Branch data Line data Source code
1 : : /*
2 : : * arch/arm/kernel/topology.c
3 : : *
4 : : * Copyright (C) 2011 Linaro Limited.
5 : : * Written by: Vincent Guittot
6 : : *
7 : : * based on arch/sh/kernel/topology.c
8 : : *
9 : : * This file is subject to the terms and conditions of the GNU General Public
10 : : * License. See the file "COPYING" in the main directory of this archive
11 : : * for more details.
12 : : */
13 : :
14 : : #include <linux/arch_topology.h>
15 : : #include <linux/cpu.h>
16 : : #include <linux/cpufreq.h>
17 : : #include <linux/cpumask.h>
18 : : #include <linux/export.h>
19 : : #include <linux/init.h>
20 : : #include <linux/percpu.h>
21 : : #include <linux/node.h>
22 : : #include <linux/nodemask.h>
23 : : #include <linux/of.h>
24 : : #include <linux/sched.h>
25 : : #include <linux/sched/topology.h>
26 : : #include <linux/slab.h>
27 : : #include <linux/string.h>
28 : :
29 : : #include <asm/cpu.h>
30 : : #include <asm/cputype.h>
31 : : #include <asm/topology.h>
32 : :
33 : : /*
34 : : * cpu capacity scale management
35 : : */
36 : :
37 : : /*
38 : : * cpu capacity table
39 : : * This per cpu data structure describes the relative capacity of each core.
40 : : * On a heteregenous system, cores don't have the same computation capacity
41 : : * and we reflect that difference in the cpu_capacity field so the scheduler
42 : : * can take this difference into account during load balance. A per cpu
43 : : * structure is preferred because each CPU updates its own cpu_capacity field
44 : : * during the load balance except for idle cores. One idle core is selected
45 : : * to run the rebalance_domains for all idle cores and the cpu_capacity can be
46 : : * updated during this sequence.
47 : : */
48 : :
49 : : #ifdef CONFIG_OF
50 : : struct cpu_efficiency {
51 : : const char *compatible;
52 : : unsigned long efficiency;
53 : : };
54 : :
55 : : /*
56 : : * Table of relative efficiency of each processors
57 : : * The efficiency value must fit in 20bit and the final
58 : : * cpu_scale value must be in the range
59 : : * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
60 : : * in order to return at most 1 when DIV_ROUND_CLOSEST
61 : : * is used to compute the capacity of a CPU.
62 : : * Processors that are not defined in the table,
63 : : * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
64 : : */
65 : : static const struct cpu_efficiency table_efficiency[] = {
66 : : {"arm,cortex-a15", 3891},
67 : : {"arm,cortex-a7", 2048},
68 : : {NULL, },
69 : : };
70 : :
71 : : static unsigned long *__cpu_capacity;
72 : : #define cpu_capacity(cpu) __cpu_capacity[cpu]
73 : :
74 : : static unsigned long middle_capacity = 1;
75 : : static bool cap_from_dt = true;
76 : :
77 : : /*
78 : : * Iterate all CPUs' descriptor in DT and compute the efficiency
79 : : * (as per table_efficiency). Also calculate a middle efficiency
80 : : * as close as possible to (max{eff_i} - min{eff_i}) / 2
81 : : * This is later used to scale the cpu_capacity field such that an
82 : : * 'average' CPU is of middle capacity. Also see the comments near
83 : : * table_efficiency[] and update_cpu_capacity().
84 : : */
85 : 404 : static void __init parse_dt_topology(void)
86 : : {
87 : : const struct cpu_efficiency *cpu_eff;
88 : : struct device_node *cn = NULL;
89 : : unsigned long min_capacity = ULONG_MAX;
90 : : unsigned long max_capacity = 0;
91 : : unsigned long capacity = 0;
92 : : int cpu = 0;
93 : :
94 : 808 : __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
95 : : GFP_NOWAIT);
96 : :
97 [ + + ]: 2424 : for_each_possible_cpu(cpu) {
98 : : const u32 *rate;
99 : : int len;
100 : :
101 : : /* too early to use cpu->of_node */
102 : 1616 : cn = of_get_cpu_node(cpu, NULL);
103 [ - + ]: 1616 : if (!cn) {
104 : 0 : pr_err("missing device node for CPU %d\n", cpu);
105 : 0 : continue;
106 : : }
107 : :
108 [ - + ]: 1616 : if (topology_parse_cpu_capacity(cn, cpu)) {
109 : 0 : of_node_put(cn);
110 : 0 : continue;
111 : : }
112 : :
113 : 1616 : cap_from_dt = false;
114 : :
115 [ + - ]: 3232 : for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116 [ + + ]: 3232 : if (of_device_is_compatible(cn, cpu_eff->compatible))
117 : : break;
118 : :
119 [ - + ]: 1616 : if (cpu_eff->compatible == NULL)
120 : 0 : continue;
121 : :
122 : 1616 : rate = of_get_property(cn, "clock-frequency", &len);
123 [ + - - + ]: 1616 : if (!rate || len != 4) {
124 : 0 : pr_err("%pOF missing clock-frequency property\n", cn);
125 : 0 : continue;
126 : : }
127 : :
128 : 1616 : capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129 : :
130 : : /* Save min capacity of the system */
131 [ + + ]: 1616 : if (capacity < min_capacity)
132 : : min_capacity = capacity;
133 : :
134 : : /* Save max capacity of the system */
135 [ + + ]: 1616 : if (capacity > max_capacity)
136 : : max_capacity = capacity;
137 : :
138 : 1616 : cpu_capacity(cpu) = capacity;
139 : : }
140 : :
141 : : /* If min and max capacities are equals, we bypass the update of the
142 : : * cpu_scale because all CPUs have the same capacity. Otherwise, we
143 : : * compute a middle_capacity factor that will ensure that the capacity
144 : : * of an 'average' CPU of the system will be as close as possible to
145 : : * SCHED_CAPACITY_SCALE, which is the default value, but with the
146 : : * constraint explained near table_efficiency[].
147 : : */
148 [ + - ]: 404 : if (4*max_capacity < (3*(max_capacity + min_capacity)))
149 : 404 : middle_capacity = (min_capacity + max_capacity)
150 : 404 : >> (SCHED_CAPACITY_SHIFT+1);
151 : : else
152 : 0 : middle_capacity = ((max_capacity / 3)
153 : 0 : >> (SCHED_CAPACITY_SHIFT-1)) + 1;
154 : :
155 [ - + ]: 404 : if (cap_from_dt)
156 : 0 : topology_normalize_cpu_scale();
157 : 404 : }
158 : :
159 : : /*
160 : : * Look for a customed capacity of a CPU in the cpu_capacity table during the
161 : : * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162 : : * function returns directly for SMP system.
163 : : */
164 : 1616 : static void update_cpu_capacity(unsigned int cpu)
165 : : {
166 [ + - + - ]: 1616 : if (!cpu_capacity(cpu) || cap_from_dt)
167 : 1616 : return;
168 : :
169 : 1616 : topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170 : :
171 : 3232 : pr_info("CPU%u: update cpu_capacity %lu\n",
172 : : cpu, topology_get_cpu_scale(cpu));
173 : : }
174 : :
175 : : #else
176 : : static inline void parse_dt_topology(void) {}
177 : : static inline void update_cpu_capacity(unsigned int cpuid) {}
178 : : #endif
179 : :
180 : : /*
181 : : * The current assumption is that we can power gate each core independently.
182 : : * This will be superseded by DT binding once available.
183 : : */
184 : 0 : const struct cpumask *cpu_corepower_mask(int cpu)
185 : : {
186 : 0 : return &cpu_topology[cpu].thread_sibling;
187 : : }
188 : :
189 : : /*
190 : : * store_cpu_topology is called at boot when only one cpu is running
191 : : * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
192 : : * which prevents simultaneous write access to cpu_topology array
193 : : */
194 : 1616 : void store_cpu_topology(unsigned int cpuid)
195 : : {
196 : : struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
197 : : unsigned int mpidr;
198 : :
199 [ + - ]: 1616 : if (cpuid_topo->package_id != -1)
200 : : goto topology_populated;
201 : :
202 : : mpidr = read_cpuid_mpidr();
203 : :
204 : : /* create cpu topology mapping */
205 [ + - ]: 1616 : if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
206 : : /*
207 : : * This is a multiprocessor system
208 : : * multiprocessor format & multiprocessor mode field are set
209 : : */
210 : :
211 [ - + ]: 1616 : if (mpidr & MPIDR_MT_BITMASK) {
212 : : /* core performance interdependency */
213 : 0 : cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
214 : 0 : cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
215 : 0 : cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
216 : : } else {
217 : : /* largely independent cores */
218 : 1616 : cpuid_topo->thread_id = -1;
219 : 1616 : cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
220 : 1616 : cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
221 : : }
222 : : } else {
223 : : /*
224 : : * This is an uniprocessor system
225 : : * we are in multiprocessor format but uniprocessor system
226 : : * or in the old uniprocessor format
227 : : */
228 : 0 : cpuid_topo->thread_id = -1;
229 : 0 : cpuid_topo->core_id = 0;
230 : 0 : cpuid_topo->package_id = -1;
231 : : }
232 : :
233 : 1616 : update_cpu_capacity(cpuid);
234 : :
235 : 1616 : pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
236 : : cpuid, cpu_topology[cpuid].thread_id,
237 : : cpu_topology[cpuid].core_id,
238 : : cpu_topology[cpuid].package_id, mpidr);
239 : :
240 : : topology_populated:
241 : 1616 : update_siblings_masks(cpuid);
242 : 1616 : }
243 : :
244 : : static inline int cpu_corepower_flags(void)
245 : : {
246 : : return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
247 : : }
248 : :
249 : : static struct sched_domain_topology_level arm_topology[] = {
250 : : #ifdef CONFIG_SCHED_MC
251 : : { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
252 : : { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
253 : : #endif
254 : : { cpu_cpu_mask, SD_INIT_NAME(DIE) },
255 : : { NULL, },
256 : : };
257 : :
258 : : /*
259 : : * init_cpu_topology is called at boot when only one cpu is running
260 : : * which prevent simultaneous write access to cpu_topology array
261 : : */
262 : 404 : void __init init_cpu_topology(void)
263 : : {
264 : 404 : reset_cpu_topology();
265 : 404 : smp_wmb();
266 : :
267 : 404 : parse_dt_topology();
268 : :
269 : : /* Set scheduler topology descriptor */
270 : 404 : set_sched_topology(arm_topology);
271 : 404 : }
|