Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0 2 : : #include <linux/kernel.h> 3 : : #include <linux/bug.h> 4 : : #include <linux/compiler.h> 5 : : #include <linux/export.h> 6 : : #include <linux/string.h> 7 : : #include <linux/list_sort.h> 8 : : #include <linux/list.h> 9 : : 10 : : typedef int __attribute__((nonnull(2,3))) (*cmp_func)(void *, 11 : : struct list_head const *, struct list_head const *); 12 : : 13 : : /* 14 : : * Returns a list organized in an intermediate format suited 15 : : * to chaining of merge() calls: null-terminated, no reserved or 16 : : * sentinel head node, "prev" links not maintained. 17 : : */ 18 : : __attribute__((nonnull(2,3,4))) 19 : 0 : static struct list_head *merge(void *priv, cmp_func cmp, 20 : : struct list_head *a, struct list_head *b) 21 : : { 22 : : struct list_head *head, **tail = &head; 23 : : 24 : : for (;;) { 25 : : /* if equal, take 'a' -- important for sort stability */ 26 : 0 : if (cmp(priv, a, b) <= 0) { 27 : 0 : *tail = a; 28 : 0 : tail = &a->next; 29 : 0 : a = a->next; 30 : 0 : if (!a) { 31 : 0 : *tail = b; 32 : 0 : break; 33 : : } 34 : : } else { 35 : 0 : *tail = b; 36 : 0 : tail = &b->next; 37 : 0 : b = b->next; 38 : 0 : if (!b) { 39 : 0 : *tail = a; 40 : 0 : break; 41 : : } 42 : : } 43 : : } 44 : 0 : return head; 45 : : } 46 : : 47 : : /* 48 : : * Combine final list merge with restoration of standard doubly-linked 49 : : * list structure. This approach duplicates code from merge(), but 50 : : * runs faster than the tidier alternatives of either a separate final 51 : : * prev-link restoration pass, or maintaining the prev links 52 : : * throughout. 53 : : */ 54 : : __attribute__((nonnull(2,3,4,5))) 55 : 0 : static void merge_final(void *priv, cmp_func cmp, struct list_head *head, 56 : : struct list_head *a, struct list_head *b) 57 : : { 58 : : struct list_head *tail = head; 59 : : u8 count = 0; 60 : : 61 : : for (;;) { 62 : : /* if equal, take 'a' -- important for sort stability */ 63 : 0 : if (cmp(priv, a, b) <= 0) { 64 : 0 : tail->next = a; 65 : 0 : a->prev = tail; 66 : : tail = a; 67 : 0 : a = a->next; 68 : 0 : if (!a) 69 : : break; 70 : : } else { 71 : 0 : tail->next = b; 72 : 0 : b->prev = tail; 73 : : tail = b; 74 : 0 : b = b->next; 75 : 0 : if (!b) { 76 : 0 : b = a; 77 : 0 : break; 78 : : } 79 : : } 80 : : } 81 : : 82 : : /* Finish linking remainder of list b on to tail */ 83 : 0 : tail->next = b; 84 : : do { 85 : : /* 86 : : * If the merge is highly unbalanced (e.g. the input is 87 : : * already sorted), this loop may run many iterations. 88 : : * Continue callbacks to the client even though no 89 : : * element comparison is needed, so the client's cmp() 90 : : * routine can invoke cond_resched() periodically. 91 : : */ 92 : 0 : if (unlikely(!++count)) 93 : 0 : cmp(priv, b, b); 94 : 0 : b->prev = tail; 95 : : tail = b; 96 : 0 : b = b->next; 97 : 0 : } while (b); 98 : : 99 : : /* And the final links to make a circular doubly-linked list */ 100 : 0 : tail->next = head; 101 : 0 : head->prev = tail; 102 : 0 : } 103 : : 104 : : /** 105 : : * list_sort - sort a list 106 : : * @priv: private data, opaque to list_sort(), passed to @cmp 107 : : * @head: the list to sort 108 : : * @cmp: the elements comparison function 109 : : * 110 : : * The comparison funtion @cmp must return > 0 if @a should sort after 111 : : * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should 112 : : * sort before @b *or* their original order should be preserved. It is 113 : : * always called with the element that came first in the input in @a, 114 : : * and list_sort is a stable sort, so it is not necessary to distinguish 115 : : * the @a < @b and @a == @b cases. 116 : : * 117 : : * This is compatible with two styles of @cmp function: 118 : : * - The traditional style which returns <0 / =0 / >0, or 119 : : * - Returning a boolean 0/1. 120 : : * The latter offers a chance to save a few cycles in the comparison 121 : : * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c). 122 : : * 123 : : * A good way to write a multi-word comparison is:: 124 : : * 125 : : * if (a->high != b->high) 126 : : * return a->high > b->high; 127 : : * if (a->middle != b->middle) 128 : : * return a->middle > b->middle; 129 : : * return a->low > b->low; 130 : : * 131 : : * 132 : : * This mergesort is as eager as possible while always performing at least 133 : : * 2:1 balanced merges. Given two pending sublists of size 2^k, they are 134 : : * merged to a size-2^(k+1) list as soon as we have 2^k following elements. 135 : : * 136 : : * Thus, it will avoid cache thrashing as long as 3*2^k elements can 137 : : * fit into the cache. Not quite as good as a fully-eager bottom-up 138 : : * mergesort, but it does use 0.2*n fewer comparisons, so is faster in 139 : : * the common case that everything fits into L1. 140 : : * 141 : : * 142 : : * The merging is controlled by "count", the number of elements in the 143 : : * pending lists. This is beautiully simple code, but rather subtle. 144 : : * 145 : : * Each time we increment "count", we set one bit (bit k) and clear 146 : : * bits k-1 .. 0. Each time this happens (except the very first time 147 : : * for each bit, when count increments to 2^k), we merge two lists of 148 : : * size 2^k into one list of size 2^(k+1). 149 : : * 150 : : * This merge happens exactly when the count reaches an odd multiple of 151 : : * 2^k, which is when we have 2^k elements pending in smaller lists, 152 : : * so it's safe to merge away two lists of size 2^k. 153 : : * 154 : : * After this happens twice, we have created two lists of size 2^(k+1), 155 : : * which will be merged into a list of size 2^(k+2) before we create 156 : : * a third list of size 2^(k+1), so there are never more than two pending. 157 : : * 158 : : * The number of pending lists of size 2^k is determined by the 159 : : * state of bit k of "count" plus two extra pieces of information: 160 : : * 161 : : * - The state of bit k-1 (when k == 0, consider bit -1 always set), and 162 : : * - Whether the higher-order bits are zero or non-zero (i.e. 163 : : * is count >= 2^(k+1)). 164 : : * 165 : : * There are six states we distinguish. "x" represents some arbitrary 166 : : * bits, and "y" represents some arbitrary non-zero bits: 167 : : * 0: 00x: 0 pending of size 2^k; x pending of sizes < 2^k 168 : : * 1: 01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k 169 : : * 2: x10x: 0 pending of size 2^k; 2^k + x pending of sizes < 2^k 170 : : * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k 171 : : * 4: y00x: 1 pending of size 2^k; 2^k + x pending of sizes < 2^k 172 : : * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k 173 : : * (merge and loop back to state 2) 174 : : * 175 : : * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because 176 : : * bit k-1 is set while the more significant bits are non-zero) and 177 : : * merge them away in the 5->2 transition. Note in particular that just 178 : : * before the 5->2 transition, all lower-order bits are 11 (state 3), 179 : : * so there is one list of each smaller size. 180 : : * 181 : : * When we reach the end of the input, we merge all the pending 182 : : * lists, from smallest to largest. If you work through cases 2 to 183 : : * 5 above, you can see that the number of elements we merge with a list 184 : : * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to 185 : : * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1). 186 : : */ 187 : : __attribute__((nonnull(2,3))) 188 : 0 : void list_sort(void *priv, struct list_head *head, 189 : : int (*cmp)(void *priv, struct list_head *a, 190 : : struct list_head *b)) 191 : : { 192 : 0 : struct list_head *list = head->next, *pending = NULL; 193 : : size_t count = 0; /* Count of pending */ 194 : : 195 : 0 : if (list == head->prev) /* Zero or one elements */ 196 : 0 : return; 197 : : 198 : : /* Convert to a null-terminated singly-linked list. */ 199 : 0 : head->prev->next = NULL; 200 : : 201 : : /* 202 : : * Data structure invariants: 203 : : * - All lists are singly linked and null-terminated; prev 204 : : * pointers are not maintained. 205 : : * - pending is a prev-linked "list of lists" of sorted 206 : : * sublists awaiting further merging. 207 : : * - Each of the sorted sublists is power-of-two in size. 208 : : * - Sublists are sorted by size and age, smallest & newest at front. 209 : : * - There are zero to two sublists of each size. 210 : : * - A pair of pending sublists are merged as soon as the number 211 : : * of following pending elements equals their size (i.e. 212 : : * each time count reaches an odd multiple of that size). 213 : : * That ensures each later final merge will be at worst 2:1. 214 : : * - Each round consists of: 215 : : * - Merging the two sublists selected by the highest bit 216 : : * which flips when count is incremented, and 217 : : * - Adding an element from the input as a size-1 sublist. 218 : : */ 219 : : do { 220 : : size_t bits; 221 : : struct list_head **tail = &pending; 222 : : 223 : : /* Find the least-significant clear bit in count */ 224 : 0 : for (bits = count; bits & 1; bits >>= 1) 225 : 0 : tail = &(*tail)->prev; 226 : : /* Do the indicated merge */ 227 : 0 : if (likely(bits)) { 228 : 0 : struct list_head *a = *tail, *b = a->prev; 229 : : 230 : 0 : a = merge(priv, (cmp_func)cmp, b, a); 231 : : /* Install the merged result in place of the inputs */ 232 : 0 : a->prev = b->prev; 233 : 0 : *tail = a; 234 : : } 235 : : 236 : : /* Move one element from input list to pending */ 237 : 0 : list->prev = pending; 238 : 0 : pending = list; 239 : 0 : list = list->next; 240 : 0 : pending->next = NULL; 241 : 0 : count++; 242 : 0 : } while (list); 243 : : 244 : : /* End of input; merge together all the pending lists. */ 245 : 0 : list = pending; 246 : 0 : pending = pending->prev; 247 : : for (;;) { 248 : 0 : struct list_head *next = pending->prev; 249 : : 250 : 0 : if (!next) 251 : : break; 252 : 0 : list = merge(priv, (cmp_func)cmp, pending, list); 253 : 0 : pending = next; 254 : 0 : } 255 : : /* The final merge, rebuilding prev links */ 256 : 0 : merge_final(priv, (cmp_func)cmp, head, pending, list); 257 : : } 258 : : EXPORT_SYMBOL(list_sort);