Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0 2 : : /* 3 : : * A fast, small, non-recursive O(n log n) sort for the Linux kernel 4 : : * 5 : : * This performs n*log2(n) + 0.37*n + o(n) comparisons on average, 6 : : * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case. 7 : : * 8 : : * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n 9 : : * better) at the expense of stack usage and much larger code to avoid 10 : : * quicksort's O(n^2) worst case. 11 : : */ 12 : : 13 : : #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 : : 15 : : #include <linux/types.h> 16 : : #include <linux/export.h> 17 : : #include <linux/sort.h> 18 : : 19 : : /** 20 : : * is_aligned - is this pointer & size okay for word-wide copying? 21 : : * @base: pointer to data 22 : : * @size: size of each element 23 : : * @align: required alignment (typically 4 or 8) 24 : : * 25 : : * Returns true if elements can be copied using word loads and stores. 26 : : * The size must be a multiple of the alignment, and the base address must 27 : : * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. 28 : : * 29 : : * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" 30 : : * to "if ((a | b) & mask)", so we do that by hand. 31 : : */ 32 : : __attribute_const__ __always_inline 33 : : static bool is_aligned(const void *base, size_t size, unsigned char align) 34 : : { 35 : : unsigned char lsbits = (unsigned char)size; 36 : : 37 : : (void)base; 38 : : #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 39 : : lsbits |= (unsigned char)(uintptr_t)base; 40 : : #endif 41 : 3 : return (lsbits & (align - 1)) == 0; 42 : : } 43 : : 44 : : /** 45 : : * swap_words_32 - swap two elements in 32-bit chunks 46 : : * @a: pointer to the first element to swap 47 : : * @b: pointer to the second element to swap 48 : : * @n: element size (must be a multiple of 4) 49 : : * 50 : : * Exchange the two objects in memory. This exploits base+index addressing, 51 : : * which basically all CPUs have, to minimize loop overhead computations. 52 : : * 53 : : * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the 54 : : * bottom of the loop, even though the zero flag is stil valid from the 55 : : * subtract (since the intervening mov instructions don't alter the flags). 56 : : * Gcc 8.1.0 doesn't have that problem. 57 : : */ 58 : : static void swap_words_32(void *a, void *b, size_t n) 59 : : { 60 : : do { 61 : 3 : u32 t = *(u32 *)(a + (n -= 4)); 62 : 3 : *(u32 *)(a + n) = *(u32 *)(b + n); 63 : 3 : *(u32 *)(b + n) = t; 64 : 3 : } while (n); 65 : : } 66 : : 67 : : /** 68 : : * swap_words_64 - swap two elements in 64-bit chunks 69 : : * @a: pointer to the first element to swap 70 : : * @b: pointer to the second element to swap 71 : : * @n: element size (must be a multiple of 8) 72 : : * 73 : : * Exchange the two objects in memory. This exploits base+index 74 : : * addressing, which basically all CPUs have, to minimize loop overhead 75 : : * computations. 76 : : * 77 : : * We'd like to use 64-bit loads if possible. If they're not, emulating 78 : : * one requires base+index+4 addressing which x86 has but most other 79 : : * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, 80 : : * but it's possible to have 64-bit loads without 64-bit pointers (e.g. 81 : : * x32 ABI). Are there any cases the kernel needs to worry about? 82 : : */ 83 : 3 : static void swap_words_64(void *a, void *b, size_t n) 84 : : { 85 : : do { 86 : : #ifdef CONFIG_64BIT 87 : : u64 t = *(u64 *)(a + (n -= 8)); 88 : : *(u64 *)(a + n) = *(u64 *)(b + n); 89 : : *(u64 *)(b + n) = t; 90 : : #else 91 : : /* Use two 32-bit transfers to avoid base+index+4 addressing */ 92 : 3 : u32 t = *(u32 *)(a + (n -= 4)); 93 : 3 : *(u32 *)(a + n) = *(u32 *)(b + n); 94 : 3 : *(u32 *)(b + n) = t; 95 : : 96 : 3 : t = *(u32 *)(a + (n -= 4)); 97 : 3 : *(u32 *)(a + n) = *(u32 *)(b + n); 98 : 3 : *(u32 *)(b + n) = t; 99 : : #endif 100 : 3 : } while (n); 101 : 3 : } 102 : : 103 : : /** 104 : : * swap_bytes - swap two elements a byte at a time 105 : : * @a: pointer to the first element to swap 106 : : * @b: pointer to the second element to swap 107 : : * @n: element size 108 : : * 109 : : * This is the fallback if alignment doesn't allow using larger chunks. 110 : : */ 111 : : static void swap_bytes(void *a, void *b, size_t n) 112 : : { 113 : : do { 114 : 0 : char t = ((char *)a)[--n]; 115 : 0 : ((char *)a)[n] = ((char *)b)[n]; 116 : 0 : ((char *)b)[n] = t; 117 : 0 : } while (n); 118 : : } 119 : : 120 : : typedef void (*swap_func_t)(void *a, void *b, int size); 121 : : 122 : : /* 123 : : * The values are arbitrary as long as they can't be confused with 124 : : * a pointer, but small integers make for the smallest compare 125 : : * instructions. 126 : : */ 127 : : #define SWAP_WORDS_64 (swap_func_t)0 128 : : #define SWAP_WORDS_32 (swap_func_t)1 129 : : #define SWAP_BYTES (swap_func_t)2 130 : : 131 : : /* 132 : : * The function pointer is last to make tail calls most efficient if the 133 : : * compiler decides not to inline this function. 134 : : */ 135 : 3 : static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func) 136 : : { 137 : 3 : if (swap_func == SWAP_WORDS_64) 138 : 3 : swap_words_64(a, b, size); 139 : 3 : else if (swap_func == SWAP_WORDS_32) 140 : : swap_words_32(a, b, size); 141 : 0 : else if (swap_func == SWAP_BYTES) 142 : : swap_bytes(a, b, size); 143 : : else 144 : 0 : swap_func(a, b, (int)size); 145 : 3 : } 146 : : 147 : : typedef int (*cmp_func_t)(const void *, const void *); 148 : : typedef int (*cmp_r_func_t)(const void *, const void *, const void *); 149 : : #define _CMP_WRAPPER ((cmp_r_func_t)0L) 150 : : 151 : : static int do_cmp(const void *a, const void *b, 152 : : cmp_r_func_t cmp, const void *priv) 153 : : { 154 : 3 : if (cmp == _CMP_WRAPPER) 155 : 3 : return ((cmp_func_t)(priv))(a, b); 156 : 0 : return cmp(a, b, priv); 157 : : } 158 : : 159 : : /** 160 : : * parent - given the offset of the child, find the offset of the parent. 161 : : * @i: the offset of the heap element whose parent is sought. Non-zero. 162 : : * @lsbit: a precomputed 1-bit mask, equal to "size & -size" 163 : : * @size: size of each element 164 : : * 165 : : * In terms of array indexes, the parent of element j = @i/@size is simply 166 : : * (j-1)/2. But when working in byte offsets, we can't use implicit 167 : : * truncation of integer divides. 168 : : * 169 : : * Fortunately, we only need one bit of the quotient, not the full divide. 170 : : * @size has a least significant bit. That bit will be clear if @i is 171 : : * an even multiple of @size, and set if it's an odd multiple. 172 : : * 173 : : * Logically, we're doing "if (i & lsbit) i -= size;", but since the 174 : : * branch is unpredictable, it's done with a bit of clever branch-free 175 : : * code instead. 176 : : */ 177 : : __attribute_const__ __always_inline 178 : : static size_t parent(size_t i, unsigned int lsbit, size_t size) 179 : : { 180 : 3 : i -= size; 181 : 3 : i -= size & -(i & lsbit); 182 : 3 : return i / 2; 183 : : } 184 : : 185 : : /** 186 : : * sort_r - sort an array of elements 187 : : * @base: pointer to data to sort 188 : : * @num: number of elements 189 : : * @size: size of each element 190 : : * @cmp_func: pointer to comparison function 191 : : * @swap_func: pointer to swap function or NULL 192 : : * @priv: third argument passed to comparison function 193 : : * 194 : : * This function does a heapsort on the given array. You may provide 195 : : * a swap_func function if you need to do something more than a memory 196 : : * copy (e.g. fix up pointers or auxiliary data), but the built-in swap 197 : : * avoids a slow retpoline and so is significantly faster. 198 : : * 199 : : * Sorting time is O(n log n) both on average and worst-case. While 200 : : * quicksort is slightly faster on average, it suffers from exploitable 201 : : * O(n*n) worst-case behavior and extra memory requirements that make 202 : : * it less suitable for kernel use. 203 : : */ 204 : 3 : void sort_r(void *base, size_t num, size_t size, 205 : : int (*cmp_func)(const void *, const void *, const void *), 206 : : void (*swap_func)(void *, void *, int size), 207 : : const void *priv) 208 : : { 209 : : /* pre-scale counters for performance */ 210 : 3 : size_t n = num * size, a = (num/2) * size; 211 : 3 : const unsigned int lsbit = size & -size; /* Used to find parent */ 212 : : 213 : 3 : if (!a) /* num < 2 || size == 0 */ 214 : 3 : return; 215 : : 216 : 3 : if (!swap_func) { 217 : 3 : if (is_aligned(base, size, 8)) 218 : : swap_func = SWAP_WORDS_64; 219 : 3 : else if (is_aligned(base, size, 4)) 220 : : swap_func = SWAP_WORDS_32; 221 : : else 222 : : swap_func = SWAP_BYTES; 223 : : } 224 : : 225 : : /* 226 : : * Loop invariants: 227 : : * 1. elements [a,n) satisfy the heap property (compare greater than 228 : : * all of their children), 229 : : * 2. elements [n,num*size) are sorted, and 230 : : * 3. a <= b <= c <= d <= n (whenever they are valid). 231 : : */ 232 : : for (;;) { 233 : : size_t b, c, d; 234 : : 235 : 3 : if (a) /* Building heap: sift down --a */ 236 : 3 : a -= size; 237 : 3 : else if (n -= size) /* Sorting: Extract root to --n */ 238 : 3 : do_swap(base, base + n, size, swap_func); 239 : : else /* Sort complete */ 240 : : break; 241 : : 242 : : /* 243 : : * Sift element at "a" down into heap. This is the 244 : : * "bottom-up" variant, which significantly reduces 245 : : * calls to cmp_func(): we find the sift-down path all 246 : : * the way to the leaves (one compare per level), then 247 : : * backtrack to find where to insert the target element. 248 : : * 249 : : * Because elements tend to sift down close to the leaves, 250 : : * this uses fewer compares than doing two per level 251 : : * on the way down. (A bit more than half as many on 252 : : * average, 3/4 worst-case.) 253 : : */ 254 : 3 : for (b = a; c = 2*b + size, (d = c + size) < n;) 255 : 3 : b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d; 256 : 3 : if (d == n) /* Special case last leaf with no sibling */ 257 : 3 : b = c; 258 : : 259 : : /* Now backtrack from "b" to the correct location for "a" */ 260 : 3 : while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0) 261 : : b = parent(b, lsbit, size); 262 : 3 : c = b; /* Where "a" belongs */ 263 : 3 : while (b != a) { /* Shift it into place */ 264 : : b = parent(b, lsbit, size); 265 : 3 : do_swap(base + b, base + c, size, swap_func); 266 : : } 267 : : } 268 : : } 269 : : EXPORT_SYMBOL(sort_r); 270 : : 271 : 3 : void sort(void *base, size_t num, size_t size, 272 : : int (*cmp_func)(const void *, const void *), 273 : : void (*swap_func)(void *, void *, int size)) 274 : : { 275 : 3 : return sort_r(base, num, size, _CMP_WRAPPER, swap_func, cmp_func); 276 : : } 277 : : EXPORT_SYMBOL(sort);