop(handle);
4222 : :
4223 : 0 : return 0;
4224 : : }
4225 : :
4226 : : static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4227 : : {
4228 : : up_write(&ei->i_mmap_sem);
4229 : : schedule();
4230 : : down_write(&ei->i_mmap_sem);
4231 : : }
4232 : :
4233 : 3 : int ext4_break_layouts(struct inode *inode)
4234 : : {
4235 : : struct ext4_inode_info *ei = EXT4_I(inode);
4236 : : struct page *page;
4237 : : int error;
4238 : :
4239 : 3 : if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4240 : : return -EINVAL;
4241 : :
4242 : : do {
4243 : : page = dax_layout_busy_page(inode->i_mapping);
4244 : : if (!page)
4245 : : return 0;
4246 : :
4247 : : error = ___wait_var_event(&page->_refcount,
4248 : : atomic_read(&page->_refcount) == 1,
4249 : : TASK_INTERRUPTIBLE, 0, 0,
4250 : : ext4_wait_dax_page(ei));
4251 : : } while (error == 0);
4252 : :
4253 : : return error;
4254 : : }
4255 : :
4256 : : /*
4257 : : * ext4_punch_hole: punches a hole in a file by releasing the blocks
4258 : : * associated with the given offset and length
4259 : : *
4260 : : * @inode: File inode
4261 : : * @offset: The offset where the hole will begin
4262 : : * @len: The length of the hole
4263 : : *
4264 : : * Returns: 0 on success or negative on failure
4265 : : */
4266 : :
4267 : 0 : int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4268 : : {
4269 : 0 : struct super_block *sb = inode->i_sb;
4270 : : ext4_lblk_t first_block, stop_block;
4271 : 0 : struct address_space *mapping = inode->i_mapping;
4272 : : loff_t first_block_offset, last_block_offset;
4273 : : handle_t *handle;
4274 : : unsigned int credits;
4275 : : int ret = 0;
4276 : :
4277 : 0 : if (!S_ISREG(inode->i_mode))
4278 : : return -EOPNOTSUPP;
4279 : :
4280 : 0 : trace_ext4_punch_hole(inode, offset, length, 0);
4281 : :
4282 : : ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4283 : 0 : if (ext4_has_inline_data(inode)) {
4284 : 0 : down_write(&EXT4_I(inode)->i_mmap_sem);
4285 : 0 : ret = ext4_convert_inline_data(inode);
4286 : 0 : up_write(&EXT4_I(inode)->i_mmap_sem);
4287 : 0 : if (ret)
4288 : : return ret;
4289 : : }
4290 : :
4291 : : /*
4292 : : * Write out all dirty pages to avoid race conditions
4293 : : * Then release them.
4294 : : */
4295 : 0 : if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4296 : 0 : ret = filemap_write_and_wait_range(mapping, offset,
4297 : 0 : offset + length - 1);
4298 : 0 : if (ret)
4299 : : return ret;
4300 : : }
4301 : :
4302 : : inode_lock(inode);
4303 : :
4304 : : /* No need to punch hole beyond i_size */
4305 : 0 : if (offset >= inode->i_size)
4306 : : goto out_mutex;
4307 : :
4308 : : /*
4309 : : * If the hole extends beyond i_size, set the hole
4310 : : * to end after the page that contains i_size
4311 : : */
4312 : 0 : if (offset + length > inode->i_size) {
4313 : 0 : length = inode->i_size +
4314 : 0 : PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4315 : : offset;
4316 : : }
4317 : :
4318 : 0 : if (offset & (sb->s_blocksize - 1) ||
4319 : 0 : (offset + length) & (sb->s_blocksize - 1)) {
4320 : : /*
4321 : : * Attach jinode to inode for jbd2 if we do any zeroing of
4322 : : * partial block
4323 : : */
4324 : 0 : ret = ext4_inode_attach_jinode(inode);
4325 : 0 : if (ret < 0)
4326 : : goto out_mutex;
4327 : :
4328 : : }
4329 : :
4330 : : /* Wait all existing dio workers, newcomers will block on i_mutex */
4331 : 0 : inode_dio_wait(inode);
4332 : :
4333 : : /*
4334 : : * Prevent page faults from reinstantiating pages we have released from
4335 : : * page cache.
4336 : : */
4337 : 0 : down_write(&EXT4_I(inode)->i_mmap_sem);
4338 : :
4339 : 0 : ret = ext4_break_layouts(inode);
4340 : 0 : if (ret)
4341 : : goto out_dio;
4342 : :
4343 : 0 : first_block_offset = round_up(offset, sb->s_blocksize);
4344 : 0 : last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4345 : :
4346 : : /* Now release the pages and zero block aligned part of pages*/
4347 : 0 : if (last_block_offset > first_block_offset) {
4348 : 0 : ret = ext4_update_disksize_before_punch(inode, offset, length);
4349 : 0 : if (ret)
4350 : : goto out_dio;
4351 : 0 : truncate_pagecache_range(inode, first_block_offset,
4352 : : last_block_offset);
4353 : : }
4354 : :
4355 : 0 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4356 : 0 : credits = ext4_writepage_trans_blocks(inode);
4357 : : else
4358 : 0 : credits = ext4_blocks_for_truncate(inode);
4359 : 0 : handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4360 : 0 : if (IS_ERR(handle)) {
4361 : : ret = PTR_ERR(handle);
4362 : 0 : ext4_std_error(sb, ret);
4363 : : goto out_dio;
4364 : : }
4365 : :
4366 : 0 : ret = ext4_zero_partial_blocks(handle, inode, offset,
4367 : : length);
4368 : 0 : if (ret)
4369 : : goto out_stop;
4370 : :
4371 : 0 : first_block = (offset + sb->s_blocksize - 1) >>
4372 : 0 : EXT4_BLOCK_SIZE_BITS(sb);
4373 : 0 : stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4374 : :
4375 : : /* If there are blocks to remove, do it */
4376 : 0 : if (stop_block > first_block) {
4377 : :
4378 : 0 : down_write(&EXT4_I(inode)->i_data_sem);
4379 : 0 : ext4_discard_preallocations(inode);
4380 : :
4381 : 0 : ret = ext4_es_remove_extent(inode, first_block,
4382 : : stop_block - first_block);
4383 : 0 : if (ret) {
4384 : 0 : up_write(&EXT4_I(inode)->i_data_sem);
4385 : 0 : goto out_stop;
4386 : : }
4387 : :
4388 : 0 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4389 : 0 : ret = ext4_ext_remove_space(inode, first_block,
4390 : : stop_block - 1);
4391 : : else
4392 : 0 : ret = ext4_ind_remove_space(handle, inode, first_block,
4393 : : stop_block);
4394 : :
4395 : 0 : up_write(&EXT4_I(inode)->i_data_sem);
4396 : : }
4397 : 0 : if (IS_SYNC(inode))
4398 : : ext4_handle_sync(handle);
4399 : :
4400 : 0 : inode->i_mtime = inode->i_ctime = current_time(inode);
4401 : 0 : ext4_mark_inode_dirty(handle, inode);
4402 : 0 : if (ret >= 0)
4403 : 0 : ext4_update_inode_fsync_trans(handle, inode, 1);
4404 : : out_stop:
4405 : 0 : ext4_journal_stop(handle);
4406 : : out_dio:
4407 : 0 : up_write(&EXT4_I(inode)->i_mmap_sem);
4408 : : out_mutex:
4409 : : inode_unlock(inode);
4410 : 0 : return ret;
4411 : : }
4412 : :
4413 : 3 : int ext4_inode_attach_jinode(struct inode *inode)
4414 : : {
4415 : : struct ext4_inode_info *ei = EXT4_I(inode);
4416 : : struct jbd2_inode *jinode;
4417 : :
4418 : 3 : if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4419 : : return 0;
4420 : :
4421 : : jinode = jbd2_alloc_inode(GFP_KERNEL);
4422 : : spin_lock(&inode->i_lock);
4423 : 3 : if (!ei->jinode) {
4424 : 3 : if (!jinode) {
4425 : : spin_unlock(&inode->i_lock);
4426 : 0 : return -ENOMEM;
4427 : : }
4428 : 3 : ei->jinode = jinode;
4429 : 3 : jbd2_journal_init_jbd_inode(ei->jinode, inode);
4430 : : jinode = NULL;
4431 : : }
4432 : : spin_unlock(&inode->i_lock);
4433 : 3 : if (unlikely(jinode != NULL))
4434 : : jbd2_free_inode(jinode);
4435 : : return 0;
4436 : : }
4437 : :
4438 : : /*
4439 : : * ext4_truncate()
4440 : : *
4441 : : * We block out ext4_get_block() block instantiations across the entire
4442 : : * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4443 : : * simultaneously on behalf of the same inode.
4444 : : *
4445 : : * As we work through the truncate and commit bits of it to the journal there
4446 : : * is one core, guiding principle: the file's tree must always be consistent on
4447 : : * disk. We must be able to restart the truncate after a crash.
4448 : : *
4449 : : * The file's tree may be transiently inconsistent in memory (although it
4450 : : * probably isn't), but whenever we close off and commit a journal transaction,
4451 : : * the contents of (the filesystem + the journal) must be consistent and
4452 : : * restartable. It's pretty simple, really: bottom up, right to left (although
4453 : : * left-to-right works OK too).
4454 : : *
4455 : : * Note that at recovery time, journal replay occurs *before* the restart of
4456 : : * truncate against the orphan inode list.
4457 : : *
4458 : : * The committed inode has the new, desired i_size (which is the same as
4459 : : * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4460 : : * that this inode's truncate did not complete and it will again call
4461 : : * ext4_truncate() to have another go. So there will be instantiated blocks
4462 : : * to the right of the truncation point in a crashed ext4 filesystem. But
4463 : : * that's fine - as long as they are linked from the inode, the post-crash
4464 : : * ext4_truncate() run will find them and release them.
4465 : : */
4466 : 3 : int ext4_truncate(struct inode *inode)
4467 : : {
4468 : : struct ext4_inode_info *ei = EXT4_I(inode);
4469 : : unsigned int credits;
4470 : : int err = 0;
4471 : : handle_t *handle;
4472 : 3 : struct address_space *mapping = inode->i_mapping;
4473 : :
4474 : : /*
4475 : : * There is a possibility that we're either freeing the inode
4476 : : * or it's a completely new inode. In those cases we might not
4477 : : * have i_mutex locked because it's not necessary.
4478 : : */
4479 : 3 : if (!(inode->i_state & (I_NEW|I_FREEING)))
4480 : 3 : WARN_ON(!inode_is_locked(inode));
4481 : 3 : trace_ext4_truncate_enter(inode);
4482 : :
4483 : 3 : if (!ext4_can_truncate(inode))
4484 : : return 0;
4485 : :
4486 : : ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4487 : :
4488 : 3 : if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4489 : : ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4490 : :
4491 : 3 : if (ext4_has_inline_data(inode)) {
4492 : 0 : int has_inline = 1;
4493 : :
4494 : 0 : err = ext4_inline_data_truncate(inode, &has_inline);
4495 : 0 : if (err)
4496 : 0 : return err;
4497 : 0 : if (has_inline)
4498 : : return 0;
4499 : : }
4500 : :
4501 : : /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4502 : 3 : if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4503 : 0 : if (ext4_inode_attach_jinode(inode) < 0)
4504 : : return 0;
4505 : : }
4506 : :
4507 : 3 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4508 : 3 : credits = ext4_writepage_trans_blocks(inode);
4509 : : else
4510 : 0 : credits = ext4_blocks_for_truncate(inode);
4511 : :
4512 : 3 : handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4513 : 3 : if (IS_ERR(handle))
4514 : 0 : return PTR_ERR(handle);
4515 : :
4516 : 3 : if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4517 : 0 : ext4_block_truncate_page(handle, mapping, inode->i_size);
4518 : :
4519 : : /*
4520 : : * We add the inode to the orphan list, so that if this
4521 : : * truncate spans multiple transactions, and we crash, we will
4522 : : * resume the truncate when the filesystem recovers. It also
4523 : : * marks the inode dirty, to catch the new size.
4524 : : *
4525 : : * Implication: the file must always be in a sane, consistent
4526 : : * truncatable state while each transaction commits.
4527 : : */
4528 : 3 : err = ext4_orphan_add(handle, inode);
4529 : 3 : if (err)
4530 : : goto out_stop;
4531 : :
4532 : 3 : down_write(&EXT4_I(inode)->i_data_sem);
4533 : :
4534 : 3 : ext4_discard_preallocations(inode);
4535 : :
4536 : 3 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4537 : 3 : err = ext4_ext_truncate(handle, inode);
4538 : : else
4539 : 0 : ext4_ind_truncate(handle, inode);
4540 : :
4541 : 3 : up_write(&ei->i_data_sem);
4542 : 3 : if (err)
4543 : : goto out_stop;
4544 : :
4545 : 3 : if (IS_SYNC(inode))
4546 : : ext4_handle_sync(handle);
4547 : :
4548 : : out_stop:
4549 : : /*
4550 : : * If this was a simple ftruncate() and the file will remain alive,
4551 : : * then we need to clear up the orphan record which we created above.
4552 : : * However, if this was a real unlink then we were called by
4553 : : * ext4_evict_inode(), and we allow that function to clean up the
4554 : : * orphan info for us.
4555 : : */
4556 : 3 : if (inode->i_nlink)
4557 : 3 : ext4_orphan_del(handle, inode);
4558 : :
4559 : 3 : inode->i_mtime = inode->i_ctime = current_time(inode);
4560 : 3 : ext4_mark_inode_dirty(handle, inode);
4561 : 3 : ext4_journal_stop(handle);
4562 : :
4563 : 3 : trace_ext4_truncate_exit(inode);
4564 : 3 : return err;
4565 : : }
4566 : :
4567 : : /*
4568 : : * ext4_get_inode_loc returns with an extra refcount against the inode's
4569 : : * underlying buffer_head on success. If 'in_mem' is true, we have all
4570 : : * data in memory that is needed to recreate the on-disk version of this
4571 : : * inode.
4572 : : */
4573 : 3 : static int __ext4_get_inode_loc(struct inode *inode,
4574 : : struct ext4_iloc *iloc, int in_mem)
4575 : : {
4576 : : struct ext4_group_desc *gdp;
4577 : : struct buffer_head *bh;
4578 : 3 : struct super_block *sb = inode->i_sb;
4579 : : ext4_fsblk_t block;
4580 : : struct blk_plug plug;
4581 : : int inodes_per_block, inode_offset;
4582 : :
4583 : 3 : iloc->bh = NULL;
4584 : 3 : if (inode->i_ino < EXT4_ROOT_INO ||
4585 : 3 : inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4586 : : return -EFSCORRUPTED;
4587 : :
4588 : 3 : iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4589 : 3 : gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4590 : 3 : if (!gdp)
4591 : : return -EIO;
4592 : :
4593 : : /*
4594 : : * Figure out the offset within the block group inode table
4595 : : */
4596 : 3 : inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4597 : 3 : inode_offset = ((inode->i_ino - 1) %
4598 : 3 : EXT4_INODES_PER_GROUP(sb));
4599 : 3 : block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4600 : 3 : iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4601 : :
4602 : : bh = sb_getblk(sb, block);
4603 : 3 : if (unlikely(!bh))
4604 : : return -ENOMEM;
4605 : 3 : if (!buffer_uptodate(bh)) {
4606 : 3 : lock_buffer(bh);
4607 : :
4608 : : /*
4609 : : * If the buffer has the write error flag, we have failed
4610 : : * to write out another inode in the same block. In this
4611 : : * case, we don't have to read the block because we may
4612 : : * read the old inode data successfully.
4613 : : */
4614 : 3 : if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4615 : : set_buffer_uptodate(bh);
4616 : :
4617 : 3 : if (buffer_uptodate(bh)) {
4618 : : /* someone brought it uptodate while we waited */
4619 : 3 : unlock_buffer(bh);
4620 : 3 : goto has_buffer;
4621 : : }
4622 : :
4623 : : /*
4624 : : * If we have all information of the inode in memory and this
4625 : : * is the only valid inode in the block, we need not read the
4626 : : * block.
4627 : : */
4628 : 3 : if (in_mem) {
4629 : : struct buffer_head *bitmap_bh;
4630 : : int i, start;
4631 : :
4632 : 3 : start = inode_offset & ~(inodes_per_block - 1);
4633 : :
4634 : : /* Is the inode bitmap in cache? */
4635 : 3 : bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4636 : 3 : if (unlikely(!bitmap_bh))
4637 : : goto make_io;
4638 : :
4639 : : /*
4640 : : * If the inode bitmap isn't in cache then the
4641 : : * optimisation may end up performing two reads instead
4642 : : * of one, so skip it.
4643 : : */
4644 : 3 : if (!buffer_uptodate(bitmap_bh)) {
4645 : : brelse(bitmap_bh);
4646 : : goto make_io;
4647 : : }
4648 : 3 : for (i = start; i < start + inodes_per_block; i++) {
4649 : 3 : if (i == inode_offset)
4650 : 3 : continue;
4651 : 3 : if (ext4_test_bit(i, bitmap_bh->b_data))
4652 : : break;
4653 : : }
4654 : : brelse(bitmap_bh);
4655 : 3 : if (i == start + inodes_per_block) {
4656 : : /* all other inodes are free, so skip I/O */
4657 : 3 : memset(bh->b_data, 0, bh->b_size);
4658 : : set_buffer_uptodate(bh);
4659 : 3 : unlock_buffer(bh);
4660 : 3 : goto has_buffer;
4661 : : }
4662 : : }
4663 : :
4664 : : make_io:
4665 : : /*
4666 : : * If we need to do any I/O, try to pre-readahead extra
4667 : : * blocks from the inode table.
4668 : : */
4669 : 3 : blk_start_plug(&plug);
4670 : 3 : if (EXT4_SB(sb)->s_inode_readahead_blks) {
4671 : : ext4_fsblk_t b, end, table;
4672 : : unsigned num;
4673 : : __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4674 : :
4675 : 3 : table = ext4_inode_table(sb, gdp);
4676 : : /* s_inode_readahead_blks is always a power of 2 */
4677 : 3 : b = block & ~((ext4_fsblk_t) ra_blks - 1);
4678 : 3 : if (table > b)
4679 : : b = table;
4680 : 3 : end = b + ra_blks;
4681 : 3 : num = EXT4_INODES_PER_GROUP(sb);
4682 : 3 : if (ext4_has_group_desc_csum(sb))
4683 : 0 : num -= ext4_itable_unused_count(sb, gdp);
4684 : 3 : table += num / inodes_per_block;
4685 : 3 : if (end > table)
4686 : : end = table;
4687 : 3 : while (b <= end)
4688 : 3 : sb_breadahead_unmovable(sb, b++);
4689 : : }
4690 : :
4691 : : /*
4692 : : * There are other valid inodes in the buffer, this inode
4693 : : * has in-inode xattrs, or we don't have this inode in memory.
4694 : : * Read the block from disk.
4695 : : */
4696 : 3 : trace_ext4_load_inode(inode);
4697 : : get_bh(bh);
4698 : 3 : bh->b_end_io = end_buffer_read_sync;
4699 : 3 : submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4700 : 3 : blk_finish_plug(&plug);
4701 : 3 : wait_on_buffer(bh);
4702 : 3 : if (!buffer_uptodate(bh)) {
4703 : 0 : EXT4_ERROR_INODE_BLOCK(inode, block,
4704 : : "unable to read itable block");
4705 : : brelse(bh);
4706 : : return -EIO;
4707 : : }
4708 : : }
4709 : : has_buffer:
4710 : 3 : iloc->bh = bh;
4711 : 3 : return 0;
4712 : : }
4713 : :
4714 : 0 : int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4715 : : {
4716 : : /* We have all inode data except xattrs in memory here. */
4717 : 3 : return __ext4_get_inode_loc(inode, iloc,
4718 : : !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4719 : : }
4720 : :
4721 : : static bool ext4_should_use_dax(struct inode *inode)
4722 : : {
4723 : : if (!test_opt(inode->i_sb, DAX))
4724 : : return false;
4725 : : if (!S_ISREG(inode->i_mode))
4726 : : return false;
4727 : : if (ext4_should_journal_data(inode))
4728 : : return false;
4729 : : if (ext4_has_inline_data(inode))
4730 : : return false;
4731 : : if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4732 : : return false;
4733 : : if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4734 : : return false;
4735 : : return true;
4736 : : }
4737 : :
4738 : 3 : void ext4_set_inode_flags(struct inode *inode)
4739 : : {
4740 : 3 : unsigned int flags = EXT4_I(inode)->i_flags;
4741 : : unsigned int new_fl = 0;
4742 : :
4743 : 3 : if (flags & EXT4_SYNC_FL)
4744 : : new_fl |= S_SYNC;
4745 : 3 : if (flags & EXT4_APPEND_FL)
4746 : 0 : new_fl |= S_APPEND;
4747 : 3 : if (flags & EXT4_IMMUTABLE_FL)
4748 : 0 : new_fl |= S_IMMUTABLE;
4749 : 3 : if (flags & EXT4_NOATIME_FL)
4750 : 0 : new_fl |= S_NOATIME;
4751 : 3 : if (flags & EXT4_DIRSYNC_FL)
4752 : 0 : new_fl |= S_DIRSYNC;
4753 : : if (ext4_should_use_dax(inode))
4754 : : new_fl |= S_DAX;
4755 : 3 : if (flags & EXT4_ENCRYPT_FL)
4756 : 0 : new_fl |= S_ENCRYPTED;
4757 : 3 : if (flags & EXT4_CASEFOLD_FL)
4758 : 0 : new_fl |= S_CASEFOLD;
4759 : 3 : if (flags & EXT4_VERITY_FL)
4760 : 0 : new_fl |= S_VERITY;
4761 : 3 : inode_set_flags(inode, new_fl,
4762 : : S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4763 : : S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4764 : 3 : }
4765 : :
4766 : 3 : static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4767 : : struct ext4_inode_info *ei)
4768 : : {
4769 : : blkcnt_t i_blocks ;
4770 : : struct inode *inode = &(ei->vfs_inode);
4771 : 3 : struct super_block *sb = inode->i_sb;
4772 : :
4773 : 3 : if (ext4_has_feature_huge_file(sb)) {
4774 : : /* we are using combined 48 bit field */
4775 : 0 : i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4776 : 0 : le32_to_cpu(raw_inode->i_blocks_lo);
4777 : 0 : if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4778 : : /* i_blocks represent file system block size */
4779 : 0 : return i_blocks << (inode->i_blkbits - 9);
4780 : : } else {
4781 : : return i_blocks;
4782 : : }
4783 : : } else {
4784 : 3 : return le32_to_cpu(raw_inode->i_blocks_lo);
4785 : : }
4786 : : }
4787 : :
4788 : 3 : static inline int ext4_iget_extra_inode(struct inode *inode,
4789 : : struct ext4_inode *raw_inode,
4790 : : struct ext4_inode_info *ei)
4791 : : {
4792 : 3 : __le32 *magic = (void *)raw_inode +
4793 : 3 : EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4794 : :
4795 : 3 : if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4796 : 3 : EXT4_INODE_SIZE(inode->i_sb) &&
4797 : 3 : *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4798 : : ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4799 : 0 : return ext4_find_inline_data_nolock(inode);
4800 : : } else
4801 : 3 : EXT4_I(inode)->i_inline_off = 0;
4802 : 3 : return 0;
4803 : : }
4804 : :
4805 : 0 : int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4806 : : {
4807 : 0 : if (!ext4_has_feature_project(inode->i_sb))
4808 : : return -EOPNOTSUPP;
4809 : 0 : *projid = EXT4_I(inode)->i_projid;
4810 : 0 : return 0;
4811 : : }
4812 : :
4813 : : /*
4814 : : * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4815 : : * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4816 : : * set.
4817 : : */
4818 : 3 : static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4819 : : {
4820 : 3 : if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4821 : : inode_set_iversion_raw(inode, val);
4822 : : else
4823 : : inode_set_iversion_queried(inode, val);
4824 : 3 : }
4825 : : static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4826 : : {
4827 : 3 : if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4828 : : return inode_peek_iversion_raw(inode);
4829 : : else
4830 : : return inode_peek_iversion(inode);
4831 : : }
4832 : :
4833 : 3 : struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4834 : : ext4_iget_flags flags, const char *function,
4835 : : unsigned int line)
4836 : : {
4837 : : struct ext4_iloc iloc;
4838 : : struct ext4_inode *raw_inode;
4839 : : struct ext4_inode_info *ei;
4840 : : struct inode *inode;
4841 : 3 : journal_t *journal = EXT4_SB(sb)->s_journal;
4842 : : long ret;
4843 : : loff_t size;
4844 : : int block;
4845 : : uid_t i_uid;
4846 : : gid_t i_gid;
4847 : : projid_t i_projid;
4848 : :
4849 : 3 : if ((!(flags & EXT4_IGET_SPECIAL) &&
4850 : 3 : (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4851 : 3 : (ino < EXT4_ROOT_INO) ||
4852 : 3 : (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4853 : 3 : if (flags & EXT4_IGET_HANDLE)
4854 : : return ERR_PTR(-ESTALE);
4855 : 0 : __ext4_error(sb, function, line,
4856 : : "inode #%lu: comm %s: iget: illegal inode #",
4857 : 0 : ino, current->comm);
4858 : 0 : return ERR_PTR(-EFSCORRUPTED);
4859 : : }
4860 : :
4861 : 3 : inode = iget_locked(sb, ino);
4862 : 3 : if (!inode)
4863 : : return ERR_PTR(-ENOMEM);
4864 : 3 : if (!(inode->i_state & I_NEW))
4865 : : return inode;
4866 : :
4867 : 3 : ei = EXT4_I(inode);
4868 : 3 : iloc.bh = NULL;
4869 : :
4870 : 3 : ret = __ext4_get_inode_loc(inode, &iloc, 0);
4871 : 3 : if (ret < 0)
4872 : : goto bad_inode;
4873 : : raw_inode = ext4_raw_inode(&iloc);
4874 : :
4875 : 3 : if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4876 : 0 : ext4_error_inode(inode, function, line, 0,
4877 : : "iget: root inode unallocated");
4878 : : ret = -EFSCORRUPTED;
4879 : 0 : goto bad_inode;
4880 : : }
4881 : :
4882 : 3 : if ((flags & EXT4_IGET_HANDLE) &&
4883 : 0 : (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4884 : : ret = -ESTALE;
4885 : : goto bad_inode;
4886 : : }
4887 : :
4888 : 3 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889 : 3 : ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4890 : 3 : if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4891 : 3 : EXT4_INODE_SIZE(inode->i_sb) ||
4892 : 3 : (ei->i_extra_isize & 3)) {
4893 : 3 : ext4_error_inode(inode, function, line, 0,
4894 : : "iget: bad extra_isize %u "
4895 : : "(inode size %u)",
4896 : : ei->i_extra_isize,
4897 : : EXT4_INODE_SIZE(inode->i_sb));
4898 : : ret = -EFSCORRUPTED;
4899 : 0 : goto bad_inode;
4900 : : }
4901 : : } else
4902 : 0 : ei->i_extra_isize = 0;
4903 : :
4904 : : /* Precompute checksum seed for inode metadata */
4905 : 3 : if (ext4_has_metadata_csum(sb)) {
4906 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4907 : : __u32 csum;
4908 : 0 : __le32 inum = cpu_to_le32(inode->i_ino);
4909 : 0 : __le32 gen = raw_inode->i_generation;
4910 : 0 : csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4911 : : sizeof(inum));
4912 : 0 : ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4913 : : sizeof(gen));
4914 : : }
4915 : :
4916 : 3 : if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4917 : 0 : ext4_error_inode(inode, function, line, 0,
4918 : : "iget: checksum invalid");
4919 : : ret = -EFSBADCRC;
4920 : 0 : goto bad_inode;
4921 : : }
4922 : :
4923 : 3 : inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4924 : 3 : i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4925 : 3 : i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4926 : 3 : if (ext4_has_feature_project(sb) &&
4927 : 0 : EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4928 : 0 : EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4929 : 0 : i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4930 : : else
4931 : : i_projid = EXT4_DEF_PROJID;
4932 : :
4933 : 3 : if (!(test_opt(inode->i_sb, NO_UID32))) {
4934 : 3 : i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4935 : 3 : i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4936 : : }
4937 : : i_uid_write(inode, i_uid);
4938 : : i_gid_write(inode, i_gid);
4939 : 3 : ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4940 : 3 : set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4941 : :
4942 : : ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4943 : 3 : ei->i_inline_off = 0;
4944 : 3 : ei->i_dir_start_lookup = 0;
4945 : 3 : ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4946 : : /* We now have enough fields to check if the inode was active or not.
4947 : : * This is needed because nfsd might try to access dead inodes
4948 : : * the test is that same one that e2fsck uses
4949 : : * NeilBrown 1999oct15
4950 : : */
4951 : 3 : if (inode->i_nlink == 0) {
4952 : 0 : if ((inode->i_mode == 0 ||
4953 : 3 : !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4954 : : ino != EXT4_BOOT_LOADER_INO) {
4955 : : /* this inode is deleted */
4956 : : ret = -ESTALE;
4957 : : goto bad_inode;
4958 : : }
4959 : : /* The only unlinked inodes we let through here have
4960 : : * valid i_mode and are being read by the orphan
4961 : : * recovery code: that's fine, we're about to complete
4962 : : * the process of deleting those.
4963 : : * OR it is the EXT4_BOOT_LOADER_INO which is
4964 : : * not initialized on a new filesystem. */
4965 : : }
4966 : 3 : ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4967 : 3 : ext4_set_inode_flags(inode);
4968 : 3 : inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4969 : 3 : ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4970 : 3 : if (ext4_has_feature_64bit(sb))
4971 : 0 : ei->i_file_acl |=
4972 : 0 : ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4973 : 3 : inode->i_size = ext4_isize(sb, raw_inode);
4974 : 3 : if ((size = i_size_read(inode)) < 0) {
4975 : 0 : ext4_error_inode(inode, function, line, 0,
4976 : : "iget: bad i_size value: %lld", size);
4977 : : ret = -EFSCORRUPTED;
4978 : 0 : goto bad_inode;
4979 : : }
4980 : : /*
4981 : : * If dir_index is not enabled but there's dir with INDEX flag set,
4982 : : * we'd normally treat htree data as empty space. But with metadata
4983 : : * checksumming that corrupts checksums so forbid that.
4984 : : */
4985 : 3 : if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4986 : : ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4987 : 0 : ext4_error_inode(inode, function, line, 0,
4988 : : "iget: Dir with htree data on filesystem without dir_index feature.");
4989 : : ret = -EFSCORRUPTED;
4990 : 0 : goto bad_inode;
4991 : : }
4992 : 3 : ei->i_disksize = inode->i_size;
4993 : : #ifdef CONFIG_QUOTA
4994 : 3 : ei->i_reserved_quota = 0;
4995 : : #endif
4996 : 3 : inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4997 : 3 : ei->i_block_group = iloc.block_group;
4998 : 3 : ei->i_last_alloc_group = ~0;
4999 : : /*
5000 : : * NOTE! The in-memory inode i_data array is in little-endian order
5001 : : * even on big-endian machines: we do NOT byteswap the block numbers!
5002 : : */
5003 : 3 : for (block = 0; block < EXT4_N_BLOCKS; block++)
5004 : 3 : ei->i_data[block] = raw_inode->i_block[block];
5005 : 3 : INIT_LIST_HEAD(&ei->i_orphan);
5006 : :
5007 : : /*
5008 : : * Set transaction id's of transactions that have to be committed
5009 : : * to finish f[data]sync. We set them to currently running transaction
5010 : : * as we cannot be sure that the inode or some of its metadata isn't
5011 : : * part of the transaction - the inode could have been reclaimed and
5012 : : * now it is reread from disk.
5013 : : */
5014 : 3 : if (journal) {
5015 : : transaction_t *transaction;
5016 : : tid_t tid;
5017 : :
5018 : 3 : read_lock(&journal->j_state_lock);
5019 : 3 : if (journal->j_running_transaction)
5020 : : transaction = journal->j_running_transaction;
5021 : : else
5022 : 3 : transaction = journal->j_committing_transaction;
5023 : 3 : if (transaction)
5024 : 3 : tid = transaction->t_tid;
5025 : : else
5026 : 3 : tid = journal->j_commit_sequence;
5027 : : read_unlock(&journal->j_state_lock);
5028 : 3 : ei->i_sync_tid = tid;
5029 : 3 : ei->i_datasync_tid = tid;
5030 : : }
5031 : :
5032 : 3 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5033 : 3 : if (ei->i_extra_isize == 0) {
5034 : : /* The extra space is currently unused. Use it. */
5035 : : BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5036 : 0 : ei->i_extra_isize = sizeof(struct ext4_inode) -
5037 : : EXT4_GOOD_OLD_INODE_SIZE;
5038 : : } else {
5039 : 3 : ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5040 : 3 : if (ret)
5041 : : goto bad_inode;
5042 : : }
5043 : : }
5044 : :
5045 : 3 : EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5046 : 3 : EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5047 : 3 : EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5048 : 3 : EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5049 : :
5050 : 3 : if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5051 : 3 : u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5052 : :
5053 : 3 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5054 : 3 : if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5055 : 3 : ivers |=
5056 : 3 : (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5057 : : }
5058 : 3 : ext4_inode_set_iversion_queried(inode, ivers);
5059 : : }
5060 : :
5061 : : ret = 0;
5062 : 3 : if (ei->i_file_acl &&
5063 : 0 : !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5064 : 0 : ext4_error_inode(inode, function, line, 0,
5065 : : "iget: bad extended attribute block %llu",
5066 : : ei->i_file_acl);
5067 : : ret = -EFSCORRUPTED;
5068 : 0 : goto bad_inode;
5069 : 3 : } else if (!ext4_has_inline_data(inode)) {
5070 : : /* validate the block references in the inode */
5071 : 3 : if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5072 : 3 : (S_ISLNK(inode->i_mode) &&
5073 : 3 : !ext4_inode_is_fast_symlink(inode))) {
5074 : 3 : if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5075 : 3 : ret = ext4_ext_check_inode(inode);
5076 : : else
5077 : 0 : ret = ext4_ind_check_inode(inode);
5078 : : }
5079 : : }
5080 : 3 : if (ret)
5081 : : goto bad_inode;
5082 : :
5083 : 3 : if (S_ISREG(inode->i_mode)) {
5084 : 3 : inode->i_op = &ext4_file_inode_operations;
5085 : 3 : inode->i_fop = &ext4_file_operations;
5086 : 3 : ext4_set_aops(inode);
5087 : 3 : } else if (S_ISDIR(inode->i_mode)) {
5088 : 3 : inode->i_op = &ext4_dir_inode_operations;
5089 : 3 : inode->i_fop = &ext4_dir_operations;
5090 : 3 : } else if (S_ISLNK(inode->i_mode)) {
5091 : : /* VFS does not allow setting these so must be corruption */
5092 : 3 : if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5093 : 0 : ext4_error_inode(inode, function, line, 0,
5094 : : "iget: immutable or append flags "
5095 : : "not allowed on symlinks");
5096 : : ret = -EFSCORRUPTED;
5097 : 0 : goto bad_inode;
5098 : : }
5099 : 3 : if (IS_ENCRYPTED(inode)) {
5100 : 0 : inode->i_op = &ext4_encrypted_symlink_inode_operations;
5101 : 0 : ext4_set_aops(inode);
5102 : 3 : } else if (ext4_inode_is_fast_symlink(inode)) {
5103 : 3 : inode->i_link = (char *)ei->i_data;
5104 : 3 : inode->i_op = &ext4_fast_symlink_inode_operations;
5105 : 3 : nd_terminate_link(ei->i_data, inode->i_size,
5106 : : sizeof(ei->i_data) - 1);
5107 : : } else {
5108 : 3 : inode->i_op = &ext4_symlink_inode_operations;
5109 : 3 : ext4_set_aops(inode);
5110 : : }
5111 : 3 : inode_nohighmem(inode);
5112 : 2 : } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5113 : 2 : S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5114 : 2 : inode->i_op = &ext4_special_inode_operations;
5115 : 2 : if (raw_inode->i_block[0])
5116 : 0 : init_special_inode(inode, inode->i_mode,
5117 : : old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5118 : : else
5119 : 2 : init_special_inode(inode, inode->i_mode,
5120 : : new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5121 : 0 : } else if (ino == EXT4_BOOT_LOADER_INO) {
5122 : 0 : make_bad_inode(inode);
5123 : : } else {
5124 : : ret = -EFSCORRUPTED;
5125 : 0 : ext4_error_inode(inode, function, line, 0,
5126 : : "iget: bogus i_mode (%o)", inode->i_mode);
5127 : 0 : goto bad_inode;
5128 : : }
5129 : 3 : if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5130 : 0 : ext4_error_inode(inode, function, line, 0,
5131 : : "casefold flag without casefold feature");
5132 : 3 : brelse(iloc.bh);
5133 : :
5134 : 3 : unlock_new_inode(inode);
5135 : 3 : return inode;
5136 : :
5137 : : bad_inode:
5138 : 0 : brelse(iloc.bh);
5139 : 0 : iget_failed(inode);
5140 : 0 : return ERR_PTR(ret);
5141 : : }
5142 : :
5143 : 3 : static int ext4_inode_blocks_set(handle_t *handle,
5144 : : struct ext4_inode *raw_inode,
5145 : : struct ext4_inode_info *ei)
5146 : : {
5147 : : struct inode *inode = &(ei->vfs_inode);
5148 : : u64 i_blocks = READ_ONCE(inode->i_blocks);
5149 : 3 : struct super_block *sb = inode->i_sb;
5150 : :
5151 : 3 : if (i_blocks <= ~0U) {
5152 : : /*
5153 : : * i_blocks can be represented in a 32 bit variable
5154 : : * as multiple of 512 bytes
5155 : : */
5156 : 3 : raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5157 : 3 : raw_inode->i_blocks_high = 0;
5158 : : ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5159 : 3 : return 0;
5160 : : }
5161 : 0 : if (!ext4_has_feature_huge_file(sb))
5162 : : return -EFBIG;
5163 : :
5164 : 0 : if (i_blocks <= 0xffffffffffffULL) {
5165 : : /*
5166 : : * i_blocks can be represented in a 48 bit variable
5167 : : * as multiple of 512 bytes
5168 : : */
5169 : 0 : raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5170 : 0 : raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5171 : : ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5172 : : } else {
5173 : : ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5174 : : /* i_block is stored in file system block size */
5175 : 0 : i_blocks = i_blocks >> (inode->i_blkbits - 9);
5176 : 0 : raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5177 : 0 : raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5178 : : }
5179 : : return 0;
5180 : : }
5181 : :
5182 : : struct other_inode {
5183 : : unsigned long orig_ino;
5184 : : struct ext4_inode *raw_inode;
5185 : : };
5186 : :
5187 : 0 : static int other_inode_match(struct inode * inode, unsigned long ino,
5188 : : void *data)
5189 : : {
5190 : : struct other_inode *oi = (struct other_inode *) data;
5191 : :
5192 : 0 : if ((inode->i_ino != ino) ||
5193 : : (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5194 : 0 : I_DIRTY_INODE)) ||
5195 : : ((inode->i_state & I_DIRTY_TIME) == 0))
5196 : : return 0;
5197 : : spin_lock(&inode->i_lock);
5198 : 0 : if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5199 : 0 : I_DIRTY_INODE)) == 0) &&
5200 : : (inode->i_state & I_DIRTY_TIME)) {
5201 : 0 : struct ext4_inode_info *ei = EXT4_I(inode);
5202 : :
5203 : 0 : inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5204 : : spin_unlock(&inode->i_lock);
5205 : :
5206 : : spin_lock(&ei->i_raw_lock);
5207 : 0 : EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5208 : 0 : EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5209 : 0 : EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5210 : 0 : ext4_inode_csum_set(inode, oi->raw_inode, ei);
5211 : : spin_unlock(&ei->i_raw_lock);
5212 : 0 : trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5213 : 0 : return -1;
5214 : : }
5215 : : spin_unlock(&inode->i_lock);
5216 : 0 : return -1;
5217 : : }
5218 : :
5219 : : /*
5220 : : * Opportunistically update the other time fields for other inodes in
5221 : : * the same inode table block.
5222 : : */
5223 : 0 : static void ext4_update_other_inodes_time(struct super_block *sb,
5224 : : unsigned long orig_ino, char *buf)
5225 : : {
5226 : : struct other_inode oi;
5227 : : unsigned long ino;
5228 : 0 : int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5229 : 0 : int inode_size = EXT4_INODE_SIZE(sb);
5230 : :
5231 : 0 : oi.orig_ino = orig_ino;
5232 : : /*
5233 : : * Calculate the first inode in the inode table block. Inode
5234 : : * numbers are one-based. That is, the first inode in a block
5235 : : * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5236 : : */
5237 : 0 : ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5238 : 0 : for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5239 : 0 : if (ino == orig_ino)
5240 : 0 : continue;
5241 : 0 : oi.raw_inode = (struct ext4_inode *) buf;
5242 : 0 : (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5243 : : }
5244 : 0 : }
5245 : :
5246 : : /*
5247 : : * Post the struct inode info into an on-disk inode location in the
5248 : : * buffer-cache. This gobbles the caller's reference to the
5249 : : * buffer_head in the inode location struct.
5250 : : *
5251 : : * The caller must have write access to iloc->bh.
5252 : : */
5253 : 3 : static int ext4_do_update_inode(handle_t *handle,
5254 : : struct inode *inode,
5255 : : struct ext4_iloc *iloc)
5256 : : {
5257 : : struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5258 : 3 : struct ext4_inode_info *ei = EXT4_I(inode);
5259 : : struct buffer_head *bh = iloc->bh;
5260 : 3 : struct super_block *sb = inode->i_sb;
5261 : : int err = 0, rc, block;
5262 : : int need_datasync = 0, set_large_file = 0;
5263 : : uid_t i_uid;
5264 : : gid_t i_gid;
5265 : : projid_t i_projid;
5266 : :
5267 : : spin_lock(&ei->i_raw_lock);
5268 : :
5269 : : /* For fields not tracked in the in-memory inode,
5270 : : * initialise them to zero for new inodes. */
5271 : 3 : if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5272 : 3 : memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5273 : :
5274 : 3 : raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5275 : : i_uid = i_uid_read(inode);
5276 : : i_gid = i_gid_read(inode);
5277 : 3 : i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5278 : 3 : if (!(test_opt(inode->i_sb, NO_UID32))) {
5279 : 3 : raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5280 : 3 : raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5281 : : /*
5282 : : * Fix up interoperability with old kernels. Otherwise, old inodes get
5283 : : * re-used with the upper 16 bits of the uid/gid intact
5284 : : */
5285 : 3 : if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5286 : 3 : raw_inode->i_uid_high = 0;
5287 : 3 : raw_inode->i_gid_high = 0;
5288 : : } else {
5289 : 3 : raw_inode->i_uid_high =
5290 : 3 : cpu_to_le16(high_16_bits(i_uid));
5291 : 3 : raw_inode->i_gid_high =
5292 : 3 : cpu_to_le16(high_16_bits(i_gid));
5293 : : }
5294 : : } else {
5295 : 0 : raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5296 : 0 : raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5297 : 0 : raw_inode->i_uid_high = 0;
5298 : 0 : raw_inode->i_gid_high = 0;
5299 : : }
5300 : 3 : raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5301 : :
5302 : 3 : EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5303 : 3 : EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5304 : 3 : EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5305 : 3 : EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5306 : :
5307 : 3 : err = ext4_inode_blocks_set(handle, raw_inode, ei);
5308 : 3 : if (err) {
5309 : : spin_unlock(&ei->i_raw_lock);
5310 : : goto out_brelse;
5311 : : }
5312 : 3 : raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5313 : 3 : raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5314 : 3 : if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5315 : 3 : raw_inode->i_file_acl_high =
5316 : 3 : cpu_to_le16(ei->i_file_acl >> 32);
5317 : 3 : raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5318 : 3 : if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5319 : : ext4_isize_set(raw_inode, ei->i_disksize);
5320 : : need_datasync = 1;
5321 : : }
5322 : 3 : if (ei->i_disksize > 0x7fffffffULL) {
5323 : 0 : if (!ext4_has_feature_large_file(sb) ||
5324 : 0 : EXT4_SB(sb)->s_es->s_rev_level ==
5325 : : cpu_to_le32(EXT4_GOOD_OLD_REV))
5326 : : set_large_file = 1;
5327 : : }
5328 : 3 : raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5329 : 3 : if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5330 : 0 : if (old_valid_dev(inode->i_rdev)) {
5331 : 0 : raw_inode->i_block[0] =
5332 : 0 : cpu_to_le32(old_encode_dev(inode->i_rdev));
5333 : 0 : raw_inode->i_block[1] = 0;
5334 : : } else {
5335 : 0 : raw_inode->i_block[0] = 0;
5336 : 0 : raw_inode->i_block[1] =
5337 : 0 : cpu_to_le32(new_encode_dev(inode->i_rdev));
5338 : 0 : raw_inode->i_block[2] = 0;
5339 : : }
5340 : 3 : } else if (!ext4_has_inline_data(inode)) {
5341 : 3 : for (block = 0; block < EXT4_N_BLOCKS; block++)
5342 : 3 : raw_inode->i_block[block] = ei->i_data[block];
5343 : : }
5344 : :
5345 : 3 : if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5346 : : u64 ivers = ext4_inode_peek_iversion(inode);
5347 : :
5348 : 3 : raw_inode->i_disk_version = cpu_to_le32(ivers);
5349 : 3 : if (ei->i_extra_isize) {
5350 : 3 : if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5351 : 3 : raw_inode->i_version_hi =
5352 : 3 : cpu_to_le32(ivers >> 32);
5353 : 3 : raw_inode->i_extra_isize =
5354 : 3 : cpu_to_le16(ei->i_extra_isize);
5355 : : }
5356 : : }
5357 : :
5358 : 3 : BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5359 : : i_projid != EXT4_DEF_PROJID);
5360 : :
5361 : 3 : if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5362 : 3 : EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5363 : 3 : raw_inode->i_projid = cpu_to_le32(i_projid);
5364 : :
5365 : 3 : ext4_inode_csum_set(inode, raw_inode, ei);
5366 : : spin_unlock(&ei->i_raw_lock);
5367 : 3 : if (inode->i_sb->s_flags & SB_LAZYTIME)
5368 : 0 : ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5369 : : bh->b_data);
5370 : :
5371 : : BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5372 : 3 : rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5373 : 3 : if (!err)
5374 : : err = rc;
5375 : : ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5376 : 3 : if (set_large_file) {
5377 : : BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5378 : 0 : err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5379 : 0 : if (err)
5380 : : goto out_brelse;
5381 : : ext4_set_feature_large_file(sb);
5382 : : ext4_handle_sync(handle);
5383 : 0 : err = ext4_handle_dirty_super(handle, sb);
5384 : : }
5385 : 3 : ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5386 : : out_brelse:
5387 : : brelse(bh);
5388 : 3 : ext4_std_error(inode->i_sb, err);
5389 : 3 : return err;
5390 : : }
5391 : :
5392 : : /*
5393 : : * ext4_write_inode()
5394 : : *
5395 : : * We are called from a few places:
5396 : : *
5397 : : * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5398 : : * Here, there will be no transaction running. We wait for any running
5399 : : * transaction to commit.
5400 : : *
5401 : : * - Within flush work (sys_sync(), kupdate and such).
5402 : : * We wait on commit, if told to.
5403 : : *
5404 : : * - Within iput_final() -> write_inode_now()
5405 : : * We wait on commit, if told to.
5406 : : *
5407 : : * In all cases it is actually safe for us to return without doing anything,
5408 : : * because the inode has been copied into a raw inode buffer in
5409 : : * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5410 : : * writeback.
5411 : : *
5412 : : * Note that we are absolutely dependent upon all inode dirtiers doing the
5413 : : * right thing: they *must* call mark_inode_dirty() after dirtying info in
5414 : : * which we are interested.
5415 : : *
5416 : : * It would be a bug for them to not do this. The code:
5417 : : *
5418 : : * mark_inode_dirty(inode)
5419 : : * stuff();
5420 : : * inode->i_size = expr;
5421 : : *
5422 : : * is in error because write_inode() could occur while `stuff()' is running,
5423 : : * and the new i_size will be lost. Plus the inode will no longer be on the
5424 : : * superblock's dirty inode list.
5425 : : */
5426 : 3 : int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5427 : : {
5428 : : int err;
5429 : :
5430 : 3 : if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5431 : 3 : sb_rdonly(inode->i_sb))
5432 : : return 0;
5433 : :
5434 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5435 : : return -EIO;
5436 : :
5437 : 3 : if (EXT4_SB(inode->i_sb)->s_journal) {
5438 : 3 : if (ext4_journal_current_handle()) {
5439 : : jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5440 : 0 : dump_stack();
5441 : 0 : return -EIO;
5442 : : }
5443 : :
5444 : : /*
5445 : : * No need to force transaction in WB_SYNC_NONE mode. Also
5446 : : * ext4_sync_fs() will force the commit after everything is
5447 : : * written.
5448 : : */
5449 : 3 : if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5450 : : return 0;
5451 : :
5452 : 0 : err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5453 : : EXT4_I(inode)->i_sync_tid);
5454 : : } else {
5455 : : struct ext4_iloc iloc;
5456 : :
5457 : 0 : err = __ext4_get_inode_loc(inode, &iloc, 0);
5458 : 0 : if (err)
5459 : 0 : return err;
5460 : : /*
5461 : : * sync(2) will flush the whole buffer cache. No need to do
5462 : : * it here separately for each inode.
5463 : : */
5464 : 0 : if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5465 : 0 : sync_dirty_buffer(iloc.bh);
5466 : 0 : if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5467 : 0 : EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5468 : : "IO error syncing inode");
5469 : : err = -EIO;
5470 : : }
5471 : 0 : brelse(iloc.bh);
5472 : : }
5473 : 0 : return err;
5474 : : }
5475 : :
5476 : : /*
5477 : : * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5478 : : * buffers that are attached to a page stradding i_size and are undergoing
5479 : : * commit. In that case we have to wait for commit to finish and try again.
5480 : : */
5481 : 0 : static void ext4_wait_for_tail_page_commit(struct inode *inode)
5482 : : {
5483 : : struct page *page;
5484 : : unsigned offset;
5485 : 0 : journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5486 : : tid_t commit_tid = 0;
5487 : : int ret;
5488 : :
5489 : 0 : offset = inode->i_size & (PAGE_SIZE - 1);
5490 : : /*
5491 : : * If the page is fully truncated, we don't need to wait for any commit
5492 : : * (and we even should not as __ext4_journalled_invalidatepage() may
5493 : : * strip all buffers from the page but keep the page dirty which can then
5494 : : * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5495 : : * buffers). Also we don't need to wait for any commit if all buffers in
5496 : : * the page remain valid. This is most beneficial for the common case of
5497 : : * blocksize == PAGESIZE.
5498 : : */
5499 : 0 : if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5500 : : return;
5501 : : while (1) {
5502 : 0 : page = find_lock_page(inode->i_mapping,
5503 : 0 : inode->i_size >> PAGE_SHIFT);
5504 : 0 : if (!page)
5505 : : return;
5506 : 0 : ret = __ext4_journalled_invalidatepage(page, offset,
5507 : 0 : PAGE_SIZE - offset);
5508 : 0 : unlock_page(page);
5509 : 0 : put_page(page);
5510 : 0 : if (ret != -EBUSY)
5511 : : return;
5512 : : commit_tid = 0;
5513 : 0 : read_lock(&journal->j_state_lock);
5514 : 0 : if (journal->j_committing_transaction)
5515 : 0 : commit_tid = journal->j_committing_transaction->t_tid;
5516 : : read_unlock(&journal->j_state_lock);
5517 : 0 : if (commit_tid)
5518 : 0 : jbd2_log_wait_commit(journal, commit_tid);
5519 : : }
5520 : : }
5521 : :
5522 : : /*
5523 : : * ext4_setattr()
5524 : : *
5525 : : * Called from notify_change.
5526 : : *
5527 : : * We want to trap VFS attempts to truncate the file as soon as
5528 : : * possible. In particular, we want to make sure that when the VFS
5529 : : * shrinks i_size, we put the inode on the orphan list and modify
5530 : : * i_disksize immediately, so that during the subsequent flushing of
5531 : : * dirty pages and freeing of disk blocks, we can guarantee that any
5532 : : * commit will leave the blocks being flushed in an unused state on
5533 : : * disk. (On recovery, the inode will get truncated and the blocks will
5534 : : * be freed, so we have a strong guarantee that no future commit will
5535 : : * leave these blocks visible to the user.)
5536 : : *
5537 : : * Another thing we have to assure is that if we are in ordered mode
5538 : : * and inode is still attached to the committing transaction, we must
5539 : : * we start writeout of all the dirty pages which are being truncated.
5540 : : * This way we are sure that all the data written in the previous
5541 : : * transaction are already on disk (truncate waits for pages under
5542 : : * writeback).
5543 : : *
5544 : : * Called with inode->i_mutex down.
5545 : : */
5546 : 3 : int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5547 : : {
5548 : : struct inode *inode = d_inode(dentry);
5549 : : int error, rc = 0;
5550 : : int orphan = 0;
5551 : 3 : const unsigned int ia_valid = attr->ia_valid;
5552 : :
5553 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5554 : : return -EIO;
5555 : :
5556 : 3 : if (unlikely(IS_IMMUTABLE(inode)))
5557 : : return -EPERM;
5558 : :
5559 : 3 : if (unlikely(IS_APPEND(inode) &&
5560 : : (ia_valid & (ATTR_MODE | ATTR_UID |
5561 : : ATTR_GID | ATTR_TIMES_SET))))
5562 : : return -EPERM;
5563 : :
5564 : 3 : error = setattr_prepare(dentry, attr);
5565 : 3 : if (error)
5566 : : return error;
5567 : :
5568 : : error = fscrypt_prepare_setattr(dentry, attr);
5569 : 3 : if (error)
5570 : : return error;
5571 : :
5572 : : error = fsverity_prepare_setattr(dentry, attr);
5573 : 3 : if (error)
5574 : : return error;
5575 : :
5576 : 3 : if (is_quota_modification(inode, attr)) {
5577 : 3 : error = dquot_initialize(inode);
5578 : 3 : if (error)
5579 : : return error;
5580 : : }
5581 : 3 : if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5582 : 3 : (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5583 : : handle_t *handle;
5584 : :
5585 : : /* (user+group)*(old+new) structure, inode write (sb,
5586 : : * inode block, ? - but truncate inode update has it) */
5587 : 3 : handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5588 : : (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5589 : : EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5590 : 3 : if (IS_ERR(handle)) {
5591 : : error = PTR_ERR(handle);
5592 : 0 : goto err_out;
5593 : : }
5594 : :
5595 : : /* dquot_transfer() calls back ext4_get_inode_usage() which
5596 : : * counts xattr inode references.
5597 : : */
5598 : 3 : down_read(&EXT4_I(inode)->xattr_sem);
5599 : 3 : error = dquot_transfer(inode, attr);
5600 : 3 : up_read(&EXT4_I(inode)->xattr_sem);
5601 : :
5602 : 3 : if (error) {
5603 : 0 : ext4_journal_stop(handle);
5604 : 0 : return error;
5605 : : }
5606 : : /* Update corresponding info in inode so that everything is in
5607 : : * one transaction */
5608 : 3 : if (attr->ia_valid & ATTR_UID)
5609 : 3 : inode->i_uid = attr->ia_uid;
5610 : 3 : if (attr->ia_valid & ATTR_GID)
5611 : 3 : inode->i_gid = attr->ia_gid;
5612 : 3 : error = ext4_mark_inode_dirty(handle, inode);
5613 : 3 : ext4_journal_stop(handle);
5614 : : }
5615 : :
5616 : 3 : if (attr->ia_valid & ATTR_SIZE) {
5617 : : handle_t *handle;
5618 : 3 : loff_t oldsize = inode->i_size;
5619 : 3 : int shrink = (attr->ia_size < inode->i_size);
5620 : :
5621 : 3 : if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5622 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5623 : :
5624 : 0 : if (attr->ia_size > sbi->s_bitmap_maxbytes)
5625 : : return -EFBIG;
5626 : : }
5627 : 3 : if (!S_ISREG(inode->i_mode))
5628 : : return -EINVAL;
5629 : :
5630 : 3 : if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5631 : : inode_inc_iversion(inode);
5632 : :
5633 : 3 : if (shrink) {
5634 : 3 : if (ext4_should_order_data(inode)) {
5635 : 3 : error = ext4_begin_ordered_truncate(inode,
5636 : : attr->ia_size);
5637 : 3 : if (error)
5638 : : goto err_out;
5639 : : }
5640 : : /*
5641 : : * Blocks are going to be removed from the inode. Wait
5642 : : * for dio in flight.
5643 : : */
5644 : 3 : inode_dio_wait(inode);
5645 : : }
5646 : :
5647 : 3 : down_write(&EXT4_I(inode)->i_mmap_sem);
5648 : :
5649 : 3 : rc = ext4_break_layouts(inode);
5650 : 3 : if (rc) {
5651 : 0 : up_write(&EXT4_I(inode)->i_mmap_sem);
5652 : 0 : return rc;
5653 : : }
5654 : :
5655 : 3 : if (attr->ia_size != inode->i_size) {
5656 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5657 : 3 : if (IS_ERR(handle)) {
5658 : : error = PTR_ERR(handle);
5659 : 0 : goto out_mmap_sem;
5660 : : }
5661 : 3 : if (ext4_handle_valid(handle) && shrink) {
5662 : 3 : error = ext4_orphan_add(handle, inode);
5663 : : orphan = 1;
5664 : : }
5665 : : /*
5666 : : * Update c/mtime on truncate up, ext4_truncate() will
5667 : : * update c/mtime in shrink case below
5668 : : */
5669 : 3 : if (!shrink) {
5670 : 1 : inode->i_mtime = current_time(inode);
5671 : 1 : inode->i_ctime = inode->i_mtime;
5672 : : }
5673 : 3 : down_write(&EXT4_I(inode)->i_data_sem);
5674 : 3 : EXT4_I(inode)->i_disksize = attr->ia_size;
5675 : 3 : rc = ext4_mark_inode_dirty(handle, inode);
5676 : 3 : if (!error)
5677 : : error = rc;
5678 : : /*
5679 : : * We have to update i_size under i_data_sem together
5680 : : * with i_disksize to avoid races with writeback code
5681 : : * running ext4_wb_update_i_disksize().
5682 : : */
5683 : 3 : if (!error)
5684 : 3 : i_size_write(inode, attr->ia_size);
5685 : 3 : up_write(&EXT4_I(inode)->i_data_sem);
5686 : 3 : ext4_journal_stop(handle);
5687 : 3 : if (error)
5688 : : goto out_mmap_sem;
5689 : 3 : if (!shrink) {
5690 : 1 : pagecache_isize_extended(inode, oldsize,
5691 : : inode->i_size);
5692 : 3 : } else if (ext4_should_journal_data(inode)) {
5693 : 0 : ext4_wait_for_tail_page_commit(inode);
5694 : : }
5695 : : }
5696 : :
5697 : : /*
5698 : : * Truncate pagecache after we've waited for commit
5699 : : * in data=journal mode to make pages freeable.
5700 : : */
5701 : 3 : truncate_pagecache(inode, inode->i_size);
5702 : : /*
5703 : : * Call ext4_truncate() even if i_size didn't change to
5704 : : * truncate possible preallocated blocks.
5705 : : */
5706 : 3 : if (attr->ia_size <= oldsize) {
5707 : 3 : rc = ext4_truncate(inode);
5708 : 3 : if (rc)
5709 : : error = rc;
5710 : : }
5711 : : out_mmap_sem:
5712 : 3 : up_write(&EXT4_I(inode)->i_mmap_sem);
5713 : : }
5714 : :
5715 : 3 : if (!error) {
5716 : 3 : setattr_copy(inode, attr);
5717 : : mark_inode_dirty(inode);
5718 : : }
5719 : :
5720 : : /*
5721 : : * If the call to ext4_truncate failed to get a transaction handle at
5722 : : * all, we need to clean up the in-core orphan list manually.
5723 : : */
5724 : 3 : if (orphan && inode->i_nlink)
5725 : 3 : ext4_orphan_del(NULL, inode);
5726 : :
5727 : 3 : if (!error && (ia_valid & ATTR_MODE))
5728 : 3 : rc = posix_acl_chmod(inode, inode->i_mode);
5729 : :
5730 : : err_out:
5731 : 3 : ext4_std_error(inode->i_sb, error);
5732 : 3 : if (!error)
5733 : : error = rc;
5734 : 3 : return error;
5735 : : }
5736 : :
5737 : 3 : int ext4_getattr(const struct path *path, struct kstat *stat,
5738 : : u32 request_mask, unsigned int query_flags)
5739 : : {
5740 : 3 : struct inode *inode = d_inode(path->dentry);
5741 : : struct ext4_inode *raw_inode;
5742 : : struct ext4_inode_info *ei = EXT4_I(inode);
5743 : : unsigned int flags;
5744 : :
5745 : 3 : if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5746 : 3 : stat->result_mask |= STATX_BTIME;
5747 : 3 : stat->btime.tv_sec = ei->i_crtime.tv_sec;
5748 : 3 : stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5749 : : }
5750 : :
5751 : 3 : flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5752 : 3 : if (flags & EXT4_APPEND_FL)
5753 : 0 : stat->attributes |= STATX_ATTR_APPEND;
5754 : 3 : if (flags & EXT4_COMPR_FL)
5755 : 0 : stat->attributes |= STATX_ATTR_COMPRESSED;
5756 : 3 : if (flags & EXT4_ENCRYPT_FL)
5757 : 0 : stat->attributes |= STATX_ATTR_ENCRYPTED;
5758 : 3 : if (flags & EXT4_IMMUTABLE_FL)
5759 : 0 : stat->attributes |= STATX_ATTR_IMMUTABLE;
5760 : 3 : if (flags & EXT4_NODUMP_FL)
5761 : 0 : stat->attributes |= STATX_ATTR_NODUMP;
5762 : :
5763 : 3 : stat->attributes_mask |= (STATX_ATTR_APPEND |
5764 : : STATX_ATTR_COMPRESSED |
5765 : : STATX_ATTR_ENCRYPTED |
5766 : : STATX_ATTR_IMMUTABLE |
5767 : : STATX_ATTR_NODUMP);
5768 : :
5769 : 3 : generic_fillattr(inode, stat);
5770 : 3 : return 0;
5771 : : }
5772 : :
5773 : 3 : int ext4_file_getattr(const struct path *path, struct kstat *stat,
5774 : : u32 request_mask, unsigned int query_flags)
5775 : : {
5776 : 3 : struct inode *inode = d_inode(path->dentry);
5777 : : u64 delalloc_blocks;
5778 : :
5779 : 3 : ext4_getattr(path, stat, request_mask, query_flags);
5780 : :
5781 : : /*
5782 : : * If there is inline data in the inode, the inode will normally not
5783 : : * have data blocks allocated (it may have an external xattr block).
5784 : : * Report at least one sector for such files, so tools like tar, rsync,
5785 : : * others don't incorrectly think the file is completely sparse.
5786 : : */
5787 : 3 : if (unlikely(ext4_has_inline_data(inode)))
5788 : 0 : stat->blocks += (stat->size + 511) >> 9;
5789 : :
5790 : : /*
5791 : : * We can't update i_blocks if the block allocation is delayed
5792 : : * otherwise in the case of system crash before the real block
5793 : : * allocation is done, we will have i_blocks inconsistent with
5794 : : * on-disk file blocks.
5795 : : * We always keep i_blocks updated together with real
5796 : : * allocation. But to not confuse with user, stat
5797 : : * will return the blocks that include the delayed allocation
5798 : : * blocks for this file.
5799 : : */
5800 : 3 : delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5801 : : EXT4_I(inode)->i_reserved_data_blocks);
5802 : 3 : stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5803 : 3 : return 0;
5804 : : }
5805 : :
5806 : 3 : static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5807 : : int pextents)
5808 : : {
5809 : 3 : if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5810 : 0 : return ext4_ind_trans_blocks(inode, lblocks);
5811 : 3 : return ext4_ext_index_trans_blocks(inode, pextents);
5812 : : }
5813 : :
5814 : : /*
5815 : : * Account for index blocks, block groups bitmaps and block group
5816 : : * descriptor blocks if modify datablocks and index blocks
5817 : : * worse case, the indexs blocks spread over different block groups
5818 : : *
5819 : : * If datablocks are discontiguous, they are possible to spread over
5820 : : * different block groups too. If they are contiguous, with flexbg,
5821 : : * they could still across block group boundary.
5822 : : *
5823 : : * Also account for superblock, inode, quota and xattr blocks
5824 : : */
5825 : 3 : static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5826 : : int pextents)
5827 : : {
5828 : 3 : ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5829 : : int gdpblocks;
5830 : : int idxblocks;
5831 : : int ret = 0;
5832 : :
5833 : : /*
5834 : : * How many index blocks need to touch to map @lblocks logical blocks
5835 : : * to @pextents physical extents?
5836 : : */
5837 : 3 : idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5838 : :
5839 : : ret = idxblocks;
5840 : :
5841 : : /*
5842 : : * Now let's see how many group bitmaps and group descriptors need
5843 : : * to account
5844 : : */
5845 : 3 : groups = idxblocks + pextents;
5846 : : gdpblocks = groups;
5847 : 3 : if (groups > ngroups)
5848 : : groups = ngroups;
5849 : 3 : if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5850 : 3 : gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5851 : :
5852 : : /* bitmaps and block group descriptor blocks */
5853 : 3 : ret += groups + gdpblocks;
5854 : :
5855 : : /* Blocks for super block, inode, quota and xattr blocks */
5856 : 3 : ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5857 : :
5858 : 3 : return ret;
5859 : : }
5860 : :
5861 : : /*
5862 : : * Calculate the total number of credits to reserve to fit
5863 : : * the modification of a single pages into a single transaction,
5864 : : * which may include multiple chunks of block allocations.
5865 : : *
5866 : : * This could be called via ext4_write_begin()
5867 : : *
5868 : : * We need to consider the worse case, when
5869 : : * one new block per extent.
5870 : : */
5871 : 3 : int ext4_writepage_trans_blocks(struct inode *inode)
5872 : : {
5873 : : int bpp = ext4_journal_blocks_per_page(inode);
5874 : : int ret;
5875 : :
5876 : 3 : ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5877 : :
5878 : : /* Account for data blocks for journalled mode */
5879 : 3 : if (ext4_should_journal_data(inode))
5880 : 3 : ret += bpp;
5881 : 3 : return ret;
5882 : : }
5883 : :
5884 : : /*
5885 : : * Calculate the journal credits for a chunk of data modification.
5886 : : *
5887 : : * This is called from DIO, fallocate or whoever calling
5888 : : * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5889 : : *
5890 : : * journal buffers for data blocks are not included here, as DIO
5891 : : * and fallocate do no need to journal data buffers.
5892 : : */
5893 : 3 : int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5894 : : {
5895 : 3 : return ext4_meta_trans_blocks(inode, nrblocks, 1);
5896 : : }
5897 : :
5898 : : /*
5899 : : * The caller must have previously called ext4_reserve_inode_write().
5900 : : * Give this, we know that the caller already has write access to iloc->bh.
5901 : : */
5902 : 3 : int ext4_mark_iloc_dirty(handle_t *handle,
5903 : : struct inode *inode, struct ext4_iloc *iloc)
5904 : : {
5905 : : int err = 0;
5906 : :
5907 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5908 : 0 : put_bh(iloc->bh);
5909 : 0 : return -EIO;
5910 : : }
5911 : 3 : if (IS_I_VERSION(inode))
5912 : : inode_inc_iversion(inode);
5913 : :
5914 : : /* the do_update_inode consumes one bh->b_count */
5915 : 3 : get_bh(iloc->bh);
5916 : :
5917 : : /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5918 : 3 : err = ext4_do_update_inode(handle, inode, iloc);
5919 : 3 : put_bh(iloc->bh);
5920 : 3 : return err;
5921 : : }
5922 : :
5923 : : /*
5924 : : * On success, We end up with an outstanding reference count against
5925 : : * iloc->bh. This _must_ be cleaned up later.
5926 : : */
5927 : :
5928 : : int
5929 : 3 : ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5930 : : struct ext4_iloc *iloc)
5931 : : {
5932 : : int err;
5933 : :
5934 : 3 : if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5935 : : return -EIO;
5936 : :
5937 : : err = ext4_get_inode_loc(inode, iloc);
5938 : 3 : if (!err) {
5939 : : BUFFER_TRACE(iloc->bh, "get_write_access");
5940 : 3 : err = ext4_journal_get_write_access(handle, iloc->bh);
5941 : 3 : if (err) {
5942 : 0 : brelse(iloc->bh);
5943 : 0 : iloc->bh = NULL;
5944 : : }
5945 : : }
5946 : 3 : ext4_std_error(inode->i_sb, err);
5947 : 3 : return err;
5948 : : }
5949 : :
5950 : 0 : static int __ext4_expand_extra_isize(struct inode *inode,
5951 : : unsigned int new_extra_isize,
5952 : : struct ext4_iloc *iloc,
5953 : : handle_t *handle, int *no_expand)
5954 : : {
5955 : : struct ext4_inode *raw_inode;
5956 : : struct ext4_xattr_ibody_header *header;
5957 : 0 : unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5958 : : struct ext4_inode_info *ei = EXT4_I(inode);
5959 : : int error;
5960 : :
5961 : : /* this was checked at iget time, but double check for good measure */
5962 : 0 : if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5963 : 0 : (ei->i_extra_isize & 3)) {
5964 : 0 : EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5965 : : ei->i_extra_isize,
5966 : : EXT4_INODE_SIZE(inode->i_sb));
5967 : 0 : return -EFSCORRUPTED;
5968 : : }
5969 : 0 : if ((new_extra_isize < ei->i_extra_isize) ||
5970 : 0 : (new_extra_isize < 4) ||
5971 : 0 : (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5972 : : return -EINVAL; /* Should never happen */
5973 : :
5974 : : raw_inode = ext4_raw_inode(iloc);
5975 : :
5976 : 0 : header = IHDR(inode, raw_inode);
5977 : :
5978 : : /* No extended attributes present */
5979 : 0 : if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5980 : 0 : header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5981 : 0 : memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5982 : : EXT4_I(inode)->i_extra_isize, 0,
5983 : : new_extra_isize - EXT4_I(inode)->i_extra_isize);
5984 : 0 : EXT4_I(inode)->i_extra_isize = new_extra_isize;
5985 : 0 : return 0;
5986 : : }
5987 : :
5988 : : /* try to expand with EAs present */
5989 : 0 : error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5990 : : raw_inode, handle);
5991 : 0 : if (error) {
5992 : : /*
5993 : : * Inode size expansion failed; don't try again
5994 : : */
5995 : 0 : *no_expand = 1;
5996 : : }
5997 : :
5998 : 0 : return error;
5999 : : }
6000 : :
6001 : : /*
6002 : : * Expand an inode by new_extra_isize bytes.
6003 : : * Returns 0 on success or negative error number on failure.
6004 : : */
6005 : 0 : static int ext4_try_to_expand_extra_isize(struct inode *inode,
6006 : : unsigned int new_extra_isize,
6007 : : struct ext4_iloc iloc,
6008 : : handle_t *handle)
6009 : : {
6010 : : int no_expand;
6011 : : int error;
6012 : :
6013 : 0 : if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6014 : : return -EOVERFLOW;
6015 : :
6016 : : /*
6017 : : * In nojournal mode, we can immediately attempt to expand
6018 : : * the inode. When journaled, we first need to obtain extra
6019 : : * buffer credits since we may write into the EA block
6020 : : * with this same handle. If journal_extend fails, then it will
6021 : : * only result in a minor loss of functionality for that inode.
6022 : : * If this is felt to be critical, then e2fsck should be run to
6023 : : * force a large enough s_min_extra_isize.
6024 : : */
6025 : 0 : if (ext4_handle_valid(handle) &&
6026 : 0 : jbd2_journal_extend(handle,
6027 : 0 : EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6028 : : return -ENOSPC;
6029 : :
6030 : 0 : if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6031 : : return -EBUSY;
6032 : :
6033 : 0 : error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6034 : : handle, &no_expand);
6035 : 0 : ext4_write_unlock_xattr(inode, &no_expand);
6036 : :
6037 : 0 : return error;
6038 : : }
6039 : :
6040 : 0 : int ext4_expand_extra_isize(struct inode *inode,
6041 : : unsigned int new_extra_isize,
6042 : : struct ext4_iloc *iloc)
6043 : : {
6044 : : handle_t *handle;
6045 : : int no_expand;
6046 : : int error, rc;
6047 : :
6048 : 0 : if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6049 : 0 : brelse(iloc->bh);
6050 : : return -EOVERFLOW;
6051 : : }
6052 : :
6053 : 0 : handle = ext4_journal_start(inode, EXT4_HT_INODE,
6054 : : EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6055 : 0 : if (IS_ERR(handle)) {
6056 : : error = PTR_ERR(handle);
6057 : 0 : brelse(iloc->bh);
6058 : 0 : return error;
6059 : : }
6060 : :
6061 : 0 : ext4_write_lock_xattr(inode, &no_expand);
6062 : :
6063 : : BUFFER_TRACE(iloc->bh, "get_write_access");
6064 : 0 : error = ext4_journal_get_write_access(handle, iloc->bh);
6065 : 0 : if (error) {
6066 : 0 : brelse(iloc->bh);
6067 : : goto out_unlock;
6068 : : }
6069 : :
6070 : 0 : error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6071 : : handle, &no_expand);
6072 : :
6073 : 0 : rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6074 : 0 : if (!error)
6075 : : error = rc;
6076 : :
6077 : : out_unlock:
6078 : 0 : ext4_write_unlock_xattr(inode, &no_expand);
6079 : 0 : ext4_journal_stop(handle);
6080 : 0 : return error;
6081 : : }
6082 : :
6083 : : /*
6084 : : * What we do here is to mark the in-core inode as clean with respect to inode
6085 : : * dirtiness (it may still be data-dirty).
6086 : : * This means that the in-core inode may be reaped by prune_icache
6087 : : * without having to perform any I/O. This is a very good thing,
6088 : : * because *any* task may call prune_icache - even ones which
6089 : : * have a transaction open against a different journal.
6090 : : *
6091 : : * Is this cheating? Not really. Sure, we haven't written the
6092 : : * inode out, but prune_icache isn't a user-visible syncing function.
6093 : : * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6094 : : * we start and wait on commits.
6095 : : */
6096 : 3 : int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6097 : : {
6098 : : struct ext4_iloc iloc;
6099 : 3 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6100 : : int err;
6101 : :
6102 : 3 : might_sleep();
6103 : 3 : trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6104 : 3 : err = ext4_reserve_inode_write(handle, inode, &iloc);
6105 : 3 : if (err)
6106 : : return err;
6107 : :
6108 : 3 : if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6109 : 0 : ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6110 : : iloc, handle);
6111 : :
6112 : 3 : return ext4_mark_iloc_dirty(handle, inode, &iloc);
6113 : : }
6114 : :
6115 : : /*
6116 : : * ext4_dirty_inode() is called from __mark_inode_dirty()
6117 : : *
6118 : : * We're really interested in the case where a file is being extended.
6119 : : * i_size has been changed by generic_commit_write() and we thus need
6120 : : * to include the updated inode in the current transaction.
6121 : : *
6122 : : * Also, dquot_alloc_block() will always dirty the inode when blocks
6123 : : * are allocated to the file.
6124 : : *
6125 : : * If the inode is marked synchronous, we don't honour that here - doing
6126 : : * so would cause a commit on atime updates, which we don't bother doing.
6127 : : * We handle synchronous inodes at the highest possible level.
6128 : : *
6129 : : * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6130 : : * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6131 : : * to copy into the on-disk inode structure are the timestamp files.
6132 : : */
6133 : 3 : void ext4_dirty_inode(struct inode *inode, int flags)
6134 : : {
6135 : : handle_t *handle;
6136 : :
6137 : 3 : if (flags == I_DIRTY_TIME)
6138 : : return;
6139 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6140 : 3 : if (IS_ERR(handle))
6141 : : goto out;
6142 : :
6143 : 3 : ext4_mark_inode_dirty(handle, inode);
6144 : :
6145 : 3 : ext4_journal_stop(handle);
6146 : : out:
6147 : : return;
6148 : : }
6149 : :
6150 : 0 : int ext4_change_inode_journal_flag(struct inode *inode, int val)
6151 : : {
6152 : : journal_t *journal;
6153 : : handle_t *handle;
6154 : : int err;
6155 : 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6156 : :
6157 : : /*
6158 : : * We have to be very careful here: changing a data block's
6159 : : * journaling status dynamically is dangerous. If we write a
6160 : : * data block to the journal, change the status and then delete
6161 : : * that block, we risk forgetting to revoke the old log record
6162 : : * from the journal and so a subsequent replay can corrupt data.
6163 : : * So, first we make sure that the journal is empty and that
6164 : : * nobody is changing anything.
6165 : : */
6166 : :
6167 : 0 : journal = EXT4_JOURNAL(inode);
6168 : 0 : if (!journal)
6169 : : return 0;
6170 : 0 : if (is_journal_aborted(journal))
6171 : : return -EROFS;
6172 : :
6173 : : /* Wait for all existing dio workers */
6174 : 0 : inode_dio_wait(inode);
6175 : :
6176 : : /*
6177 : : * Before flushing the journal and switching inode's aops, we have
6178 : : * to flush all dirty data the inode has. There can be outstanding
6179 : : * delayed allocations, there can be unwritten extents created by
6180 : : * fallocate or buffered writes in dioread_nolock mode covered by
6181 : : * dirty data which can be converted only after flushing the dirty
6182 : : * data (and journalled aops don't know how to handle these cases).
6183 : : */
6184 : 0 : if (val) {
6185 : 0 : down_write(&EXT4_I(inode)->i_mmap_sem);
6186 : 0 : err = filemap_write_and_wait(inode->i_mapping);
6187 : 0 : if (err < 0) {
6188 : 0 : up_write(&EXT4_I(inode)->i_mmap_sem);
6189 : 0 : return err;
6190 : : }
6191 : : }
6192 : :
6193 : 0 : percpu_down_write(&sbi->s_writepages_rwsem);
6194 : 0 : jbd2_journal_lock_updates(journal);
6195 : :
6196 : : /*
6197 : : * OK, there are no updates running now, and all cached data is
6198 : : * synced to disk. We are now in a completely consistent state
6199 : : * which doesn't have anything in the journal, and we know that
6200 : : * no filesystem updates are running, so it is safe to modify
6201 : : * the inode's in-core data-journaling state flag now.
6202 : : */
6203 : :
6204 : 0 : if (val)
6205 : : ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6206 : : else {
6207 : 0 : err = jbd2_journal_flush(journal);
6208 : 0 : if (err < 0) {
6209 : 0 : jbd2_journal_unlock_updates(journal);
6210 : 0 : percpu_up_write(&sbi->s_writepages_rwsem);
6211 : 0 : return err;
6212 : : }
6213 : : ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6214 : : }
6215 : 0 : ext4_set_aops(inode);
6216 : :
6217 : 0 : jbd2_journal_unlock_updates(journal);
6218 : 0 : percpu_up_write(&sbi->s_writepages_rwsem);
6219 : :
6220 : 0 : if (val)
6221 : 0 : up_write(&EXT4_I(inode)->i_mmap_sem);
6222 : :
6223 : : /* Finally we can mark the inode as dirty. */
6224 : :
6225 : : handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6226 : 0 : if (IS_ERR(handle))
6227 : 0 : return PTR_ERR(handle);
6228 : :
6229 : 0 : err = ext4_mark_inode_dirty(handle, inode);
6230 : : ext4_handle_sync(handle);
6231 : 0 : ext4_journal_stop(handle);
6232 : 0 : ext4_std_error(inode->i_sb, err);
6233 : :
6234 : 0 : return err;
6235 : : }
6236 : :
6237 : 0 : static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6238 : : {
6239 : 0 : return !buffer_mapped(bh);
6240 : : }
6241 : :
6242 : 3 : vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6243 : : {
6244 : 3 : struct vm_area_struct *vma = vmf->vma;
6245 : 3 : struct page *page = vmf->page;
6246 : : loff_t size;
6247 : : unsigned long len;
6248 : : int err;
6249 : : vm_fault_t ret;
6250 : 3 : struct file *file = vma->vm_file;
6251 : : struct inode *inode = file_inode(file);
6252 : 3 : struct address_space *mapping = inode->i_mapping;
6253 : : handle_t *handle;
6254 : : get_block_t *get_block;
6255 : 3 : int retries = 0;
6256 : :
6257 : 3 : if (unlikely(IS_IMMUTABLE(inode)))
6258 : : return VM_FAULT_SIGBUS;
6259 : :
6260 : 3 : sb_start_pagefault(inode->i_sb);
6261 : 3 : file_update_time(vma->vm_file);
6262 : :
6263 : 3 : down_read(&EXT4_I(inode)->i_mmap_sem);
6264 : :
6265 : 3 : err = ext4_convert_inline_data(inode);
6266 : 3 : if (err)
6267 : : goto out_ret;
6268 : :
6269 : : /* Delalloc case is easy... */
6270 : 3 : if (test_opt(inode->i_sb, DELALLOC) &&
6271 : 3 : !ext4_should_journal_data(inode) &&
6272 : 3 : !ext4_nonda_switch(inode->i_sb)) {
6273 : : do {
6274 : 3 : err = block_page_mkwrite(vma, vmf,
6275 : : ext4_da_get_block_prep);
6276 : 0 : } while (err == -ENOSPC &&
6277 : 3 : ext4_should_retry_alloc(inode->i_sb, &retries));
6278 : : goto out_ret;
6279 : : }
6280 : :
6281 : 0 : lock_page(page);
6282 : : size = i_size_read(inode);
6283 : : /* Page got truncated from under us? */
6284 : 0 : if (page->mapping != mapping || page_offset(page) > size) {
6285 : 0 : unlock_page(page);
6286 : : ret = VM_FAULT_NOPAGE;
6287 : 0 : goto out;
6288 : : }
6289 : :
6290 : 0 : if (page->index == size >> PAGE_SHIFT)
6291 : 0 : len = size & ~PAGE_MASK;
6292 : : else
6293 : : len = PAGE_SIZE;
6294 : : /*
6295 : : * Return if we have all the buffers mapped. This avoids the need to do
6296 : : * journal_start/journal_stop which can block and take a long time
6297 : : */
6298 : 0 : if (page_has_buffers(page)) {
6299 : 0 : if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6300 : : 0, len, NULL,
6301 : : ext4_bh_unmapped)) {
6302 : : /* Wait so that we don't change page under IO */
6303 : 0 : wait_for_stable_page(page);
6304 : : ret = VM_FAULT_LOCKED;
6305 : 0 : goto out;
6306 : : }
6307 : : }
6308 : 0 : unlock_page(page);
6309 : : /* OK, we need to fill the hole... */
6310 : 0 : if (ext4_should_dioread_nolock(inode))
6311 : : get_block = ext4_get_block_unwritten;
6312 : : else
6313 : : get_block = ext4_get_block;
6314 : : retry_alloc:
6315 : 0 : handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6316 : : ext4_writepage_trans_blocks(inode));
6317 : 0 : if (IS_ERR(handle)) {
6318 : : ret = VM_FAULT_SIGBUS;
6319 : : goto out;
6320 : : }
6321 : 0 : err = block_page_mkwrite(vma, vmf, get_block);
6322 : 0 : if (!err && ext4_should_journal_data(inode)) {
6323 : 0 : if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6324 : : PAGE_SIZE, NULL, do_journal_get_write_access)) {
6325 : 0 : unlock_page(page);
6326 : : ret = VM_FAULT_SIGBUS;
6327 : 0 : ext4_journal_stop(handle);
6328 : 0 : goto out;
6329 : : }
6330 : : ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6331 : : }
6332 : 0 : ext4_journal_stop(handle);
6333 : 0 : if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6334 : : goto retry_alloc;
6335 : : out_ret:
6336 : : ret = block_page_mkwrite_return(err);
6337 : : out:
6338 : 3 : up_read(&EXT4_I(inode)->i_mmap_sem);
6339 : 3 : sb_end_pagefault(inode->i_sb);
6340 : 3 : return ret;
6341 : : }
6342 : :
6343 : 3 : vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6344 : : {
6345 : 3 : struct inode *inode = file_inode(vmf->vma->vm_file);
6346 : : vm_fault_t ret;
6347 : :
6348 : 3 : down_read(&EXT4_I(inode)->i_mmap_sem);
6349 : 3 : ret = filemap_fault(vmf);
6350 : 3 : up_read(&EXT4_I(inode)->i_mmap_sem);
6351 : :
6352 : 3 : return ret;
6353 : : }
|