Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only 2 : : /* 3 : : * Linux VM pressure 4 : : * 5 : : * Copyright 2012 Linaro Ltd. 6 : : * Anton Vorontsov <anton.vorontsov@linaro.org> 7 : : * 8 : : * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro, 9 : : * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg. 10 : : */ 11 : : 12 : : #include <linux/cgroup.h> 13 : : #include <linux/fs.h> 14 : : #include <linux/log2.h> 15 : : #include <linux/sched.h> 16 : : #include <linux/mm.h> 17 : : #include <linux/vmstat.h> 18 : : #include <linux/eventfd.h> 19 : : #include <linux/slab.h> 20 : : #include <linux/swap.h> 21 : : #include <linux/printk.h> 22 : : #include <linux/vmpressure.h> 23 : : 24 : : /* 25 : : * The window size (vmpressure_win) is the number of scanned pages before 26 : : * we try to analyze scanned/reclaimed ratio. So the window is used as a 27 : : * rate-limit tunable for the "low" level notification, and also for 28 : : * averaging the ratio for medium/critical levels. Using small window 29 : : * sizes can cause lot of false positives, but too big window size will 30 : : * delay the notifications. 31 : : * 32 : : * As the vmscan reclaimer logic works with chunks which are multiple of 33 : : * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well. 34 : : * 35 : : * TODO: Make the window size depend on machine size, as we do for vmstat 36 : : * thresholds. Currently we set it to 512 pages (2MB for 4KB pages). 37 : : */ 38 : : static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16; 39 : : 40 : : /* 41 : : * These thresholds are used when we account memory pressure through 42 : : * scanned/reclaimed ratio. The current values were chosen empirically. In 43 : : * essence, they are percents: the higher the value, the more number 44 : : * unsuccessful reclaims there were. 45 : : */ 46 : : static const unsigned int vmpressure_level_med = 60; 47 : : static const unsigned int vmpressure_level_critical = 95; 48 : : 49 : : /* 50 : : * When there are too little pages left to scan, vmpressure() may miss the 51 : : * critical pressure as number of pages will be less than "window size". 52 : : * However, in that case the vmscan priority will raise fast as the 53 : : * reclaimer will try to scan LRUs more deeply. 54 : : * 55 : : * The vmscan logic considers these special priorities: 56 : : * 57 : : * prio == DEF_PRIORITY (12): reclaimer starts with that value 58 : : * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed 59 : : * prio == 0 : close to OOM, kernel scans every page in an lru 60 : : * 61 : : * Any value in this range is acceptable for this tunable (i.e. from 12 to 62 : : * 0). Current value for the vmpressure_level_critical_prio is chosen 63 : : * empirically, but the number, in essence, means that we consider 64 : : * critical level when scanning depth is ~10% of the lru size (vmscan 65 : : * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one 66 : : * eights). 67 : : */ 68 : : static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10); 69 : : 70 : : static struct vmpressure *work_to_vmpressure(struct work_struct *work) 71 : : { 72 : 0 : return container_of(work, struct vmpressure, work); 73 : : } 74 : : 75 : 0 : static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr) 76 : : { 77 : 0 : struct cgroup_subsys_state *css = vmpressure_to_css(vmpr); 78 : : struct mem_cgroup *memcg = mem_cgroup_from_css(css); 79 : : 80 : : memcg = parent_mem_cgroup(memcg); 81 : 0 : if (!memcg) 82 : : return NULL; 83 : 0 : return memcg_to_vmpressure(memcg); 84 : : } 85 : : 86 : : enum vmpressure_levels { 87 : : VMPRESSURE_LOW = 0, 88 : : VMPRESSURE_MEDIUM, 89 : : VMPRESSURE_CRITICAL, 90 : : VMPRESSURE_NUM_LEVELS, 91 : : }; 92 : : 93 : : enum vmpressure_modes { 94 : : VMPRESSURE_NO_PASSTHROUGH = 0, 95 : : VMPRESSURE_HIERARCHY, 96 : : VMPRESSURE_LOCAL, 97 : : VMPRESSURE_NUM_MODES, 98 : : }; 99 : : 100 : : static const char * const vmpressure_str_levels[] = { 101 : : [VMPRESSURE_LOW] = "low", 102 : : [VMPRESSURE_MEDIUM] = "medium", 103 : : [VMPRESSURE_CRITICAL] = "critical", 104 : : }; 105 : : 106 : : static const char * const vmpressure_str_modes[] = { 107 : : [VMPRESSURE_NO_PASSTHROUGH] = "default", 108 : : [VMPRESSURE_HIERARCHY] = "hierarchy", 109 : : [VMPRESSURE_LOCAL] = "local", 110 : : }; 111 : : 112 : : static enum vmpressure_levels vmpressure_level(unsigned long pressure) 113 : : { 114 : 0 : if (pressure >= vmpressure_level_critical) 115 : : return VMPRESSURE_CRITICAL; 116 : 0 : else if (pressure >= vmpressure_level_med) 117 : : return VMPRESSURE_MEDIUM; 118 : : return VMPRESSURE_LOW; 119 : : } 120 : : 121 : : static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned, 122 : : unsigned long reclaimed) 123 : : { 124 : 0 : unsigned long scale = scanned + reclaimed; 125 : : unsigned long pressure = 0; 126 : : 127 : : /* 128 : : * reclaimed can be greater than scanned for things such as reclaimed 129 : : * slab pages. shrink_node() just adds reclaimed pages without a 130 : : * related increment to scanned pages. 131 : : */ 132 : 0 : if (reclaimed >= scanned) 133 : : goto out; 134 : : /* 135 : : * We calculate the ratio (in percents) of how many pages were 136 : : * scanned vs. reclaimed in a given time frame (window). Note that 137 : : * time is in VM reclaimer's "ticks", i.e. number of pages 138 : : * scanned. This makes it possible to set desired reaction time 139 : : * and serves as a ratelimit. 140 : : */ 141 : 0 : pressure = scale - (reclaimed * scale / scanned); 142 : 0 : pressure = pressure * 100 / scale; 143 : : 144 : : out: 145 : : pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure, 146 : : scanned, reclaimed); 147 : : 148 : : return vmpressure_level(pressure); 149 : : } 150 : : 151 : : struct vmpressure_event { 152 : : struct eventfd_ctx *efd; 153 : : enum vmpressure_levels level; 154 : : enum vmpressure_modes mode; 155 : : struct list_head node; 156 : : }; 157 : : 158 : 0 : static bool vmpressure_event(struct vmpressure *vmpr, 159 : : const enum vmpressure_levels level, 160 : : bool ancestor, bool signalled) 161 : : { 162 : : struct vmpressure_event *ev; 163 : : bool ret = false; 164 : : 165 : 0 : mutex_lock(&vmpr->events_lock); 166 : 0 : list_for_each_entry(ev, &vmpr->events, node) { 167 : 0 : if (ancestor && ev->mode == VMPRESSURE_LOCAL) 168 : 0 : continue; 169 : 0 : if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH) 170 : 0 : continue; 171 : 0 : if (level < ev->level) 172 : 0 : continue; 173 : 0 : eventfd_signal(ev->efd, 1); 174 : : ret = true; 175 : : } 176 : 0 : mutex_unlock(&vmpr->events_lock); 177 : : 178 : 0 : return ret; 179 : : } 180 : : 181 : 0 : static void vmpressure_work_fn(struct work_struct *work) 182 : : { 183 : : struct vmpressure *vmpr = work_to_vmpressure(work); 184 : : unsigned long scanned; 185 : : unsigned long reclaimed; 186 : : enum vmpressure_levels level; 187 : : bool ancestor = false; 188 : : bool signalled = false; 189 : : 190 : : spin_lock(&vmpr->sr_lock); 191 : : /* 192 : : * Several contexts might be calling vmpressure(), so it is 193 : : * possible that the work was rescheduled again before the old 194 : : * work context cleared the counters. In that case we will run 195 : : * just after the old work returns, but then scanned might be zero 196 : : * here. No need for any locks here since we don't care if 197 : : * vmpr->reclaimed is in sync. 198 : : */ 199 : 0 : scanned = vmpr->tree_scanned; 200 : 0 : if (!scanned) { 201 : : spin_unlock(&vmpr->sr_lock); 202 : 0 : return; 203 : : } 204 : : 205 : 0 : reclaimed = vmpr->tree_reclaimed; 206 : 0 : vmpr->tree_scanned = 0; 207 : 0 : vmpr->tree_reclaimed = 0; 208 : : spin_unlock(&vmpr->sr_lock); 209 : : 210 : : level = vmpressure_calc_level(scanned, reclaimed); 211 : : 212 : : do { 213 : 0 : if (vmpressure_event(vmpr, level, ancestor, signalled)) 214 : : signalled = true; 215 : : ancestor = true; 216 : 0 : } while ((vmpr = vmpressure_parent(vmpr))); 217 : : } 218 : : 219 : : /** 220 : : * vmpressure() - Account memory pressure through scanned/reclaimed ratio 221 : : * @gfp: reclaimer's gfp mask 222 : : * @memcg: cgroup memory controller handle 223 : : * @tree: legacy subtree mode 224 : : * @scanned: number of pages scanned 225 : : * @reclaimed: number of pages reclaimed 226 : : * 227 : : * This function should be called from the vmscan reclaim path to account 228 : : * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw 229 : : * pressure index is then further refined and averaged over time. 230 : : * 231 : : * If @tree is set, vmpressure is in traditional userspace reporting 232 : : * mode: @memcg is considered the pressure root and userspace is 233 : : * notified of the entire subtree's reclaim efficiency. 234 : : * 235 : : * If @tree is not set, reclaim efficiency is recorded for @memcg, and 236 : : * only in-kernel users are notified. 237 : : * 238 : : * This function does not return any value. 239 : : */ 240 : 0 : void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree, 241 : : unsigned long scanned, unsigned long reclaimed) 242 : : { 243 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 244 : : 245 : : /* 246 : : * Here we only want to account pressure that userland is able to 247 : : * help us with. For example, suppose that DMA zone is under 248 : : * pressure; if we notify userland about that kind of pressure, 249 : : * then it will be mostly a waste as it will trigger unnecessary 250 : : * freeing of memory by userland (since userland is more likely to 251 : : * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That 252 : : * is why we include only movable, highmem and FS/IO pages. 253 : : * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so 254 : : * we account it too. 255 : : */ 256 : 0 : if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS))) 257 : : return; 258 : : 259 : : /* 260 : : * If we got here with no pages scanned, then that is an indicator 261 : : * that reclaimer was unable to find any shrinkable LRUs at the 262 : : * current scanning depth. But it does not mean that we should 263 : : * report the critical pressure, yet. If the scanning priority 264 : : * (scanning depth) goes too high (deep), we will be notified 265 : : * through vmpressure_prio(). But so far, keep calm. 266 : : */ 267 : 0 : if (!scanned) 268 : : return; 269 : : 270 : 0 : if (tree) { 271 : : spin_lock(&vmpr->sr_lock); 272 : 0 : scanned = vmpr->tree_scanned += scanned; 273 : 0 : vmpr->tree_reclaimed += reclaimed; 274 : : spin_unlock(&vmpr->sr_lock); 275 : : 276 : 0 : if (scanned < vmpressure_win) 277 : : return; 278 : 0 : schedule_work(&vmpr->work); 279 : : } else { 280 : : enum vmpressure_levels level; 281 : : 282 : : /* For now, no users for root-level efficiency */ 283 : 0 : if (!memcg || memcg == root_mem_cgroup) 284 : : return; 285 : : 286 : : spin_lock(&vmpr->sr_lock); 287 : 0 : scanned = vmpr->scanned += scanned; 288 : 0 : reclaimed = vmpr->reclaimed += reclaimed; 289 : 0 : if (scanned < vmpressure_win) { 290 : : spin_unlock(&vmpr->sr_lock); 291 : : return; 292 : : } 293 : 0 : vmpr->scanned = vmpr->reclaimed = 0; 294 : : spin_unlock(&vmpr->sr_lock); 295 : : 296 : : level = vmpressure_calc_level(scanned, reclaimed); 297 : : 298 : 0 : if (level > VMPRESSURE_LOW) { 299 : : /* 300 : : * Let the socket buffer allocator know that 301 : : * we are having trouble reclaiming LRU pages. 302 : : * 303 : : * For hysteresis keep the pressure state 304 : : * asserted for a second in which subsequent 305 : : * pressure events can occur. 306 : : */ 307 : 0 : memcg->socket_pressure = jiffies + HZ; 308 : : } 309 : : } 310 : : } 311 : : 312 : : /** 313 : : * vmpressure_prio() - Account memory pressure through reclaimer priority level 314 : : * @gfp: reclaimer's gfp mask 315 : : * @memcg: cgroup memory controller handle 316 : : * @prio: reclaimer's priority 317 : : * 318 : : * This function should be called from the reclaim path every time when 319 : : * the vmscan's reclaiming priority (scanning depth) changes. 320 : : * 321 : : * This function does not return any value. 322 : : */ 323 : 0 : void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) 324 : : { 325 : : /* 326 : : * We only use prio for accounting critical level. For more info 327 : : * see comment for vmpressure_level_critical_prio variable above. 328 : : */ 329 : 0 : if (prio > vmpressure_level_critical_prio) 330 : 0 : return; 331 : : 332 : : /* 333 : : * OK, the prio is below the threshold, updating vmpressure 334 : : * information before shrinker dives into long shrinking of long 335 : : * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0 336 : : * to the vmpressure() basically means that we signal 'critical' 337 : : * level. 338 : : */ 339 : 0 : vmpressure(gfp, memcg, true, vmpressure_win, 0); 340 : : } 341 : : 342 : : #define MAX_VMPRESSURE_ARGS_LEN (strlen("critical") + strlen("hierarchy") + 2) 343 : : 344 : : /** 345 : : * vmpressure_register_event() - Bind vmpressure notifications to an eventfd 346 : : * @memcg: memcg that is interested in vmpressure notifications 347 : : * @eventfd: eventfd context to link notifications with 348 : : * @args: event arguments (pressure level threshold, optional mode) 349 : : * 350 : : * This function associates eventfd context with the vmpressure 351 : : * infrastructure, so that the notifications will be delivered to the 352 : : * @eventfd. The @args parameter is a comma-delimited string that denotes a 353 : : * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium", 354 : : * or "critical") and an optional mode (one of vmpressure_str_modes, i.e. 355 : : * "hierarchy" or "local"). 356 : : * 357 : : * To be used as memcg event method. 358 : : * 359 : : * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could 360 : : * not be parsed. 361 : : */ 362 : 0 : int vmpressure_register_event(struct mem_cgroup *memcg, 363 : : struct eventfd_ctx *eventfd, const char *args) 364 : : { 365 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 366 : : struct vmpressure_event *ev; 367 : : enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH; 368 : : enum vmpressure_levels level; 369 : : char *spec, *spec_orig; 370 : : char *token; 371 : : int ret = 0; 372 : : 373 : 0 : spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL); 374 : 0 : if (!spec) { 375 : : ret = -ENOMEM; 376 : : goto out; 377 : : } 378 : : 379 : : /* Find required level */ 380 : 0 : token = strsep(&spec, ","); 381 : 0 : ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token); 382 : 0 : if (ret < 0) 383 : : goto out; 384 : 0 : level = ret; 385 : : 386 : : /* Find optional mode */ 387 : 0 : token = strsep(&spec, ","); 388 : 0 : if (token) { 389 : 0 : ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token); 390 : 0 : if (ret < 0) 391 : : goto out; 392 : 0 : mode = ret; 393 : : } 394 : : 395 : 0 : ev = kzalloc(sizeof(*ev), GFP_KERNEL); 396 : 0 : if (!ev) { 397 : : ret = -ENOMEM; 398 : : goto out; 399 : : } 400 : : 401 : 0 : ev->efd = eventfd; 402 : 0 : ev->level = level; 403 : 0 : ev->mode = mode; 404 : : 405 : 0 : mutex_lock(&vmpr->events_lock); 406 : 0 : list_add(&ev->node, &vmpr->events); 407 : 0 : mutex_unlock(&vmpr->events_lock); 408 : : ret = 0; 409 : : out: 410 : 0 : kfree(spec_orig); 411 : 0 : return ret; 412 : : } 413 : : 414 : : /** 415 : : * vmpressure_unregister_event() - Unbind eventfd from vmpressure 416 : : * @memcg: memcg handle 417 : : * @eventfd: eventfd context that was used to link vmpressure with the @cg 418 : : * 419 : : * This function does internal manipulations to detach the @eventfd from 420 : : * the vmpressure notifications, and then frees internal resources 421 : : * associated with the @eventfd (but the @eventfd itself is not freed). 422 : : * 423 : : * To be used as memcg event method. 424 : : */ 425 : 0 : void vmpressure_unregister_event(struct mem_cgroup *memcg, 426 : : struct eventfd_ctx *eventfd) 427 : : { 428 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg); 429 : : struct vmpressure_event *ev; 430 : : 431 : 0 : mutex_lock(&vmpr->events_lock); 432 : 0 : list_for_each_entry(ev, &vmpr->events, node) { 433 : 0 : if (ev->efd != eventfd) 434 : 0 : continue; 435 : : list_del(&ev->node); 436 : 0 : kfree(ev); 437 : 0 : break; 438 : : } 439 : 0 : mutex_unlock(&vmpr->events_lock); 440 : 0 : } 441 : : 442 : : /** 443 : : * vmpressure_init() - Initialize vmpressure control structure 444 : : * @vmpr: Structure to be initialized 445 : : * 446 : : * This function should be called on every allocated vmpressure structure 447 : : * before any usage. 448 : : */ 449 : 3 : void vmpressure_init(struct vmpressure *vmpr) 450 : : { 451 : 3 : spin_lock_init(&vmpr->sr_lock); 452 : 3 : mutex_init(&vmpr->events_lock); 453 : 3 : INIT_LIST_HEAD(&vmpr->events); 454 : 3 : INIT_WORK(&vmpr->work, vmpressure_work_fn); 455 : 3 : } 456 : : 457 : : /** 458 : : * vmpressure_cleanup() - shuts down vmpressure control structure 459 : : * @vmpr: Structure to be cleaned up 460 : : * 461 : : * This function should be called before the structure in which it is 462 : : * embedded is cleaned up. 463 : : */ 464 : 0 : void vmpressure_cleanup(struct vmpressure *vmpr) 465 : : { 466 : : /* 467 : : * Make sure there is no pending work before eventfd infrastructure 468 : : * goes away. 469 : : */ 470 : 0 : flush_work(&vmpr->work); 471 : 0 : }