Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : : /*
3 : : * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 : : */
5 : : #ifndef LINUX_DMAENGINE_H
6 : : #define LINUX_DMAENGINE_H
7 : :
8 : : #include <linux/device.h>
9 : : #include <linux/err.h>
10 : : #include <linux/uio.h>
11 : : #include <linux/bug.h>
12 : : #include <linux/scatterlist.h>
13 : : #include <linux/bitmap.h>
14 : : #include <linux/types.h>
15 : : #include <asm/page.h>
16 : :
17 : : /**
18 : : * typedef dma_cookie_t - an opaque DMA cookie
19 : : *
20 : : * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 : : */
22 : : typedef s32 dma_cookie_t;
23 : : #define DMA_MIN_COOKIE 1
24 : :
25 : : static inline int dma_submit_error(dma_cookie_t cookie)
26 : : {
27 : : return cookie < 0 ? cookie : 0;
28 : : }
29 : :
30 : : /**
31 : : * enum dma_status - DMA transaction status
32 : : * @DMA_COMPLETE: transaction completed
33 : : * @DMA_IN_PROGRESS: transaction not yet processed
34 : : * @DMA_PAUSED: transaction is paused
35 : : * @DMA_ERROR: transaction failed
36 : : */
37 : : enum dma_status {
38 : : DMA_COMPLETE,
39 : : DMA_IN_PROGRESS,
40 : : DMA_PAUSED,
41 : : DMA_ERROR,
42 : : };
43 : :
44 : : /**
45 : : * enum dma_transaction_type - DMA transaction types/indexes
46 : : *
47 : : * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
48 : : * automatically set as dma devices are registered.
49 : : */
50 : : enum dma_transaction_type {
51 : : DMA_MEMCPY,
52 : : DMA_XOR,
53 : : DMA_PQ,
54 : : DMA_XOR_VAL,
55 : : DMA_PQ_VAL,
56 : : DMA_MEMSET,
57 : : DMA_MEMSET_SG,
58 : : DMA_INTERRUPT,
59 : : DMA_PRIVATE,
60 : : DMA_ASYNC_TX,
61 : : DMA_SLAVE,
62 : : DMA_CYCLIC,
63 : : DMA_INTERLEAVE,
64 : : /* last transaction type for creation of the capabilities mask */
65 : : DMA_TX_TYPE_END,
66 : : };
67 : :
68 : : /**
69 : : * enum dma_transfer_direction - dma transfer mode and direction indicator
70 : : * @DMA_MEM_TO_MEM: Async/Memcpy mode
71 : : * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
72 : : * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
73 : : * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
74 : : */
75 : : enum dma_transfer_direction {
76 : : DMA_MEM_TO_MEM,
77 : : DMA_MEM_TO_DEV,
78 : : DMA_DEV_TO_MEM,
79 : : DMA_DEV_TO_DEV,
80 : : DMA_TRANS_NONE,
81 : : };
82 : :
83 : : /**
84 : : * Interleaved Transfer Request
85 : : * ----------------------------
86 : : * A chunk is collection of contiguous bytes to be transfered.
87 : : * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
88 : : * ICGs may or maynot change between chunks.
89 : : * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
90 : : * that when repeated an integral number of times, specifies the transfer.
91 : : * A transfer template is specification of a Frame, the number of times
92 : : * it is to be repeated and other per-transfer attributes.
93 : : *
94 : : * Practically, a client driver would have ready a template for each
95 : : * type of transfer it is going to need during its lifetime and
96 : : * set only 'src_start' and 'dst_start' before submitting the requests.
97 : : *
98 : : *
99 : : * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
100 : : * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
101 : : *
102 : : * == Chunk size
103 : : * ... ICG
104 : : */
105 : :
106 : : /**
107 : : * struct data_chunk - Element of scatter-gather list that makes a frame.
108 : : * @size: Number of bytes to read from source.
109 : : * size_dst := fn(op, size_src), so doesn't mean much for destination.
110 : : * @icg: Number of bytes to jump after last src/dst address of this
111 : : * chunk and before first src/dst address for next chunk.
112 : : * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
113 : : * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
114 : : * @dst_icg: Number of bytes to jump after last dst address of this
115 : : * chunk and before the first dst address for next chunk.
116 : : * Ignored if dst_inc is true and dst_sgl is false.
117 : : * @src_icg: Number of bytes to jump after last src address of this
118 : : * chunk and before the first src address for next chunk.
119 : : * Ignored if src_inc is true and src_sgl is false.
120 : : */
121 : : struct data_chunk {
122 : : size_t size;
123 : : size_t icg;
124 : : size_t dst_icg;
125 : : size_t src_icg;
126 : : };
127 : :
128 : : /**
129 : : * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
130 : : * and attributes.
131 : : * @src_start: Bus address of source for the first chunk.
132 : : * @dst_start: Bus address of destination for the first chunk.
133 : : * @dir: Specifies the type of Source and Destination.
134 : : * @src_inc: If the source address increments after reading from it.
135 : : * @dst_inc: If the destination address increments after writing to it.
136 : : * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
137 : : * Otherwise, source is read contiguously (icg ignored).
138 : : * Ignored if src_inc is false.
139 : : * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
140 : : * Otherwise, destination is filled contiguously (icg ignored).
141 : : * Ignored if dst_inc is false.
142 : : * @numf: Number of frames in this template.
143 : : * @frame_size: Number of chunks in a frame i.e, size of sgl[].
144 : : * @sgl: Array of {chunk,icg} pairs that make up a frame.
145 : : */
146 : : struct dma_interleaved_template {
147 : : dma_addr_t src_start;
148 : : dma_addr_t dst_start;
149 : : enum dma_transfer_direction dir;
150 : : bool src_inc;
151 : : bool dst_inc;
152 : : bool src_sgl;
153 : : bool dst_sgl;
154 : : size_t numf;
155 : : size_t frame_size;
156 : : struct data_chunk sgl[0];
157 : : };
158 : :
159 : : /**
160 : : * enum dma_ctrl_flags - DMA flags to augment operation preparation,
161 : : * control completion, and communicate status.
162 : : * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
163 : : * this transaction
164 : : * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
165 : : * acknowledges receipt, i.e. has has a chance to establish any dependency
166 : : * chains
167 : : * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
168 : : * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
169 : : * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
170 : : * sources that were the result of a previous operation, in the case of a PQ
171 : : * operation it continues the calculation with new sources
172 : : * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
173 : : * on the result of this operation
174 : : * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
175 : : * cleared or freed
176 : : * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
177 : : * data and the descriptor should be in different format from normal
178 : : * data descriptors.
179 : : */
180 : : enum dma_ctrl_flags {
181 : : DMA_PREP_INTERRUPT = (1 << 0),
182 : : DMA_CTRL_ACK = (1 << 1),
183 : : DMA_PREP_PQ_DISABLE_P = (1 << 2),
184 : : DMA_PREP_PQ_DISABLE_Q = (1 << 3),
185 : : DMA_PREP_CONTINUE = (1 << 4),
186 : : DMA_PREP_FENCE = (1 << 5),
187 : : DMA_CTRL_REUSE = (1 << 6),
188 : : DMA_PREP_CMD = (1 << 7),
189 : : };
190 : :
191 : : /**
192 : : * enum sum_check_bits - bit position of pq_check_flags
193 : : */
194 : : enum sum_check_bits {
195 : : SUM_CHECK_P = 0,
196 : : SUM_CHECK_Q = 1,
197 : : };
198 : :
199 : : /**
200 : : * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201 : : * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202 : : * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203 : : */
204 : : enum sum_check_flags {
205 : : SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206 : : SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207 : : };
208 : :
209 : :
210 : : /**
211 : : * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212 : : * See linux/cpumask.h
213 : : */
214 : : typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215 : :
216 : : /**
217 : : * struct dma_chan_percpu - the per-CPU part of struct dma_chan
218 : : * @memcpy_count: transaction counter
219 : : * @bytes_transferred: byte counter
220 : : */
221 : :
222 : : struct dma_chan_percpu {
223 : : /* stats */
224 : : unsigned long memcpy_count;
225 : : unsigned long bytes_transferred;
226 : : };
227 : :
228 : : /**
229 : : * struct dma_router - DMA router structure
230 : : * @dev: pointer to the DMA router device
231 : : * @route_free: function to be called when the route can be disconnected
232 : : */
233 : : struct dma_router {
234 : : struct device *dev;
235 : : void (*route_free)(struct device *dev, void *route_data);
236 : : };
237 : :
238 : : /**
239 : : * struct dma_chan - devices supply DMA channels, clients use them
240 : : * @device: ptr to the dma device who supplies this channel, always !%NULL
241 : : * @cookie: last cookie value returned to client
242 : : * @completed_cookie: last completed cookie for this channel
243 : : * @chan_id: channel ID for sysfs
244 : : * @dev: class device for sysfs
245 : : * @device_node: used to add this to the device chan list
246 : : * @local: per-cpu pointer to a struct dma_chan_percpu
247 : : * @client_count: how many clients are using this channel
248 : : * @table_count: number of appearances in the mem-to-mem allocation table
249 : : * @router: pointer to the DMA router structure
250 : : * @route_data: channel specific data for the router
251 : : * @private: private data for certain client-channel associations
252 : : */
253 : : struct dma_chan {
254 : : struct dma_device *device;
255 : : dma_cookie_t cookie;
256 : : dma_cookie_t completed_cookie;
257 : :
258 : : /* sysfs */
259 : : int chan_id;
260 : : struct dma_chan_dev *dev;
261 : :
262 : : struct list_head device_node;
263 : : struct dma_chan_percpu __percpu *local;
264 : : int client_count;
265 : : int table_count;
266 : :
267 : : /* DMA router */
268 : : struct dma_router *router;
269 : : void *route_data;
270 : :
271 : : void *private;
272 : : };
273 : :
274 : : /**
275 : : * struct dma_chan_dev - relate sysfs device node to backing channel device
276 : : * @chan: driver channel device
277 : : * @device: sysfs device
278 : : * @dev_id: parent dma_device dev_id
279 : : * @idr_ref: reference count to gate release of dma_device dev_id
280 : : */
281 : : struct dma_chan_dev {
282 : : struct dma_chan *chan;
283 : : struct device device;
284 : : int dev_id;
285 : : atomic_t *idr_ref;
286 : : };
287 : :
288 : : /**
289 : : * enum dma_slave_buswidth - defines bus width of the DMA slave
290 : : * device, source or target buses
291 : : */
292 : : enum dma_slave_buswidth {
293 : : DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
294 : : DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
295 : : DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
296 : : DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
297 : : DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
298 : : DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
299 : : DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
300 : : DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
301 : : DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
302 : : };
303 : :
304 : : /**
305 : : * struct dma_slave_config - dma slave channel runtime config
306 : : * @direction: whether the data shall go in or out on this slave
307 : : * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
308 : : * legal values. DEPRECATED, drivers should use the direction argument
309 : : * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
310 : : * the dir field in the dma_interleaved_template structure.
311 : : * @src_addr: this is the physical address where DMA slave data
312 : : * should be read (RX), if the source is memory this argument is
313 : : * ignored.
314 : : * @dst_addr: this is the physical address where DMA slave data
315 : : * should be written (TX), if the source is memory this argument
316 : : * is ignored.
317 : : * @src_addr_width: this is the width in bytes of the source (RX)
318 : : * register where DMA data shall be read. If the source
319 : : * is memory this may be ignored depending on architecture.
320 : : * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
321 : : * @dst_addr_width: same as src_addr_width but for destination
322 : : * target (TX) mutatis mutandis.
323 : : * @src_maxburst: the maximum number of words (note: words, as in
324 : : * units of the src_addr_width member, not bytes) that can be sent
325 : : * in one burst to the device. Typically something like half the
326 : : * FIFO depth on I/O peripherals so you don't overflow it. This
327 : : * may or may not be applicable on memory sources.
328 : : * @dst_maxburst: same as src_maxburst but for destination target
329 : : * mutatis mutandis.
330 : : * @src_port_window_size: The length of the register area in words the data need
331 : : * to be accessed on the device side. It is only used for devices which is using
332 : : * an area instead of a single register to receive the data. Typically the DMA
333 : : * loops in this area in order to transfer the data.
334 : : * @dst_port_window_size: same as src_port_window_size but for the destination
335 : : * port.
336 : : * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
337 : : * with 'true' if peripheral should be flow controller. Direction will be
338 : : * selected at Runtime.
339 : : * @slave_id: Slave requester id. Only valid for slave channels. The dma
340 : : * slave peripheral will have unique id as dma requester which need to be
341 : : * pass as slave config.
342 : : *
343 : : * This struct is passed in as configuration data to a DMA engine
344 : : * in order to set up a certain channel for DMA transport at runtime.
345 : : * The DMA device/engine has to provide support for an additional
346 : : * callback in the dma_device structure, device_config and this struct
347 : : * will then be passed in as an argument to the function.
348 : : *
349 : : * The rationale for adding configuration information to this struct is as
350 : : * follows: if it is likely that more than one DMA slave controllers in
351 : : * the world will support the configuration option, then make it generic.
352 : : * If not: if it is fixed so that it be sent in static from the platform
353 : : * data, then prefer to do that.
354 : : */
355 : : struct dma_slave_config {
356 : : enum dma_transfer_direction direction;
357 : : phys_addr_t src_addr;
358 : : phys_addr_t dst_addr;
359 : : enum dma_slave_buswidth src_addr_width;
360 : : enum dma_slave_buswidth dst_addr_width;
361 : : u32 src_maxburst;
362 : : u32 dst_maxburst;
363 : : u32 src_port_window_size;
364 : : u32 dst_port_window_size;
365 : : bool device_fc;
366 : : unsigned int slave_id;
367 : : };
368 : :
369 : : /**
370 : : * enum dma_residue_granularity - Granularity of the reported transfer residue
371 : : * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
372 : : * DMA channel is only able to tell whether a descriptor has been completed or
373 : : * not, which means residue reporting is not supported by this channel. The
374 : : * residue field of the dma_tx_state field will always be 0.
375 : : * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
376 : : * completed segment of the transfer (For cyclic transfers this is after each
377 : : * period). This is typically implemented by having the hardware generate an
378 : : * interrupt after each transferred segment and then the drivers updates the
379 : : * outstanding residue by the size of the segment. Another possibility is if
380 : : * the hardware supports scatter-gather and the segment descriptor has a field
381 : : * which gets set after the segment has been completed. The driver then counts
382 : : * the number of segments without the flag set to compute the residue.
383 : : * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
384 : : * burst. This is typically only supported if the hardware has a progress
385 : : * register of some sort (E.g. a register with the current read/write address
386 : : * or a register with the amount of bursts/beats/bytes that have been
387 : : * transferred or still need to be transferred).
388 : : */
389 : : enum dma_residue_granularity {
390 : : DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
391 : : DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
392 : : DMA_RESIDUE_GRANULARITY_BURST = 2,
393 : : };
394 : :
395 : : /**
396 : : * struct dma_slave_caps - expose capabilities of a slave channel only
397 : : * @src_addr_widths: bit mask of src addr widths the channel supports.
398 : : * Width is specified in bytes, e.g. for a channel supporting
399 : : * a width of 4 the mask should have BIT(4) set.
400 : : * @dst_addr_widths: bit mask of dst addr widths the channel supports
401 : : * @directions: bit mask of slave directions the channel supports.
402 : : * Since the enum dma_transfer_direction is not defined as bit flag for
403 : : * each type, the dma controller should set BIT(<TYPE>) and same
404 : : * should be checked by controller as well
405 : : * @max_burst: max burst capability per-transfer
406 : : * @cmd_pause: true, if pause is supported (i.e. for reading residue or
407 : : * for resume later)
408 : : * @cmd_resume: true, if resume is supported
409 : : * @cmd_terminate: true, if terminate cmd is supported
410 : : * @residue_granularity: granularity of the reported transfer residue
411 : : * @descriptor_reuse: if a descriptor can be reused by client and
412 : : * resubmitted multiple times
413 : : */
414 : : struct dma_slave_caps {
415 : : u32 src_addr_widths;
416 : : u32 dst_addr_widths;
417 : : u32 directions;
418 : : u32 max_burst;
419 : : bool cmd_pause;
420 : : bool cmd_resume;
421 : : bool cmd_terminate;
422 : : enum dma_residue_granularity residue_granularity;
423 : : bool descriptor_reuse;
424 : : };
425 : :
426 : : static inline const char *dma_chan_name(struct dma_chan *chan)
427 : : {
428 : 0 : return dev_name(&chan->dev->device);
429 : : }
430 : :
431 : : void dma_chan_cleanup(struct kref *kref);
432 : :
433 : : /**
434 : : * typedef dma_filter_fn - callback filter for dma_request_channel
435 : : * @chan: channel to be reviewed
436 : : * @filter_param: opaque parameter passed through dma_request_channel
437 : : *
438 : : * When this optional parameter is specified in a call to dma_request_channel a
439 : : * suitable channel is passed to this routine for further dispositioning before
440 : : * being returned. Where 'suitable' indicates a non-busy channel that
441 : : * satisfies the given capability mask. It returns 'true' to indicate that the
442 : : * channel is suitable.
443 : : */
444 : : typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
445 : :
446 : : typedef void (*dma_async_tx_callback)(void *dma_async_param);
447 : :
448 : : enum dmaengine_tx_result {
449 : : DMA_TRANS_NOERROR = 0, /* SUCCESS */
450 : : DMA_TRANS_READ_FAILED, /* Source DMA read failed */
451 : : DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
452 : : DMA_TRANS_ABORTED, /* Op never submitted / aborted */
453 : : };
454 : :
455 : : struct dmaengine_result {
456 : : enum dmaengine_tx_result result;
457 : : u32 residue;
458 : : };
459 : :
460 : : typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
461 : : const struct dmaengine_result *result);
462 : :
463 : : struct dmaengine_unmap_data {
464 : : #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
465 : : u16 map_cnt;
466 : : #else
467 : : u8 map_cnt;
468 : : #endif
469 : : u8 to_cnt;
470 : : u8 from_cnt;
471 : : u8 bidi_cnt;
472 : : struct device *dev;
473 : : struct kref kref;
474 : : size_t len;
475 : : dma_addr_t addr[0];
476 : : };
477 : :
478 : : /**
479 : : * struct dma_async_tx_descriptor - async transaction descriptor
480 : : * ---dma generic offload fields---
481 : : * @cookie: tracking cookie for this transaction, set to -EBUSY if
482 : : * this tx is sitting on a dependency list
483 : : * @flags: flags to augment operation preparation, control completion, and
484 : : * communicate status
485 : : * @phys: physical address of the descriptor
486 : : * @chan: target channel for this operation
487 : : * @tx_submit: accept the descriptor, assign ordered cookie and mark the
488 : : * descriptor pending. To be pushed on .issue_pending() call
489 : : * @callback: routine to call after this operation is complete
490 : : * @callback_param: general parameter to pass to the callback routine
491 : : * ---async_tx api specific fields---
492 : : * @next: at completion submit this descriptor
493 : : * @parent: pointer to the next level up in the dependency chain
494 : : * @lock: protect the parent and next pointers
495 : : */
496 : : struct dma_async_tx_descriptor {
497 : : dma_cookie_t cookie;
498 : : enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
499 : : dma_addr_t phys;
500 : : struct dma_chan *chan;
501 : : dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
502 : : int (*desc_free)(struct dma_async_tx_descriptor *tx);
503 : : dma_async_tx_callback callback;
504 : : dma_async_tx_callback_result callback_result;
505 : : void *callback_param;
506 : : struct dmaengine_unmap_data *unmap;
507 : : #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
508 : : struct dma_async_tx_descriptor *next;
509 : : struct dma_async_tx_descriptor *parent;
510 : : spinlock_t lock;
511 : : #endif
512 : : };
513 : :
514 : : #ifdef CONFIG_DMA_ENGINE
515 : : static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
516 : : struct dmaengine_unmap_data *unmap)
517 : : {
518 : : kref_get(&unmap->kref);
519 : : tx->unmap = unmap;
520 : : }
521 : :
522 : : struct dmaengine_unmap_data *
523 : : dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
524 : : void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
525 : : #else
526 : : static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
527 : : struct dmaengine_unmap_data *unmap)
528 : : {
529 : : }
530 : : static inline struct dmaengine_unmap_data *
531 : : dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
532 : : {
533 : : return NULL;
534 : : }
535 : : static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
536 : : {
537 : : }
538 : : #endif
539 : :
540 : : static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
541 : : {
542 : : if (tx->unmap) {
543 : : dmaengine_unmap_put(tx->unmap);
544 : : tx->unmap = NULL;
545 : : }
546 : : }
547 : :
548 : : #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
549 : : static inline void txd_lock(struct dma_async_tx_descriptor *txd)
550 : : {
551 : : }
552 : : static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
553 : : {
554 : : }
555 : : static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
556 : : {
557 : : BUG();
558 : : }
559 : : static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
560 : : {
561 : : }
562 : : static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
563 : : {
564 : : }
565 : : static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
566 : : {
567 : : return NULL;
568 : : }
569 : : static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
570 : : {
571 : : return NULL;
572 : : }
573 : :
574 : : #else
575 : : static inline void txd_lock(struct dma_async_tx_descriptor *txd)
576 : : {
577 : : spin_lock_bh(&txd->lock);
578 : : }
579 : : static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
580 : : {
581 : : spin_unlock_bh(&txd->lock);
582 : : }
583 : : static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
584 : : {
585 : : txd->next = next;
586 : : next->parent = txd;
587 : : }
588 : : static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
589 : : {
590 : : txd->parent = NULL;
591 : : }
592 : : static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
593 : : {
594 : : txd->next = NULL;
595 : : }
596 : : static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
597 : : {
598 : : return txd->parent;
599 : : }
600 : : static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
601 : : {
602 : : return txd->next;
603 : : }
604 : : #endif
605 : :
606 : : /**
607 : : * struct dma_tx_state - filled in to report the status of
608 : : * a transfer.
609 : : * @last: last completed DMA cookie
610 : : * @used: last issued DMA cookie (i.e. the one in progress)
611 : : * @residue: the remaining number of bytes left to transmit
612 : : * on the selected transfer for states DMA_IN_PROGRESS and
613 : : * DMA_PAUSED if this is implemented in the driver, else 0
614 : : */
615 : : struct dma_tx_state {
616 : : dma_cookie_t last;
617 : : dma_cookie_t used;
618 : : u32 residue;
619 : : };
620 : :
621 : : /**
622 : : * enum dmaengine_alignment - defines alignment of the DMA async tx
623 : : * buffers
624 : : */
625 : : enum dmaengine_alignment {
626 : : DMAENGINE_ALIGN_1_BYTE = 0,
627 : : DMAENGINE_ALIGN_2_BYTES = 1,
628 : : DMAENGINE_ALIGN_4_BYTES = 2,
629 : : DMAENGINE_ALIGN_8_BYTES = 3,
630 : : DMAENGINE_ALIGN_16_BYTES = 4,
631 : : DMAENGINE_ALIGN_32_BYTES = 5,
632 : : DMAENGINE_ALIGN_64_BYTES = 6,
633 : : };
634 : :
635 : : /**
636 : : * struct dma_slave_map - associates slave device and it's slave channel with
637 : : * parameter to be used by a filter function
638 : : * @devname: name of the device
639 : : * @slave: slave channel name
640 : : * @param: opaque parameter to pass to struct dma_filter.fn
641 : : */
642 : : struct dma_slave_map {
643 : : const char *devname;
644 : : const char *slave;
645 : : void *param;
646 : : };
647 : :
648 : : /**
649 : : * struct dma_filter - information for slave device/channel to filter_fn/param
650 : : * mapping
651 : : * @fn: filter function callback
652 : : * @mapcnt: number of slave device/channel in the map
653 : : * @map: array of channel to filter mapping data
654 : : */
655 : : struct dma_filter {
656 : : dma_filter_fn fn;
657 : : int mapcnt;
658 : : const struct dma_slave_map *map;
659 : : };
660 : :
661 : : /**
662 : : * struct dma_device - info on the entity supplying DMA services
663 : : * @chancnt: how many DMA channels are supported
664 : : * @privatecnt: how many DMA channels are requested by dma_request_channel
665 : : * @channels: the list of struct dma_chan
666 : : * @global_node: list_head for global dma_device_list
667 : : * @filter: information for device/slave to filter function/param mapping
668 : : * @cap_mask: one or more dma_capability flags
669 : : * @max_xor: maximum number of xor sources, 0 if no capability
670 : : * @max_pq: maximum number of PQ sources and PQ-continue capability
671 : : * @copy_align: alignment shift for memcpy operations
672 : : * @xor_align: alignment shift for xor operations
673 : : * @pq_align: alignment shift for pq operations
674 : : * @fill_align: alignment shift for memset operations
675 : : * @dev_id: unique device ID
676 : : * @dev: struct device reference for dma mapping api
677 : : * @owner: owner module (automatically set based on the provided dev)
678 : : * @src_addr_widths: bit mask of src addr widths the device supports
679 : : * Width is specified in bytes, e.g. for a device supporting
680 : : * a width of 4 the mask should have BIT(4) set.
681 : : * @dst_addr_widths: bit mask of dst addr widths the device supports
682 : : * @directions: bit mask of slave directions the device supports.
683 : : * Since the enum dma_transfer_direction is not defined as bit flag for
684 : : * each type, the dma controller should set BIT(<TYPE>) and same
685 : : * should be checked by controller as well
686 : : * @max_burst: max burst capability per-transfer
687 : : * @residue_granularity: granularity of the transfer residue reported
688 : : * by tx_status
689 : : * @device_alloc_chan_resources: allocate resources and return the
690 : : * number of allocated descriptors
691 : : * @device_free_chan_resources: release DMA channel's resources
692 : : * @device_prep_dma_memcpy: prepares a memcpy operation
693 : : * @device_prep_dma_xor: prepares a xor operation
694 : : * @device_prep_dma_xor_val: prepares a xor validation operation
695 : : * @device_prep_dma_pq: prepares a pq operation
696 : : * @device_prep_dma_pq_val: prepares a pqzero_sum operation
697 : : * @device_prep_dma_memset: prepares a memset operation
698 : : * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
699 : : * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
700 : : * @device_prep_slave_sg: prepares a slave dma operation
701 : : * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
702 : : * The function takes a buffer of size buf_len. The callback function will
703 : : * be called after period_len bytes have been transferred.
704 : : * @device_prep_interleaved_dma: Transfer expression in a generic way.
705 : : * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
706 : : * @device_config: Pushes a new configuration to a channel, return 0 or an error
707 : : * code
708 : : * @device_pause: Pauses any transfer happening on a channel. Returns
709 : : * 0 or an error code
710 : : * @device_resume: Resumes any transfer on a channel previously
711 : : * paused. Returns 0 or an error code
712 : : * @device_terminate_all: Aborts all transfers on a channel. Returns 0
713 : : * or an error code
714 : : * @device_synchronize: Synchronizes the termination of a transfers to the
715 : : * current context.
716 : : * @device_tx_status: poll for transaction completion, the optional
717 : : * txstate parameter can be supplied with a pointer to get a
718 : : * struct with auxiliary transfer status information, otherwise the call
719 : : * will just return a simple status code
720 : : * @device_issue_pending: push pending transactions to hardware
721 : : * @descriptor_reuse: a submitted transfer can be resubmitted after completion
722 : : */
723 : : struct dma_device {
724 : :
725 : : unsigned int chancnt;
726 : : unsigned int privatecnt;
727 : : struct list_head channels;
728 : : struct list_head global_node;
729 : : struct dma_filter filter;
730 : : dma_cap_mask_t cap_mask;
731 : : unsigned short max_xor;
732 : : unsigned short max_pq;
733 : : enum dmaengine_alignment copy_align;
734 : : enum dmaengine_alignment xor_align;
735 : : enum dmaengine_alignment pq_align;
736 : : enum dmaengine_alignment fill_align;
737 : : #define DMA_HAS_PQ_CONTINUE (1 << 15)
738 : :
739 : : int dev_id;
740 : : struct device *dev;
741 : : struct module *owner;
742 : :
743 : : u32 src_addr_widths;
744 : : u32 dst_addr_widths;
745 : : u32 directions;
746 : : u32 max_burst;
747 : : bool descriptor_reuse;
748 : : enum dma_residue_granularity residue_granularity;
749 : :
750 : : int (*device_alloc_chan_resources)(struct dma_chan *chan);
751 : : void (*device_free_chan_resources)(struct dma_chan *chan);
752 : :
753 : : struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
754 : : struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
755 : : size_t len, unsigned long flags);
756 : : struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
757 : : struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
758 : : unsigned int src_cnt, size_t len, unsigned long flags);
759 : : struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
760 : : struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
761 : : size_t len, enum sum_check_flags *result, unsigned long flags);
762 : : struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
763 : : struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
764 : : unsigned int src_cnt, const unsigned char *scf,
765 : : size_t len, unsigned long flags);
766 : : struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
767 : : struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
768 : : unsigned int src_cnt, const unsigned char *scf, size_t len,
769 : : enum sum_check_flags *pqres, unsigned long flags);
770 : : struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
771 : : struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
772 : : unsigned long flags);
773 : : struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
774 : : struct dma_chan *chan, struct scatterlist *sg,
775 : : unsigned int nents, int value, unsigned long flags);
776 : : struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
777 : : struct dma_chan *chan, unsigned long flags);
778 : :
779 : : struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
780 : : struct dma_chan *chan, struct scatterlist *sgl,
781 : : unsigned int sg_len, enum dma_transfer_direction direction,
782 : : unsigned long flags, void *context);
783 : : struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
784 : : struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
785 : : size_t period_len, enum dma_transfer_direction direction,
786 : : unsigned long flags);
787 : : struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
788 : : struct dma_chan *chan, struct dma_interleaved_template *xt,
789 : : unsigned long flags);
790 : : struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
791 : : struct dma_chan *chan, dma_addr_t dst, u64 data,
792 : : unsigned long flags);
793 : :
794 : : int (*device_config)(struct dma_chan *chan,
795 : : struct dma_slave_config *config);
796 : : int (*device_pause)(struct dma_chan *chan);
797 : : int (*device_resume)(struct dma_chan *chan);
798 : : int (*device_terminate_all)(struct dma_chan *chan);
799 : : void (*device_synchronize)(struct dma_chan *chan);
800 : :
801 : : enum dma_status (*device_tx_status)(struct dma_chan *chan,
802 : : dma_cookie_t cookie,
803 : : struct dma_tx_state *txstate);
804 : : void (*device_issue_pending)(struct dma_chan *chan);
805 : : };
806 : :
807 : : static inline int dmaengine_slave_config(struct dma_chan *chan,
808 : : struct dma_slave_config *config)
809 : : {
810 : 3 : if (chan->device->device_config)
811 : 3 : return chan->device->device_config(chan, config);
812 : :
813 : : return -ENOSYS;
814 : : }
815 : :
816 : : static inline bool is_slave_direction(enum dma_transfer_direction direction)
817 : : {
818 : 3 : return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
819 : : }
820 : :
821 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
822 : : struct dma_chan *chan, dma_addr_t buf, size_t len,
823 : : enum dma_transfer_direction dir, unsigned long flags)
824 : : {
825 : : struct scatterlist sg;
826 : : sg_init_table(&sg, 1);
827 : : sg_dma_address(&sg) = buf;
828 : : sg_dma_len(&sg) = len;
829 : :
830 : : if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
831 : : return NULL;
832 : :
833 : : return chan->device->device_prep_slave_sg(chan, &sg, 1,
834 : : dir, flags, NULL);
835 : : }
836 : :
837 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
838 : : struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
839 : : enum dma_transfer_direction dir, unsigned long flags)
840 : : {
841 : 3 : if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
842 : : return NULL;
843 : :
844 : 3 : return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
845 : : dir, flags, NULL);
846 : : }
847 : :
848 : : #ifdef CONFIG_RAPIDIO_DMA_ENGINE
849 : : struct rio_dma_ext;
850 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
851 : : struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
852 : : enum dma_transfer_direction dir, unsigned long flags,
853 : : struct rio_dma_ext *rio_ext)
854 : : {
855 : : if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
856 : : return NULL;
857 : :
858 : : return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
859 : : dir, flags, rio_ext);
860 : : }
861 : : #endif
862 : :
863 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
864 : : struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
865 : : size_t period_len, enum dma_transfer_direction dir,
866 : : unsigned long flags)
867 : : {
868 : : if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
869 : : return NULL;
870 : :
871 : : return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
872 : : period_len, dir, flags);
873 : : }
874 : :
875 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
876 : : struct dma_chan *chan, struct dma_interleaved_template *xt,
877 : : unsigned long flags)
878 : : {
879 : : if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
880 : : return NULL;
881 : :
882 : : return chan->device->device_prep_interleaved_dma(chan, xt, flags);
883 : : }
884 : :
885 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
886 : : struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
887 : : unsigned long flags)
888 : : {
889 : : if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
890 : : return NULL;
891 : :
892 : : return chan->device->device_prep_dma_memset(chan, dest, value,
893 : : len, flags);
894 : : }
895 : :
896 : : static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
897 : : struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
898 : : size_t len, unsigned long flags)
899 : : {
900 : : if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
901 : : return NULL;
902 : :
903 : : return chan->device->device_prep_dma_memcpy(chan, dest, src,
904 : : len, flags);
905 : : }
906 : :
907 : : /**
908 : : * dmaengine_terminate_all() - Terminate all active DMA transfers
909 : : * @chan: The channel for which to terminate the transfers
910 : : *
911 : : * This function is DEPRECATED use either dmaengine_terminate_sync() or
912 : : * dmaengine_terminate_async() instead.
913 : : */
914 : : static inline int dmaengine_terminate_all(struct dma_chan *chan)
915 : : {
916 : 0 : if (chan->device->device_terminate_all)
917 : 0 : return chan->device->device_terminate_all(chan);
918 : :
919 : : return -ENOSYS;
920 : : }
921 : :
922 : : /**
923 : : * dmaengine_terminate_async() - Terminate all active DMA transfers
924 : : * @chan: The channel for which to terminate the transfers
925 : : *
926 : : * Calling this function will terminate all active and pending descriptors
927 : : * that have previously been submitted to the channel. It is not guaranteed
928 : : * though that the transfer for the active descriptor has stopped when the
929 : : * function returns. Furthermore it is possible the complete callback of a
930 : : * submitted transfer is still running when this function returns.
931 : : *
932 : : * dmaengine_synchronize() needs to be called before it is safe to free
933 : : * any memory that is accessed by previously submitted descriptors or before
934 : : * freeing any resources accessed from within the completion callback of any
935 : : * perviously submitted descriptors.
936 : : *
937 : : * This function can be called from atomic context as well as from within a
938 : : * complete callback of a descriptor submitted on the same channel.
939 : : *
940 : : * If none of the two conditions above apply consider using
941 : : * dmaengine_terminate_sync() instead.
942 : : */
943 : : static inline int dmaengine_terminate_async(struct dma_chan *chan)
944 : : {
945 : 0 : if (chan->device->device_terminate_all)
946 : 0 : return chan->device->device_terminate_all(chan);
947 : :
948 : : return -EINVAL;
949 : : }
950 : :
951 : : /**
952 : : * dmaengine_synchronize() - Synchronize DMA channel termination
953 : : * @chan: The channel to synchronize
954 : : *
955 : : * Synchronizes to the DMA channel termination to the current context. When this
956 : : * function returns it is guaranteed that all transfers for previously issued
957 : : * descriptors have stopped and and it is safe to free the memory assoicated
958 : : * with them. Furthermore it is guaranteed that all complete callback functions
959 : : * for a previously submitted descriptor have finished running and it is safe to
960 : : * free resources accessed from within the complete callbacks.
961 : : *
962 : : * The behavior of this function is undefined if dma_async_issue_pending() has
963 : : * been called between dmaengine_terminate_async() and this function.
964 : : *
965 : : * This function must only be called from non-atomic context and must not be
966 : : * called from within a complete callback of a descriptor submitted on the same
967 : : * channel.
968 : : */
969 : 3 : static inline void dmaengine_synchronize(struct dma_chan *chan)
970 : : {
971 : 3 : might_sleep();
972 : :
973 : 3 : if (chan->device->device_synchronize)
974 : 3 : chan->device->device_synchronize(chan);
975 : 3 : }
976 : :
977 : : /**
978 : : * dmaengine_terminate_sync() - Terminate all active DMA transfers
979 : : * @chan: The channel for which to terminate the transfers
980 : : *
981 : : * Calling this function will terminate all active and pending transfers
982 : : * that have previously been submitted to the channel. It is similar to
983 : : * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
984 : : * stopped and that all complete callbacks have finished running when the
985 : : * function returns.
986 : : *
987 : : * This function must only be called from non-atomic context and must not be
988 : : * called from within a complete callback of a descriptor submitted on the same
989 : : * channel.
990 : : */
991 : : static inline int dmaengine_terminate_sync(struct dma_chan *chan)
992 : : {
993 : : int ret;
994 : :
995 : : ret = dmaengine_terminate_async(chan);
996 : : if (ret)
997 : : return ret;
998 : :
999 : : dmaengine_synchronize(chan);
1000 : :
1001 : : return 0;
1002 : : }
1003 : :
1004 : : static inline int dmaengine_pause(struct dma_chan *chan)
1005 : : {
1006 : 0 : if (chan->device->device_pause)
1007 : 0 : return chan->device->device_pause(chan);
1008 : :
1009 : : return -ENOSYS;
1010 : : }
1011 : :
1012 : : static inline int dmaengine_resume(struct dma_chan *chan)
1013 : : {
1014 : : if (chan->device->device_resume)
1015 : : return chan->device->device_resume(chan);
1016 : :
1017 : : return -ENOSYS;
1018 : : }
1019 : :
1020 : : static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1021 : : dma_cookie_t cookie, struct dma_tx_state *state)
1022 : : {
1023 : : return chan->device->device_tx_status(chan, cookie, state);
1024 : : }
1025 : :
1026 : : static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1027 : : {
1028 : 3 : return desc->tx_submit(desc);
1029 : : }
1030 : :
1031 : : static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1032 : : size_t off1, size_t off2, size_t len)
1033 : : {
1034 : : size_t mask;
1035 : :
1036 : : if (!align)
1037 : : return true;
1038 : : mask = (1 << align) - 1;
1039 : : if (mask & (off1 | off2 | len))
1040 : : return false;
1041 : : return true;
1042 : : }
1043 : :
1044 : : static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1045 : : size_t off2, size_t len)
1046 : : {
1047 : : return dmaengine_check_align(dev->copy_align, off1, off2, len);
1048 : : }
1049 : :
1050 : : static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1051 : : size_t off2, size_t len)
1052 : : {
1053 : : return dmaengine_check_align(dev->xor_align, off1, off2, len);
1054 : : }
1055 : :
1056 : : static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1057 : : size_t off2, size_t len)
1058 : : {
1059 : : return dmaengine_check_align(dev->pq_align, off1, off2, len);
1060 : : }
1061 : :
1062 : : static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1063 : : size_t off2, size_t len)
1064 : : {
1065 : : return dmaengine_check_align(dev->fill_align, off1, off2, len);
1066 : : }
1067 : :
1068 : : static inline void
1069 : : dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1070 : : {
1071 : : dma->max_pq = maxpq;
1072 : : if (has_pq_continue)
1073 : : dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1074 : : }
1075 : :
1076 : : static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1077 : : {
1078 : : return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1079 : : }
1080 : :
1081 : : static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1082 : : {
1083 : : enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1084 : :
1085 : : return (flags & mask) == mask;
1086 : : }
1087 : :
1088 : : static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1089 : : {
1090 : : return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1091 : : }
1092 : :
1093 : : static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1094 : : {
1095 : : return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1096 : : }
1097 : :
1098 : : /* dma_maxpq - reduce maxpq in the face of continued operations
1099 : : * @dma - dma device with PQ capability
1100 : : * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1101 : : *
1102 : : * When an engine does not support native continuation we need 3 extra
1103 : : * source slots to reuse P and Q with the following coefficients:
1104 : : * 1/ {00} * P : remove P from Q', but use it as a source for P'
1105 : : * 2/ {01} * Q : use Q to continue Q' calculation
1106 : : * 3/ {00} * Q : subtract Q from P' to cancel (2)
1107 : : *
1108 : : * In the case where P is disabled we only need 1 extra source:
1109 : : * 1/ {01} * Q : use Q to continue Q' calculation
1110 : : */
1111 : : static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1112 : : {
1113 : : if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1114 : : return dma_dev_to_maxpq(dma);
1115 : : else if (dmaf_p_disabled_continue(flags))
1116 : : return dma_dev_to_maxpq(dma) - 1;
1117 : : else if (dmaf_continue(flags))
1118 : : return dma_dev_to_maxpq(dma) - 3;
1119 : : BUG();
1120 : : }
1121 : :
1122 : : static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1123 : : size_t dir_icg)
1124 : : {
1125 : : if (inc) {
1126 : : if (dir_icg)
1127 : : return dir_icg;
1128 : : else if (sgl)
1129 : : return icg;
1130 : : }
1131 : :
1132 : : return 0;
1133 : : }
1134 : :
1135 : : static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1136 : : struct data_chunk *chunk)
1137 : : {
1138 : : return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1139 : : chunk->icg, chunk->dst_icg);
1140 : : }
1141 : :
1142 : : static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1143 : : struct data_chunk *chunk)
1144 : : {
1145 : : return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1146 : : chunk->icg, chunk->src_icg);
1147 : : }
1148 : :
1149 : : /* --- public DMA engine API --- */
1150 : :
1151 : : #ifdef CONFIG_DMA_ENGINE
1152 : : void dmaengine_get(void);
1153 : : void dmaengine_put(void);
1154 : : #else
1155 : : static inline void dmaengine_get(void)
1156 : : {
1157 : : }
1158 : : static inline void dmaengine_put(void)
1159 : : {
1160 : : }
1161 : : #endif
1162 : :
1163 : : #ifdef CONFIG_ASYNC_TX_DMA
1164 : : #define async_dmaengine_get() dmaengine_get()
1165 : : #define async_dmaengine_put() dmaengine_put()
1166 : : #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1167 : : #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1168 : : #else
1169 : : #define async_dma_find_channel(type) dma_find_channel(type)
1170 : : #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1171 : : #else
1172 : : static inline void async_dmaengine_get(void)
1173 : : {
1174 : : }
1175 : : static inline void async_dmaengine_put(void)
1176 : : {
1177 : : }
1178 : : static inline struct dma_chan *
1179 : : async_dma_find_channel(enum dma_transaction_type type)
1180 : : {
1181 : : return NULL;
1182 : : }
1183 : : #endif /* CONFIG_ASYNC_TX_DMA */
1184 : : void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1185 : : struct dma_chan *chan);
1186 : :
1187 : : static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1188 : : {
1189 : : tx->flags |= DMA_CTRL_ACK;
1190 : : }
1191 : :
1192 : : static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1193 : : {
1194 : : tx->flags &= ~DMA_CTRL_ACK;
1195 : : }
1196 : :
1197 : : static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1198 : : {
1199 : : return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1200 : : }
1201 : :
1202 : : #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1203 : : static inline void
1204 : : __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1205 : : {
1206 : 3 : set_bit(tx_type, dstp->bits);
1207 : : }
1208 : :
1209 : : #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1210 : : static inline void
1211 : : __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1212 : : {
1213 : 0 : clear_bit(tx_type, dstp->bits);
1214 : : }
1215 : :
1216 : : #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1217 : : static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1218 : : {
1219 : : bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1220 : : }
1221 : :
1222 : : #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1223 : : static inline int
1224 : : __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1225 : : {
1226 : 0 : return test_bit(tx_type, srcp->bits);
1227 : : }
1228 : :
1229 : : #define for_each_dma_cap_mask(cap, mask) \
1230 : : for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1231 : :
1232 : : /**
1233 : : * dma_async_issue_pending - flush pending transactions to HW
1234 : : * @chan: target DMA channel
1235 : : *
1236 : : * This allows drivers to push copies to HW in batches,
1237 : : * reducing MMIO writes where possible.
1238 : : */
1239 : : static inline void dma_async_issue_pending(struct dma_chan *chan)
1240 : : {
1241 : 3 : chan->device->device_issue_pending(chan);
1242 : : }
1243 : :
1244 : : /**
1245 : : * dma_async_is_tx_complete - poll for transaction completion
1246 : : * @chan: DMA channel
1247 : : * @cookie: transaction identifier to check status of
1248 : : * @last: returns last completed cookie, can be NULL
1249 : : * @used: returns last issued cookie, can be NULL
1250 : : *
1251 : : * If @last and @used are passed in, upon return they reflect the driver
1252 : : * internal state and can be used with dma_async_is_complete() to check
1253 : : * the status of multiple cookies without re-checking hardware state.
1254 : : */
1255 : : static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1256 : : dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1257 : : {
1258 : : struct dma_tx_state state;
1259 : : enum dma_status status;
1260 : :
1261 : 0 : status = chan->device->device_tx_status(chan, cookie, &state);
1262 : : if (last)
1263 : : *last = state.last;
1264 : : if (used)
1265 : : *used = state.used;
1266 : : return status;
1267 : : }
1268 : :
1269 : : /**
1270 : : * dma_async_is_complete - test a cookie against chan state
1271 : : * @cookie: transaction identifier to test status of
1272 : : * @last_complete: last know completed transaction
1273 : : * @last_used: last cookie value handed out
1274 : : *
1275 : : * dma_async_is_complete() is used in dma_async_is_tx_complete()
1276 : : * the test logic is separated for lightweight testing of multiple cookies
1277 : : */
1278 : : static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1279 : : dma_cookie_t last_complete, dma_cookie_t last_used)
1280 : : {
1281 : 0 : if (last_complete <= last_used) {
1282 : 0 : if ((cookie <= last_complete) || (cookie > last_used))
1283 : : return DMA_COMPLETE;
1284 : : } else {
1285 : 0 : if ((cookie <= last_complete) && (cookie > last_used))
1286 : : return DMA_COMPLETE;
1287 : : }
1288 : : return DMA_IN_PROGRESS;
1289 : : }
1290 : :
1291 : : static inline void
1292 : : dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1293 : : {
1294 : : if (st) {
1295 : : st->last = last;
1296 : : st->used = used;
1297 : : st->residue = residue;
1298 : : }
1299 : : }
1300 : :
1301 : : #ifdef CONFIG_DMA_ENGINE
1302 : : struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1303 : : enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1304 : : enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1305 : : void dma_issue_pending_all(void);
1306 : : struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1307 : : dma_filter_fn fn, void *fn_param,
1308 : : struct device_node *np);
1309 : : struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1310 : :
1311 : : struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1312 : : struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1313 : :
1314 : : void dma_release_channel(struct dma_chan *chan);
1315 : : int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1316 : : #else
1317 : : static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1318 : : {
1319 : : return NULL;
1320 : : }
1321 : : static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1322 : : {
1323 : : return DMA_COMPLETE;
1324 : : }
1325 : : static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1326 : : {
1327 : : return DMA_COMPLETE;
1328 : : }
1329 : : static inline void dma_issue_pending_all(void)
1330 : : {
1331 : : }
1332 : : static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1333 : : dma_filter_fn fn,
1334 : : void *fn_param,
1335 : : struct device_node *np)
1336 : : {
1337 : : return NULL;
1338 : : }
1339 : : static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1340 : : const char *name)
1341 : : {
1342 : : return NULL;
1343 : : }
1344 : : static inline struct dma_chan *dma_request_chan(struct device *dev,
1345 : : const char *name)
1346 : : {
1347 : : return ERR_PTR(-ENODEV);
1348 : : }
1349 : : static inline struct dma_chan *dma_request_chan_by_mask(
1350 : : const dma_cap_mask_t *mask)
1351 : : {
1352 : : return ERR_PTR(-ENODEV);
1353 : : }
1354 : : static inline void dma_release_channel(struct dma_chan *chan)
1355 : : {
1356 : : }
1357 : : static inline int dma_get_slave_caps(struct dma_chan *chan,
1358 : : struct dma_slave_caps *caps)
1359 : : {
1360 : : return -ENXIO;
1361 : : }
1362 : : #endif
1363 : :
1364 : : #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1365 : :
1366 : : static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1367 : : {
1368 : : struct dma_slave_caps caps;
1369 : : int ret;
1370 : :
1371 : : ret = dma_get_slave_caps(tx->chan, &caps);
1372 : : if (ret)
1373 : : return ret;
1374 : :
1375 : : if (caps.descriptor_reuse) {
1376 : : tx->flags |= DMA_CTRL_REUSE;
1377 : : return 0;
1378 : : } else {
1379 : : return -EPERM;
1380 : : }
1381 : : }
1382 : :
1383 : : static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1384 : : {
1385 : 0 : tx->flags &= ~DMA_CTRL_REUSE;
1386 : : }
1387 : :
1388 : : static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1389 : : {
1390 : 3 : return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1391 : : }
1392 : :
1393 : : static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1394 : : {
1395 : : /* this is supported for reusable desc, so check that */
1396 : : if (dmaengine_desc_test_reuse(desc))
1397 : : return desc->desc_free(desc);
1398 : : else
1399 : : return -EPERM;
1400 : : }
1401 : :
1402 : : /* --- DMA device --- */
1403 : :
1404 : : int dma_async_device_register(struct dma_device *device);
1405 : : int dmaenginem_async_device_register(struct dma_device *device);
1406 : : void dma_async_device_unregister(struct dma_device *device);
1407 : : void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1408 : : struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1409 : : struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1410 : : #define dma_request_channel(mask, x, y) \
1411 : : __dma_request_channel(&(mask), x, y, NULL)
1412 : : #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1413 : : __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1414 : :
1415 : : static inline struct dma_chan
1416 : : *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1417 : : dma_filter_fn fn, void *fn_param,
1418 : : struct device *dev, const char *name)
1419 : : {
1420 : : struct dma_chan *chan;
1421 : :
1422 : : chan = dma_request_slave_channel(dev, name);
1423 : : if (chan)
1424 : : return chan;
1425 : :
1426 : : if (!fn || !fn_param)
1427 : : return NULL;
1428 : :
1429 : : return __dma_request_channel(mask, fn, fn_param, NULL);
1430 : : }
1431 : : #endif /* DMAENGINE_H */
|