Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only 2 : : /* 3 : : * kernel/sched/cpupri.c 4 : : * 5 : : * CPU priority management 6 : : * 7 : : * Copyright (C) 2007-2008 Novell 8 : : * 9 : : * Author: Gregory Haskins <ghaskins@novell.com> 10 : : * 11 : : * This code tracks the priority of each CPU so that global migration 12 : : * decisions are easy to calculate. Each CPU can be in a state as follows: 13 : : * 14 : : * (INVALID), IDLE, NORMAL, RT1, ... RT99 15 : : * 16 : : * going from the lowest priority to the highest. CPUs in the INVALID state 17 : : * are not eligible for routing. The system maintains this state with 18 : : * a 2 dimensional bitmap (the first for priority class, the second for CPUs 19 : : * in that class). Therefore a typical application without affinity 20 : : * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit 21 : : * searches). For tasks with affinity restrictions, the algorithm has a 22 : : * worst case complexity of O(min(102, nr_domcpus)), though the scenario that 23 : : * yields the worst case search is fairly contrived. 24 : : */ 25 : : #include "sched.h" 26 : : 27 : : /* Convert between a 140 based task->prio, and our 102 based cpupri */ 28 : : static int convert_prio(int prio) 29 : : { 30 : : int cpupri; 31 : : 32 : 3 : if (prio == CPUPRI_INVALID) 33 : : cpupri = CPUPRI_INVALID; 34 : 3 : else if (prio == MAX_PRIO) 35 : : cpupri = CPUPRI_IDLE; 36 : 3 : else if (prio >= MAX_RT_PRIO) 37 : : cpupri = CPUPRI_NORMAL; 38 : : else 39 : 3 : cpupri = MAX_RT_PRIO - prio + 1; 40 : : 41 : : return cpupri; 42 : : } 43 : : 44 : : /** 45 : : * cpupri_find - find the best (lowest-pri) CPU in the system 46 : : * @cp: The cpupri context 47 : : * @p: The task 48 : : * @lowest_mask: A mask to fill in with selected CPUs (or NULL) 49 : : * 50 : : * Note: This function returns the recommended CPUs as calculated during the 51 : : * current invocation. By the time the call returns, the CPUs may have in 52 : : * fact changed priorities any number of times. While not ideal, it is not 53 : : * an issue of correctness since the normal rebalancer logic will correct 54 : : * any discrepancies created by racing against the uncertainty of the current 55 : : * priority configuration. 56 : : * 57 : : * Return: (int)bool - CPUs were found 58 : : */ 59 : 0 : int cpupri_find(struct cpupri *cp, struct task_struct *p, 60 : : struct cpumask *lowest_mask) 61 : : { 62 : : int idx = 0; 63 : 0 : int task_pri = convert_prio(p->prio); 64 : : 65 : 0 : BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES); 66 : : 67 : 0 : for (idx = 0; idx < task_pri; idx++) { 68 : : struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; 69 : : int skip = 0; 70 : : 71 : 0 : if (!atomic_read(&(vec)->count)) 72 : : skip = 1; 73 : : /* 74 : : * When looking at the vector, we need to read the counter, 75 : : * do a memory barrier, then read the mask. 76 : : * 77 : : * Note: This is still all racey, but we can deal with it. 78 : : * Ideally, we only want to look at masks that are set. 79 : : * 80 : : * If a mask is not set, then the only thing wrong is that we 81 : : * did a little more work than necessary. 82 : : * 83 : : * If we read a zero count but the mask is set, because of the 84 : : * memory barriers, that can only happen when the highest prio 85 : : * task for a run queue has left the run queue, in which case, 86 : : * it will be followed by a pull. If the task we are processing 87 : : * fails to find a proper place to go, that pull request will 88 : : * pull this task if the run queue is running at a lower 89 : : * priority. 90 : : */ 91 : 0 : smp_rmb(); 92 : : 93 : : /* Need to do the rmb for every iteration */ 94 : 0 : if (skip) 95 : 0 : continue; 96 : : 97 : 0 : if (cpumask_any_and(p->cpus_ptr, vec->mask) >= nr_cpu_ids) 98 : 0 : continue; 99 : : 100 : 0 : if (lowest_mask) { 101 : 0 : cpumask_and(lowest_mask, p->cpus_ptr, vec->mask); 102 : : 103 : : /* 104 : : * We have to ensure that we have at least one bit 105 : : * still set in the array, since the map could have 106 : : * been concurrently emptied between the first and 107 : : * second reads of vec->mask. If we hit this 108 : : * condition, simply act as though we never hit this 109 : : * priority level and continue on. 110 : : */ 111 : 0 : if (cpumask_any(lowest_mask) >= nr_cpu_ids) 112 : 0 : continue; 113 : : } 114 : : 115 : : return 1; 116 : : } 117 : : 118 : : return 0; 119 : : } 120 : : 121 : : /** 122 : : * cpupri_set - update the CPU priority setting 123 : : * @cp: The cpupri context 124 : : * @cpu: The target CPU 125 : : * @newpri: The priority (INVALID-RT99) to assign to this CPU 126 : : * 127 : : * Note: Assumes cpu_rq(cpu)->lock is locked 128 : : * 129 : : * Returns: (void) 130 : : */ 131 : 3 : void cpupri_set(struct cpupri *cp, int cpu, int newpri) 132 : : { 133 : 3 : int *currpri = &cp->cpu_to_pri[cpu]; 134 : 3 : int oldpri = *currpri; 135 : : int do_mb = 0; 136 : : 137 : : newpri = convert_prio(newpri); 138 : : 139 : 3 : BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); 140 : : 141 : 3 : if (newpri == oldpri) 142 : 3 : return; 143 : : 144 : : /* 145 : : * If the CPU was currently mapped to a different value, we 146 : : * need to map it to the new value then remove the old value. 147 : : * Note, we must add the new value first, otherwise we risk the 148 : : * cpu being missed by the priority loop in cpupri_find. 149 : : */ 150 : 3 : if (likely(newpri != CPUPRI_INVALID)) { 151 : : struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; 152 : : 153 : 3 : cpumask_set_cpu(cpu, vec->mask); 154 : : /* 155 : : * When adding a new vector, we update the mask first, 156 : : * do a write memory barrier, and then update the count, to 157 : : * make sure the vector is visible when count is set. 158 : : */ 159 : 3 : smp_mb__before_atomic(); 160 : 3 : atomic_inc(&(vec)->count); 161 : : do_mb = 1; 162 : : } 163 : 3 : if (likely(oldpri != CPUPRI_INVALID)) { 164 : : struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; 165 : : 166 : : /* 167 : : * Because the order of modification of the vec->count 168 : : * is important, we must make sure that the update 169 : : * of the new prio is seen before we decrement the 170 : : * old prio. This makes sure that the loop sees 171 : : * one or the other when we raise the priority of 172 : : * the run queue. We don't care about when we lower the 173 : : * priority, as that will trigger an rt pull anyway. 174 : : * 175 : : * We only need to do a memory barrier if we updated 176 : : * the new priority vec. 177 : : */ 178 : 3 : if (do_mb) 179 : 3 : smp_mb__after_atomic(); 180 : : 181 : : /* 182 : : * When removing from the vector, we decrement the counter first 183 : : * do a memory barrier and then clear the mask. 184 : : */ 185 : 3 : atomic_dec(&(vec)->count); 186 : 3 : smp_mb__after_atomic(); 187 : 3 : cpumask_clear_cpu(cpu, vec->mask); 188 : : } 189 : : 190 : 3 : *currpri = newpri; 191 : : } 192 : : 193 : : /** 194 : : * cpupri_init - initialize the cpupri structure 195 : : * @cp: The cpupri context 196 : : * 197 : : * Return: -ENOMEM on memory allocation failure. 198 : : */ 199 : 3 : int cpupri_init(struct cpupri *cp) 200 : : { 201 : : int i; 202 : : 203 : 3 : for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { 204 : : struct cpupri_vec *vec = &cp->pri_to_cpu[i]; 205 : : 206 : 3 : atomic_set(&vec->count, 0); 207 : 3 : if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL)) 208 : : goto cleanup; 209 : : } 210 : : 211 : 3 : cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL); 212 : 3 : if (!cp->cpu_to_pri) 213 : : goto cleanup; 214 : : 215 : 3 : for_each_possible_cpu(i) 216 : 3 : cp->cpu_to_pri[i] = CPUPRI_INVALID; 217 : : 218 : : return 0; 219 : : 220 : : cleanup: 221 : : for (i--; i >= 0; i--) 222 : : free_cpumask_var(cp->pri_to_cpu[i].mask); 223 : : return -ENOMEM; 224 : : } 225 : : 226 : : /** 227 : : * cpupri_cleanup - clean up the cpupri structure 228 : : * @cp: The cpupri context 229 : : */ 230 : 0 : void cpupri_cleanup(struct cpupri *cp) 231 : : { 232 : : int i; 233 : : 234 : 0 : kfree(cp->cpu_to_pri); 235 : : for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) 236 : : free_cpumask_var(cp->pri_to_cpu[i].mask); 237 : 0 : }