Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0 */ 2 : : #ifndef _LINUX_PID_H 3 : : #define _LINUX_PID_H 4 : : 5 : : #include <linux/rculist.h> 6 : : #include <linux/wait.h> 7 : : #include <linux/refcount.h> 8 : : 9 : : enum pid_type 10 : : { 11 : : PIDTYPE_PID, 12 : : PIDTYPE_TGID, 13 : : PIDTYPE_PGID, 14 : : PIDTYPE_SID, 15 : : PIDTYPE_MAX, 16 : : }; 17 : : 18 : : /* 19 : : * What is struct pid? 20 : : * 21 : : * A struct pid is the kernel's internal notion of a process identifier. 22 : : * It refers to individual tasks, process groups, and sessions. While 23 : : * there are processes attached to it the struct pid lives in a hash 24 : : * table, so it and then the processes that it refers to can be found 25 : : * quickly from the numeric pid value. The attached processes may be 26 : : * quickly accessed by following pointers from struct pid. 27 : : * 28 : : * Storing pid_t values in the kernel and referring to them later has a 29 : : * problem. The process originally with that pid may have exited and the 30 : : * pid allocator wrapped, and another process could have come along 31 : : * and been assigned that pid. 32 : : * 33 : : * Referring to user space processes by holding a reference to struct 34 : : * task_struct has a problem. When the user space process exits 35 : : * the now useless task_struct is still kept. A task_struct plus a 36 : : * stack consumes around 10K of low kernel memory. More precisely 37 : : * this is THREAD_SIZE + sizeof(struct task_struct). By comparison 38 : : * a struct pid is about 64 bytes. 39 : : * 40 : : * Holding a reference to struct pid solves both of these problems. 41 : : * It is small so holding a reference does not consume a lot of 42 : : * resources, and since a new struct pid is allocated when the numeric pid 43 : : * value is reused (when pids wrap around) we don't mistakenly refer to new 44 : : * processes. 45 : : */ 46 : : 47 : : 48 : : /* 49 : : * struct upid is used to get the id of the struct pid, as it is 50 : : * seen in particular namespace. Later the struct pid is found with 51 : : * find_pid_ns() using the int nr and struct pid_namespace *ns. 52 : : */ 53 : : 54 : : struct upid { 55 : : int nr; 56 : : struct pid_namespace *ns; 57 : : }; 58 : : 59 : : struct pid 60 : : { 61 : : refcount_t count; 62 : : unsigned int level; 63 : : /* lists of tasks that use this pid */ 64 : : struct hlist_head tasks[PIDTYPE_MAX]; 65 : : /* wait queue for pidfd notifications */ 66 : : wait_queue_head_t wait_pidfd; 67 : : struct rcu_head rcu; 68 : : struct upid numbers[1]; 69 : : }; 70 : : 71 : : extern struct pid init_struct_pid; 72 : : 73 : : extern const struct file_operations pidfd_fops; 74 : : 75 : : struct file; 76 : : 77 : : extern struct pid *pidfd_pid(const struct file *file); 78 : : 79 : : static inline struct pid *get_pid(struct pid *pid) 80 : : { 81 : 3 : if (pid) 82 : 3 : refcount_inc(&pid->count); 83 : : return pid; 84 : : } 85 : : 86 : : extern void put_pid(struct pid *pid); 87 : : extern struct task_struct *pid_task(struct pid *pid, enum pid_type); 88 : : extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); 89 : : 90 : : extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); 91 : : 92 : : /* 93 : : * these helpers must be called with the tasklist_lock write-held. 94 : : */ 95 : : extern void attach_pid(struct task_struct *task, enum pid_type); 96 : : extern void detach_pid(struct task_struct *task, enum pid_type); 97 : : extern void change_pid(struct task_struct *task, enum pid_type, 98 : : struct pid *pid); 99 : : extern void transfer_pid(struct task_struct *old, struct task_struct *new, 100 : : enum pid_type); 101 : : 102 : : struct pid_namespace; 103 : : extern struct pid_namespace init_pid_ns; 104 : : 105 : : /* 106 : : * look up a PID in the hash table. Must be called with the tasklist_lock 107 : : * or rcu_read_lock() held. 108 : : * 109 : : * find_pid_ns() finds the pid in the namespace specified 110 : : * find_vpid() finds the pid by its virtual id, i.e. in the current namespace 111 : : * 112 : : * see also find_task_by_vpid() set in include/linux/sched.h 113 : : */ 114 : : extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); 115 : : extern struct pid *find_vpid(int nr); 116 : : 117 : : /* 118 : : * Lookup a PID in the hash table, and return with it's count elevated. 119 : : */ 120 : : extern struct pid *find_get_pid(int nr); 121 : : extern struct pid *find_ge_pid(int nr, struct pid_namespace *); 122 : : 123 : : extern struct pid *alloc_pid(struct pid_namespace *ns); 124 : : extern void free_pid(struct pid *pid); 125 : : extern void disable_pid_allocation(struct pid_namespace *ns); 126 : : 127 : : /* 128 : : * ns_of_pid() returns the pid namespace in which the specified pid was 129 : : * allocated. 130 : : * 131 : : * NOTE: 132 : : * ns_of_pid() is expected to be called for a process (task) that has 133 : : * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid 134 : : * is expected to be non-NULL. If @pid is NULL, caller should handle 135 : : * the resulting NULL pid-ns. 136 : : */ 137 : : static inline struct pid_namespace *ns_of_pid(struct pid *pid) 138 : : { 139 : : struct pid_namespace *ns = NULL; 140 : 3 : if (pid) 141 : 3 : ns = pid->numbers[pid->level].ns; 142 : : return ns; 143 : : } 144 : : 145 : : /* 146 : : * is_child_reaper returns true if the pid is the init process 147 : : * of the current namespace. As this one could be checked before 148 : : * pid_ns->child_reaper is assigned in copy_process, we check 149 : : * with the pid number. 150 : : */ 151 : : static inline bool is_child_reaper(struct pid *pid) 152 : : { 153 : 3 : return pid->numbers[pid->level].nr == 1; 154 : : } 155 : : 156 : : /* 157 : : * the helpers to get the pid's id seen from different namespaces 158 : : * 159 : : * pid_nr() : global id, i.e. the id seen from the init namespace; 160 : : * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of 161 : : * current. 162 : : * pid_nr_ns() : id seen from the ns specified. 163 : : * 164 : : * see also task_xid_nr() etc in include/linux/sched.h 165 : : */ 166 : : 167 : : static inline pid_t pid_nr(struct pid *pid) 168 : : { 169 : : pid_t nr = 0; 170 : 3 : if (pid) 171 : 3 : nr = pid->numbers[0].nr; 172 : : return nr; 173 : : } 174 : : 175 : : pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); 176 : : pid_t pid_vnr(struct pid *pid); 177 : : 178 : : #define do_each_pid_task(pid, type, task) \ 179 : : do { \ 180 : : if ((pid) != NULL) \ 181 : : hlist_for_each_entry_rcu((task), \ 182 : : &(pid)->tasks[type], pid_links[type]) { 183 : : 184 : : /* 185 : : * Both old and new leaders may be attached to 186 : : * the same pid in the middle of de_thread(). 187 : : */ 188 : : #define while_each_pid_task(pid, type, task) \ 189 : : if (type == PIDTYPE_PID) \ 190 : : break; \ 191 : : } \ 192 : : } while (0) 193 : : 194 : : #define do_each_pid_thread(pid, type, task) \ 195 : : do_each_pid_task(pid, type, task) { \ 196 : : struct task_struct *tg___ = task; \ 197 : : for_each_thread(tg___, task) { 198 : : 199 : : #define while_each_pid_thread(pid, type, task) \ 200 : : } \ 201 : : task = tg___; \ 202 : : } while_each_pid_task(pid, type, task) 203 : : #endif /* _LINUX_PID_H */