Branch data Line data Source code
1 : : /* 2 : : * Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd 3 : : * 4 : : * Author: Lasse Collin <lasse.collin@tukaani.org> 5 : : * 6 : : * This file has been put into the public domain. 7 : : * You can do whatever you want with this file. 8 : : */ 9 : : 10 : : /* 11 : : * Important notes about in-place decompression 12 : : * 13 : : * At least on x86, the kernel is decompressed in place: the compressed data 14 : : * is placed to the end of the output buffer, and the decompressor overwrites 15 : : * most of the compressed data. There must be enough safety margin to 16 : : * guarantee that the write position is always behind the read position. 17 : : * 18 : : * The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below. 19 : : * Note that the margin with XZ is bigger than with Deflate (gzip)! 20 : : * 21 : : * The worst case for in-place decompression is that the beginning of 22 : : * the file is compressed extremely well, and the rest of the file is 23 : : * uncompressible. Thus, we must look for worst-case expansion when the 24 : : * compressor is encoding uncompressible data. 25 : : * 26 : : * The structure of the .xz file in case of a compresed kernel is as follows. 27 : : * Sizes (as bytes) of the fields are in parenthesis. 28 : : * 29 : : * Stream Header (12) 30 : : * Block Header: 31 : : * Block Header (8-12) 32 : : * Compressed Data (N) 33 : : * Block Padding (0-3) 34 : : * CRC32 (4) 35 : : * Index (8-20) 36 : : * Stream Footer (12) 37 : : * 38 : : * Normally there is exactly one Block, but let's assume that there are 39 : : * 2-4 Blocks just in case. Because Stream Header and also Block Header 40 : : * of the first Block don't make the decompressor produce any uncompressed 41 : : * data, we can ignore them from our calculations. Block Headers of possible 42 : : * additional Blocks have to be taken into account still. With these 43 : : * assumptions, it is safe to assume that the total header overhead is 44 : : * less than 128 bytes. 45 : : * 46 : : * Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ 47 : : * doesn't change the size of the data, it is enough to calculate the 48 : : * safety margin for LZMA2. 49 : : * 50 : : * LZMA2 stores the data in chunks. Each chunk has a header whose size is 51 : : * a maximum of 6 bytes, but to get round 2^n numbers, let's assume that 52 : : * the maximum chunk header size is 8 bytes. After the chunk header, there 53 : : * may be up to 64 KiB of actual payload in the chunk. Often the payload is 54 : : * quite a bit smaller though; to be safe, let's assume that an average 55 : : * chunk has only 32 KiB of payload. 56 : : * 57 : : * The maximum uncompressed size of the payload is 2 MiB. The minimum 58 : : * uncompressed size of the payload is in practice never less than the 59 : : * payload size itself. The LZMA2 format would allow uncompressed size 60 : : * to be less than the payload size, but no sane compressor creates such 61 : : * files. LZMA2 supports storing uncompressible data in uncompressed form, 62 : : * so there's never a need to create payloads whose uncompressed size is 63 : : * smaller than the compressed size. 64 : : * 65 : : * The assumption, that the uncompressed size of the payload is never 66 : : * smaller than the payload itself, is valid only when talking about 67 : : * the payload as a whole. It is possible that the payload has parts where 68 : : * the decompressor consumes more input than it produces output. Calculating 69 : : * the worst case for this would be tricky. Instead of trying to do that, 70 : : * let's simply make sure that the decompressor never overwrites any bytes 71 : : * of the payload which it is currently reading. 72 : : * 73 : : * Now we have enough information to calculate the safety margin. We need 74 : : * - 128 bytes for the .xz file format headers; 75 : : * - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header 76 : : * per chunk, each chunk having average payload size of 32 KiB); and 77 : : * - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that 78 : : * the decompressor never overwrites anything from the LZMA2 chunk 79 : : * payload it is currently reading. 80 : : * 81 : : * We get the following formula: 82 : : * 83 : : * safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536 84 : : * = 128 + (uncompressed_size >> 12) + 65536 85 : : * 86 : : * For comparison, according to arch/x86/boot/compressed/misc.c, the 87 : : * equivalent formula for Deflate is this: 88 : : * 89 : : * safety_margin = 18 + (uncompressed_size >> 12) + 32768 90 : : * 91 : : * Thus, when updating Deflate-only in-place kernel decompressor to 92 : : * support XZ, the fixed overhead has to be increased from 18+32768 bytes 93 : : * to 128+65536 bytes. 94 : : */ 95 : : 96 : : /* 97 : : * STATIC is defined to "static" if we are being built for kernel 98 : : * decompression (pre-boot code). <linux/decompress/mm.h> will define 99 : : * STATIC to empty if it wasn't already defined. Since we will need to 100 : : * know later if we are being used for kernel decompression, we define 101 : : * XZ_PREBOOT here. 102 : : */ 103 : : #ifdef STATIC 104 : : # define XZ_PREBOOT 105 : : #endif 106 : : #ifdef __KERNEL__ 107 : : # include <linux/decompress/mm.h> 108 : : #endif 109 : : #define XZ_EXTERN STATIC 110 : : 111 : : #ifndef XZ_PREBOOT 112 : : # include <linux/slab.h> 113 : : # include <linux/xz.h> 114 : : #else 115 : : /* 116 : : * Use the internal CRC32 code instead of kernel's CRC32 module, which 117 : : * is not available in early phase of booting. 118 : : */ 119 : : #define XZ_INTERNAL_CRC32 1 120 : : 121 : : /* 122 : : * For boot time use, we enable only the BCJ filter of the current 123 : : * architecture or none if no BCJ filter is available for the architecture. 124 : : */ 125 : : #ifdef CONFIG_X86 126 : : # define XZ_DEC_X86 127 : : #endif 128 : : #ifdef CONFIG_PPC 129 : : # define XZ_DEC_POWERPC 130 : : #endif 131 : : #ifdef CONFIG_ARM 132 : : # define XZ_DEC_ARM 133 : : #endif 134 : : #ifdef CONFIG_IA64 135 : : # define XZ_DEC_IA64 136 : : #endif 137 : : #ifdef CONFIG_SPARC 138 : : # define XZ_DEC_SPARC 139 : : #endif 140 : : 141 : : /* 142 : : * This will get the basic headers so that memeq() and others 143 : : * can be defined. 144 : : */ 145 : : #include "xz/xz_private.h" 146 : : 147 : : /* 148 : : * Replace the normal allocation functions with the versions from 149 : : * <linux/decompress/mm.h>. vfree() needs to support vfree(NULL) 150 : : * when XZ_DYNALLOC is used, but the pre-boot free() doesn't support it. 151 : : * Workaround it here because the other decompressors don't need it. 152 : : */ 153 : : #undef kmalloc 154 : : #undef kfree 155 : : #undef vmalloc 156 : : #undef vfree 157 : : #define kmalloc(size, flags) malloc(size) 158 : : #define kfree(ptr) free(ptr) 159 : : #define vmalloc(size) malloc(size) 160 : : #define vfree(ptr) do { if (ptr != NULL) free(ptr); } while (0) 161 : : 162 : : /* 163 : : * FIXME: Not all basic memory functions are provided in architecture-specific 164 : : * files (yet). We define our own versions here for now, but this should be 165 : : * only a temporary solution. 166 : : * 167 : : * memeq and memzero are not used much and any remotely sane implementation 168 : : * is fast enough. memcpy/memmove speed matters in multi-call mode, but 169 : : * the kernel image is decompressed in single-call mode, in which only 170 : : * memcpy speed can matter and only if there is a lot of uncompressible data 171 : : * (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the 172 : : * functions below should just be kept small; it's probably not worth 173 : : * optimizing for speed. 174 : : */ 175 : : 176 : : #ifndef memeq 177 : : static bool memeq(const void *a, const void *b, size_t size) 178 : : { 179 : : const uint8_t *x = a; 180 : : const uint8_t *y = b; 181 : : size_t i; 182 : : 183 : : for (i = 0; i < size; ++i) 184 : : if (x[i] != y[i]) 185 : : return false; 186 : : 187 : : return true; 188 : : } 189 : : #endif 190 : : 191 : : #ifndef memzero 192 : : static void memzero(void *buf, size_t size) 193 : : { 194 : : uint8_t *b = buf; 195 : : uint8_t *e = b + size; 196 : : 197 : : while (b != e) 198 : : *b++ = '\0'; 199 : : } 200 : : #endif 201 : : 202 : : #ifndef memmove 203 : : /* Not static to avoid a conflict with the prototype in the Linux headers. */ 204 : : void *memmove(void *dest, const void *src, size_t size) 205 : : { 206 : : uint8_t *d = dest; 207 : : const uint8_t *s = src; 208 : : size_t i; 209 : : 210 : : if (d < s) { 211 : : for (i = 0; i < size; ++i) 212 : : d[i] = s[i]; 213 : : } else if (d > s) { 214 : : i = size; 215 : : while (i-- > 0) 216 : : d[i] = s[i]; 217 : : } 218 : : 219 : : return dest; 220 : : } 221 : : #endif 222 : : 223 : : /* 224 : : * Since we need memmove anyway, would use it as memcpy too. 225 : : * Commented out for now to avoid breaking things. 226 : : */ 227 : : /* 228 : : #ifndef memcpy 229 : : # define memcpy memmove 230 : : #endif 231 : : */ 232 : : 233 : : #include "xz/xz_crc32.c" 234 : : #include "xz/xz_dec_stream.c" 235 : : #include "xz/xz_dec_lzma2.c" 236 : : #include "xz/xz_dec_bcj.c" 237 : : 238 : : #endif /* XZ_PREBOOT */ 239 : : 240 : : /* Size of the input and output buffers in multi-call mode */ 241 : : #define XZ_IOBUF_SIZE 4096 242 : : 243 : : /* 244 : : * This function implements the API defined in <linux/decompress/generic.h>. 245 : : * 246 : : * This wrapper will automatically choose single-call or multi-call mode 247 : : * of the native XZ decoder API. The single-call mode can be used only when 248 : : * both input and output buffers are available as a single chunk, i.e. when 249 : : * fill() and flush() won't be used. 250 : : */ 251 : 0 : STATIC int INIT unxz(unsigned char *in, long in_size, 252 : : long (*fill)(void *dest, unsigned long size), 253 : : long (*flush)(void *src, unsigned long size), 254 : : unsigned char *out, long *in_used, 255 : : void (*error)(char *x)) 256 : : { 257 : : struct xz_buf b; 258 : : struct xz_dec *s; 259 : : enum xz_ret ret; 260 : : bool must_free_in = false; 261 : : 262 : : #if XZ_INTERNAL_CRC32 263 : : xz_crc32_init(); 264 : : #endif 265 : : 266 : 0 : if (in_used != NULL) 267 : 0 : *in_used = 0; 268 : : 269 : 0 : if (fill == NULL && flush == NULL) 270 : 0 : s = xz_dec_init(XZ_SINGLE, 0); 271 : : else 272 : 0 : s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1); 273 : : 274 : 0 : if (s == NULL) 275 : : goto error_alloc_state; 276 : : 277 : 0 : if (flush == NULL) { 278 : 0 : b.out = out; 279 : 0 : b.out_size = (size_t)-1; 280 : : } else { 281 : 0 : b.out_size = XZ_IOBUF_SIZE; 282 : 0 : b.out = malloc(XZ_IOBUF_SIZE); 283 : 0 : if (b.out == NULL) 284 : : goto error_alloc_out; 285 : : } 286 : : 287 : 0 : if (in == NULL) { 288 : : must_free_in = true; 289 : : in = malloc(XZ_IOBUF_SIZE); 290 : 0 : if (in == NULL) 291 : : goto error_alloc_in; 292 : : } 293 : : 294 : 0 : b.in = in; 295 : 0 : b.in_pos = 0; 296 : 0 : b.in_size = in_size; 297 : 0 : b.out_pos = 0; 298 : : 299 : 0 : if (fill == NULL && flush == NULL) { 300 : 0 : ret = xz_dec_run(s, &b); 301 : : } else { 302 : : do { 303 : 0 : if (b.in_pos == b.in_size && fill != NULL) { 304 : 0 : if (in_used != NULL) 305 : 0 : *in_used += b.in_pos; 306 : : 307 : 0 : b.in_pos = 0; 308 : : 309 : 0 : in_size = fill(in, XZ_IOBUF_SIZE); 310 : 0 : if (in_size < 0) { 311 : : /* 312 : : * This isn't an optimal error code 313 : : * but it probably isn't worth making 314 : : * a new one either. 315 : : */ 316 : : ret = XZ_BUF_ERROR; 317 : : break; 318 : : } 319 : : 320 : 0 : b.in_size = in_size; 321 : : } 322 : : 323 : 0 : ret = xz_dec_run(s, &b); 324 : : 325 : 0 : if (flush != NULL && (b.out_pos == b.out_size 326 : 0 : || (ret != XZ_OK && b.out_pos > 0))) { 327 : : /* 328 : : * Setting ret here may hide an error 329 : : * returned by xz_dec_run(), but probably 330 : : * it's not too bad. 331 : : */ 332 : 0 : if (flush(b.out, b.out_pos) != (long)b.out_pos) 333 : : ret = XZ_BUF_ERROR; 334 : : 335 : 0 : b.out_pos = 0; 336 : : } 337 : 0 : } while (ret == XZ_OK); 338 : : 339 : 0 : if (must_free_in) 340 : 0 : free(in); 341 : : 342 : 0 : if (flush != NULL) 343 : 0 : free(b.out); 344 : : } 345 : : 346 : 0 : if (in_used != NULL) 347 : 0 : *in_used += b.in_pos; 348 : : 349 : 0 : xz_dec_end(s); 350 : : 351 : 0 : switch (ret) { 352 : : case XZ_STREAM_END: 353 : : return 0; 354 : : 355 : : case XZ_MEM_ERROR: 356 : : /* This can occur only in multi-call mode. */ 357 : 0 : error("XZ decompressor ran out of memory"); 358 : 0 : break; 359 : : 360 : : case XZ_FORMAT_ERROR: 361 : 0 : error("Input is not in the XZ format (wrong magic bytes)"); 362 : 0 : break; 363 : : 364 : : case XZ_OPTIONS_ERROR: 365 : 0 : error("Input was encoded with settings that are not " 366 : : "supported by this XZ decoder"); 367 : 0 : break; 368 : : 369 : : case XZ_DATA_ERROR: 370 : : case XZ_BUF_ERROR: 371 : 0 : error("XZ-compressed data is corrupt"); 372 : 0 : break; 373 : : 374 : : default: 375 : 0 : error("Bug in the XZ decompressor"); 376 : 0 : break; 377 : : } 378 : : 379 : : return -1; 380 : : 381 : : error_alloc_in: 382 : 0 : if (flush != NULL) 383 : 0 : free(b.out); 384 : : 385 : : error_alloc_out: 386 : 0 : xz_dec_end(s); 387 : : 388 : : error_alloc_state: 389 : 0 : error("XZ decompressor ran out of memory"); 390 : 0 : return -1; 391 : : } 392 : : 393 : : /* 394 : : * This macro is used by architecture-specific files to decompress 395 : : * the kernel image. 396 : : */ 397 : : #ifdef XZ_PREBOOT 398 : : STATIC int INIT __decompress(unsigned char *buf, long len, 399 : : long (*fill)(void*, unsigned long), 400 : : long (*flush)(void*, unsigned long), 401 : : unsigned char *out_buf, long olen, 402 : : long *pos, 403 : : void (*error)(char *x)) 404 : : { 405 : : return unxz(buf, len, fill, flush, out_buf, pos, error); 406 : : } 407 : : #endif