Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : : /*
3 : : * Symmetric key ciphers.
4 : : *
5 : : * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 : : */
7 : :
8 : : #ifndef _CRYPTO_SKCIPHER_H
9 : : #define _CRYPTO_SKCIPHER_H
10 : :
11 : : #include <linux/crypto.h>
12 : : #include <linux/kernel.h>
13 : : #include <linux/slab.h>
14 : :
15 : : /**
16 : : * struct skcipher_request - Symmetric key cipher request
17 : : * @cryptlen: Number of bytes to encrypt or decrypt
18 : : * @iv: Initialisation Vector
19 : : * @src: Source SG list
20 : : * @dst: Destination SG list
21 : : * @base: Underlying async request request
22 : : * @__ctx: Start of private context data
23 : : */
24 : : struct skcipher_request {
25 : : unsigned int cryptlen;
26 : :
27 : : u8 *iv;
28 : :
29 : : struct scatterlist *src;
30 : : struct scatterlist *dst;
31 : :
32 : : struct crypto_async_request base;
33 : :
34 : : void *__ctx[] CRYPTO_MINALIGN_ATTR;
35 : : };
36 : :
37 : : struct crypto_skcipher {
38 : : int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
39 : : unsigned int keylen);
40 : : int (*encrypt)(struct skcipher_request *req);
41 : : int (*decrypt)(struct skcipher_request *req);
42 : :
43 : : unsigned int ivsize;
44 : : unsigned int reqsize;
45 : : unsigned int keysize;
46 : :
47 : : struct crypto_tfm base;
48 : : };
49 : :
50 : : struct crypto_sync_skcipher {
51 : : struct crypto_skcipher base;
52 : : };
53 : :
54 : : /**
55 : : * struct skcipher_alg - symmetric key cipher definition
56 : : * @min_keysize: Minimum key size supported by the transformation. This is the
57 : : * smallest key length supported by this transformation algorithm.
58 : : * This must be set to one of the pre-defined values as this is
59 : : * not hardware specific. Possible values for this field can be
60 : : * found via git grep "_MIN_KEY_SIZE" include/crypto/
61 : : * @max_keysize: Maximum key size supported by the transformation. This is the
62 : : * largest key length supported by this transformation algorithm.
63 : : * This must be set to one of the pre-defined values as this is
64 : : * not hardware specific. Possible values for this field can be
65 : : * found via git grep "_MAX_KEY_SIZE" include/crypto/
66 : : * @setkey: Set key for the transformation. This function is used to either
67 : : * program a supplied key into the hardware or store the key in the
68 : : * transformation context for programming it later. Note that this
69 : : * function does modify the transformation context. This function can
70 : : * be called multiple times during the existence of the transformation
71 : : * object, so one must make sure the key is properly reprogrammed into
72 : : * the hardware. This function is also responsible for checking the key
73 : : * length for validity. In case a software fallback was put in place in
74 : : * the @cra_init call, this function might need to use the fallback if
75 : : * the algorithm doesn't support all of the key sizes.
76 : : * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
77 : : * the supplied scatterlist containing the blocks of data. The crypto
78 : : * API consumer is responsible for aligning the entries of the
79 : : * scatterlist properly and making sure the chunks are correctly
80 : : * sized. In case a software fallback was put in place in the
81 : : * @cra_init call, this function might need to use the fallback if
82 : : * the algorithm doesn't support all of the key sizes. In case the
83 : : * key was stored in transformation context, the key might need to be
84 : : * re-programmed into the hardware in this function. This function
85 : : * shall not modify the transformation context, as this function may
86 : : * be called in parallel with the same transformation object.
87 : : * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
88 : : * and the conditions are exactly the same.
89 : : * @init: Initialize the cryptographic transformation object. This function
90 : : * is used to initialize the cryptographic transformation object.
91 : : * This function is called only once at the instantiation time, right
92 : : * after the transformation context was allocated. In case the
93 : : * cryptographic hardware has some special requirements which need to
94 : : * be handled by software, this function shall check for the precise
95 : : * requirement of the transformation and put any software fallbacks
96 : : * in place.
97 : : * @exit: Deinitialize the cryptographic transformation object. This is a
98 : : * counterpart to @init, used to remove various changes set in
99 : : * @init.
100 : : * @ivsize: IV size applicable for transformation. The consumer must provide an
101 : : * IV of exactly that size to perform the encrypt or decrypt operation.
102 : : * @chunksize: Equal to the block size except for stream ciphers such as
103 : : * CTR where it is set to the underlying block size.
104 : : * @walksize: Equal to the chunk size except in cases where the algorithm is
105 : : * considerably more efficient if it can operate on multiple chunks
106 : : * in parallel. Should be a multiple of chunksize.
107 : : * @base: Definition of a generic crypto algorithm.
108 : : *
109 : : * All fields except @ivsize are mandatory and must be filled.
110 : : */
111 : : struct skcipher_alg {
112 : : int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
113 : : unsigned int keylen);
114 : : int (*encrypt)(struct skcipher_request *req);
115 : : int (*decrypt)(struct skcipher_request *req);
116 : : int (*init)(struct crypto_skcipher *tfm);
117 : : void (*exit)(struct crypto_skcipher *tfm);
118 : :
119 : : unsigned int min_keysize;
120 : : unsigned int max_keysize;
121 : : unsigned int ivsize;
122 : : unsigned int chunksize;
123 : : unsigned int walksize;
124 : :
125 : : struct crypto_alg base;
126 : : };
127 : :
128 : : #define MAX_SYNC_SKCIPHER_REQSIZE 384
129 : : /*
130 : : * This performs a type-check against the "tfm" argument to make sure
131 : : * all users have the correct skcipher tfm for doing on-stack requests.
132 : : */
133 : : #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
134 : : char __##name##_desc[sizeof(struct skcipher_request) + \
135 : : MAX_SYNC_SKCIPHER_REQSIZE + \
136 : : (!(sizeof((struct crypto_sync_skcipher *)1 == \
137 : : (typeof(tfm))1))) \
138 : : ] CRYPTO_MINALIGN_ATTR; \
139 : : struct skcipher_request *name = (void *)__##name##_desc
140 : :
141 : : /**
142 : : * DOC: Symmetric Key Cipher API
143 : : *
144 : : * Symmetric key cipher API is used with the ciphers of type
145 : : * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
146 : : *
147 : : * Asynchronous cipher operations imply that the function invocation for a
148 : : * cipher request returns immediately before the completion of the operation.
149 : : * The cipher request is scheduled as a separate kernel thread and therefore
150 : : * load-balanced on the different CPUs via the process scheduler. To allow
151 : : * the kernel crypto API to inform the caller about the completion of a cipher
152 : : * request, the caller must provide a callback function. That function is
153 : : * invoked with the cipher handle when the request completes.
154 : : *
155 : : * To support the asynchronous operation, additional information than just the
156 : : * cipher handle must be supplied to the kernel crypto API. That additional
157 : : * information is given by filling in the skcipher_request data structure.
158 : : *
159 : : * For the symmetric key cipher API, the state is maintained with the tfm
160 : : * cipher handle. A single tfm can be used across multiple calls and in
161 : : * parallel. For asynchronous block cipher calls, context data supplied and
162 : : * only used by the caller can be referenced the request data structure in
163 : : * addition to the IV used for the cipher request. The maintenance of such
164 : : * state information would be important for a crypto driver implementer to
165 : : * have, because when calling the callback function upon completion of the
166 : : * cipher operation, that callback function may need some information about
167 : : * which operation just finished if it invoked multiple in parallel. This
168 : : * state information is unused by the kernel crypto API.
169 : : */
170 : :
171 : : static inline struct crypto_skcipher *__crypto_skcipher_cast(
172 : : struct crypto_tfm *tfm)
173 : : {
174 : 0 : return container_of(tfm, struct crypto_skcipher, base);
175 : : }
176 : :
177 : : /**
178 : : * crypto_alloc_skcipher() - allocate symmetric key cipher handle
179 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
180 : : * skcipher cipher
181 : : * @type: specifies the type of the cipher
182 : : * @mask: specifies the mask for the cipher
183 : : *
184 : : * Allocate a cipher handle for an skcipher. The returned struct
185 : : * crypto_skcipher is the cipher handle that is required for any subsequent
186 : : * API invocation for that skcipher.
187 : : *
188 : : * Return: allocated cipher handle in case of success; IS_ERR() is true in case
189 : : * of an error, PTR_ERR() returns the error code.
190 : : */
191 : : struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
192 : : u32 type, u32 mask);
193 : :
194 : : struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
195 : : u32 type, u32 mask);
196 : :
197 : : static inline struct crypto_tfm *crypto_skcipher_tfm(
198 : : struct crypto_skcipher *tfm)
199 : : {
200 : 0 : return &tfm->base;
201 : : }
202 : :
203 : : /**
204 : : * crypto_free_skcipher() - zeroize and free cipher handle
205 : : * @tfm: cipher handle to be freed
206 : : */
207 : : static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
208 : : {
209 : 0 : crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
210 : : }
211 : :
212 : : static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
213 : : {
214 : 0 : crypto_free_skcipher(&tfm->base);
215 : : }
216 : :
217 : : /**
218 : : * crypto_has_skcipher() - Search for the availability of an skcipher.
219 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
220 : : * skcipher
221 : : * @type: specifies the type of the cipher
222 : : * @mask: specifies the mask for the cipher
223 : : *
224 : : * Return: true when the skcipher is known to the kernel crypto API; false
225 : : * otherwise
226 : : */
227 : : static inline int crypto_has_skcipher(const char *alg_name, u32 type,
228 : : u32 mask)
229 : : {
230 : 0 : return crypto_has_alg(alg_name, crypto_skcipher_type(type),
231 : : crypto_skcipher_mask(mask));
232 : : }
233 : :
234 : : /**
235 : : * crypto_has_skcipher2() - Search for the availability of an skcipher.
236 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
237 : : * skcipher
238 : : * @type: specifies the type of the skcipher
239 : : * @mask: specifies the mask for the skcipher
240 : : *
241 : : * Return: true when the skcipher is known to the kernel crypto API; false
242 : : * otherwise
243 : : */
244 : : int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
245 : :
246 : : static inline const char *crypto_skcipher_driver_name(
247 : : struct crypto_skcipher *tfm)
248 : : {
249 : : return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
250 : : }
251 : :
252 : : static inline struct skcipher_alg *crypto_skcipher_alg(
253 : : struct crypto_skcipher *tfm)
254 : : {
255 : 0 : return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
256 : : struct skcipher_alg, base);
257 : : }
258 : :
259 : : static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
260 : : {
261 [ # # ]: 0 : if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
262 : : CRYPTO_ALG_TYPE_BLKCIPHER)
263 : 0 : return alg->base.cra_blkcipher.ivsize;
264 : :
265 [ # # ]: 0 : if (alg->base.cra_ablkcipher.encrypt)
266 : 0 : return alg->base.cra_ablkcipher.ivsize;
267 : :
268 : 0 : return alg->ivsize;
269 : : }
270 : :
271 : : /**
272 : : * crypto_skcipher_ivsize() - obtain IV size
273 : : * @tfm: cipher handle
274 : : *
275 : : * The size of the IV for the skcipher referenced by the cipher handle is
276 : : * returned. This IV size may be zero if the cipher does not need an IV.
277 : : *
278 : : * Return: IV size in bytes
279 : : */
280 : : static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
281 : : {
282 : 0 : return tfm->ivsize;
283 : : }
284 : :
285 : : static inline unsigned int crypto_sync_skcipher_ivsize(
286 : : struct crypto_sync_skcipher *tfm)
287 : : {
288 : : return crypto_skcipher_ivsize(&tfm->base);
289 : : }
290 : :
291 : : /**
292 : : * crypto_skcipher_blocksize() - obtain block size of cipher
293 : : * @tfm: cipher handle
294 : : *
295 : : * The block size for the skcipher referenced with the cipher handle is
296 : : * returned. The caller may use that information to allocate appropriate
297 : : * memory for the data returned by the encryption or decryption operation
298 : : *
299 : : * Return: block size of cipher
300 : : */
301 : : static inline unsigned int crypto_skcipher_blocksize(
302 : : struct crypto_skcipher *tfm)
303 : : {
304 : : return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
305 : : }
306 : :
307 : : static inline unsigned int crypto_skcipher_alg_chunksize(
308 : : struct skcipher_alg *alg)
309 : : {
310 [ # # ]: 0 : if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
311 : : CRYPTO_ALG_TYPE_BLKCIPHER)
312 : 0 : return alg->base.cra_blocksize;
313 : :
314 [ # # ]: 0 : if (alg->base.cra_ablkcipher.encrypt)
315 : 0 : return alg->base.cra_blocksize;
316 : :
317 : 0 : return alg->chunksize;
318 : : }
319 : :
320 : : /**
321 : : * crypto_skcipher_chunksize() - obtain chunk size
322 : : * @tfm: cipher handle
323 : : *
324 : : * The block size is set to one for ciphers such as CTR. However,
325 : : * you still need to provide incremental updates in multiples of
326 : : * the underlying block size as the IV does not have sub-block
327 : : * granularity. This is known in this API as the chunk size.
328 : : *
329 : : * Return: chunk size in bytes
330 : : */
331 : : static inline unsigned int crypto_skcipher_chunksize(
332 : : struct crypto_skcipher *tfm)
333 : : {
334 : : return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
335 : : }
336 : :
337 : : static inline unsigned int crypto_sync_skcipher_blocksize(
338 : : struct crypto_sync_skcipher *tfm)
339 : : {
340 : : return crypto_skcipher_blocksize(&tfm->base);
341 : : }
342 : :
343 : : static inline unsigned int crypto_skcipher_alignmask(
344 : : struct crypto_skcipher *tfm)
345 : : {
346 : : return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
347 : : }
348 : :
349 : : static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
350 : : {
351 : : return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
352 : : }
353 : :
354 : : static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
355 : : u32 flags)
356 : : {
357 : : crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
358 : : }
359 : :
360 : : static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
361 : : u32 flags)
362 : : {
363 : : crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
364 : : }
365 : :
366 : : static inline u32 crypto_sync_skcipher_get_flags(
367 : : struct crypto_sync_skcipher *tfm)
368 : : {
369 : : return crypto_skcipher_get_flags(&tfm->base);
370 : : }
371 : :
372 : : static inline void crypto_sync_skcipher_set_flags(
373 : : struct crypto_sync_skcipher *tfm, u32 flags)
374 : : {
375 : : crypto_skcipher_set_flags(&tfm->base, flags);
376 : : }
377 : :
378 : : static inline void crypto_sync_skcipher_clear_flags(
379 : : struct crypto_sync_skcipher *tfm, u32 flags)
380 : : {
381 : : crypto_skcipher_clear_flags(&tfm->base, flags);
382 : : }
383 : :
384 : : /**
385 : : * crypto_skcipher_setkey() - set key for cipher
386 : : * @tfm: cipher handle
387 : : * @key: buffer holding the key
388 : : * @keylen: length of the key in bytes
389 : : *
390 : : * The caller provided key is set for the skcipher referenced by the cipher
391 : : * handle.
392 : : *
393 : : * Note, the key length determines the cipher type. Many block ciphers implement
394 : : * different cipher modes depending on the key size, such as AES-128 vs AES-192
395 : : * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
396 : : * is performed.
397 : : *
398 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred
399 : : */
400 : : static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
401 : : const u8 *key, unsigned int keylen)
402 : : {
403 : 0 : return tfm->setkey(tfm, key, keylen);
404 : : }
405 : :
406 : : static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
407 : : const u8 *key, unsigned int keylen)
408 : : {
409 : : return crypto_skcipher_setkey(&tfm->base, key, keylen);
410 : : }
411 : :
412 : : static inline unsigned int crypto_skcipher_default_keysize(
413 : : struct crypto_skcipher *tfm)
414 : : {
415 : : return tfm->keysize;
416 : : }
417 : :
418 : : /**
419 : : * crypto_skcipher_reqtfm() - obtain cipher handle from request
420 : : * @req: skcipher_request out of which the cipher handle is to be obtained
421 : : *
422 : : * Return the crypto_skcipher handle when furnishing an skcipher_request
423 : : * data structure.
424 : : *
425 : : * Return: crypto_skcipher handle
426 : : */
427 : : static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
428 : : struct skcipher_request *req)
429 : : {
430 : 0 : return __crypto_skcipher_cast(req->base.tfm);
431 : : }
432 : :
433 : : static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
434 : : struct skcipher_request *req)
435 : : {
436 : : struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
437 : :
438 : : return container_of(tfm, struct crypto_sync_skcipher, base);
439 : : }
440 : :
441 : : /**
442 : : * crypto_skcipher_encrypt() - encrypt plaintext
443 : : * @req: reference to the skcipher_request handle that holds all information
444 : : * needed to perform the cipher operation
445 : : *
446 : : * Encrypt plaintext data using the skcipher_request handle. That data
447 : : * structure and how it is filled with data is discussed with the
448 : : * skcipher_request_* functions.
449 : : *
450 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
451 : : */
452 : : int crypto_skcipher_encrypt(struct skcipher_request *req);
453 : :
454 : : /**
455 : : * crypto_skcipher_decrypt() - decrypt ciphertext
456 : : * @req: reference to the skcipher_request handle that holds all information
457 : : * needed to perform the cipher operation
458 : : *
459 : : * Decrypt ciphertext data using the skcipher_request handle. That data
460 : : * structure and how it is filled with data is discussed with the
461 : : * skcipher_request_* functions.
462 : : *
463 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
464 : : */
465 : : int crypto_skcipher_decrypt(struct skcipher_request *req);
466 : :
467 : : /**
468 : : * DOC: Symmetric Key Cipher Request Handle
469 : : *
470 : : * The skcipher_request data structure contains all pointers to data
471 : : * required for the symmetric key cipher operation. This includes the cipher
472 : : * handle (which can be used by multiple skcipher_request instances), pointer
473 : : * to plaintext and ciphertext, asynchronous callback function, etc. It acts
474 : : * as a handle to the skcipher_request_* API calls in a similar way as
475 : : * skcipher handle to the crypto_skcipher_* API calls.
476 : : */
477 : :
478 : : /**
479 : : * crypto_skcipher_reqsize() - obtain size of the request data structure
480 : : * @tfm: cipher handle
481 : : *
482 : : * Return: number of bytes
483 : : */
484 : : static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
485 : : {
486 : 0 : return tfm->reqsize;
487 : : }
488 : :
489 : : /**
490 : : * skcipher_request_set_tfm() - update cipher handle reference in request
491 : : * @req: request handle to be modified
492 : : * @tfm: cipher handle that shall be added to the request handle
493 : : *
494 : : * Allow the caller to replace the existing skcipher handle in the request
495 : : * data structure with a different one.
496 : : */
497 : : static inline void skcipher_request_set_tfm(struct skcipher_request *req,
498 : : struct crypto_skcipher *tfm)
499 : : {
500 : 0 : req->base.tfm = crypto_skcipher_tfm(tfm);
501 : : }
502 : :
503 : : static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
504 : : struct crypto_sync_skcipher *tfm)
505 : : {
506 : : skcipher_request_set_tfm(req, &tfm->base);
507 : : }
508 : :
509 : : static inline struct skcipher_request *skcipher_request_cast(
510 : : struct crypto_async_request *req)
511 : : {
512 : : return container_of(req, struct skcipher_request, base);
513 : : }
514 : :
515 : : /**
516 : : * skcipher_request_alloc() - allocate request data structure
517 : : * @tfm: cipher handle to be registered with the request
518 : : * @gfp: memory allocation flag that is handed to kmalloc by the API call.
519 : : *
520 : : * Allocate the request data structure that must be used with the skcipher
521 : : * encrypt and decrypt API calls. During the allocation, the provided skcipher
522 : : * handle is registered in the request data structure.
523 : : *
524 : : * Return: allocated request handle in case of success, or NULL if out of memory
525 : : */
526 : 0 : static inline struct skcipher_request *skcipher_request_alloc(
527 : : struct crypto_skcipher *tfm, gfp_t gfp)
528 : : {
529 : : struct skcipher_request *req;
530 : :
531 : 0 : req = kmalloc(sizeof(struct skcipher_request) +
532 : : crypto_skcipher_reqsize(tfm), gfp);
533 : :
534 [ # # ]: 0 : if (likely(req))
535 : : skcipher_request_set_tfm(req, tfm);
536 : :
537 : 0 : return req;
538 : : }
539 : :
540 : : /**
541 : : * skcipher_request_free() - zeroize and free request data structure
542 : : * @req: request data structure cipher handle to be freed
543 : : */
544 : : static inline void skcipher_request_free(struct skcipher_request *req)
545 : : {
546 : 0 : kzfree(req);
547 : : }
548 : :
549 : : static inline void skcipher_request_zero(struct skcipher_request *req)
550 : : {
551 : : struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
552 : :
553 : : memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
554 : : }
555 : :
556 : : /**
557 : : * skcipher_request_set_callback() - set asynchronous callback function
558 : : * @req: request handle
559 : : * @flags: specify zero or an ORing of the flags
560 : : * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
561 : : * increase the wait queue beyond the initial maximum size;
562 : : * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
563 : : * @compl: callback function pointer to be registered with the request handle
564 : : * @data: The data pointer refers to memory that is not used by the kernel
565 : : * crypto API, but provided to the callback function for it to use. Here,
566 : : * the caller can provide a reference to memory the callback function can
567 : : * operate on. As the callback function is invoked asynchronously to the
568 : : * related functionality, it may need to access data structures of the
569 : : * related functionality which can be referenced using this pointer. The
570 : : * callback function can access the memory via the "data" field in the
571 : : * crypto_async_request data structure provided to the callback function.
572 : : *
573 : : * This function allows setting the callback function that is triggered once the
574 : : * cipher operation completes.
575 : : *
576 : : * The callback function is registered with the skcipher_request handle and
577 : : * must comply with the following template::
578 : : *
579 : : * void callback_function(struct crypto_async_request *req, int error)
580 : : */
581 : : static inline void skcipher_request_set_callback(struct skcipher_request *req,
582 : : u32 flags,
583 : : crypto_completion_t compl,
584 : : void *data)
585 : : {
586 : 0 : req->base.complete = compl;
587 : 0 : req->base.data = data;
588 : 0 : req->base.flags = flags;
589 : : }
590 : :
591 : : /**
592 : : * skcipher_request_set_crypt() - set data buffers
593 : : * @req: request handle
594 : : * @src: source scatter / gather list
595 : : * @dst: destination scatter / gather list
596 : : * @cryptlen: number of bytes to process from @src
597 : : * @iv: IV for the cipher operation which must comply with the IV size defined
598 : : * by crypto_skcipher_ivsize
599 : : *
600 : : * This function allows setting of the source data and destination data
601 : : * scatter / gather lists.
602 : : *
603 : : * For encryption, the source is treated as the plaintext and the
604 : : * destination is the ciphertext. For a decryption operation, the use is
605 : : * reversed - the source is the ciphertext and the destination is the plaintext.
606 : : */
607 : : static inline void skcipher_request_set_crypt(
608 : : struct skcipher_request *req,
609 : : struct scatterlist *src, struct scatterlist *dst,
610 : : unsigned int cryptlen, void *iv)
611 : : {
612 : 0 : req->src = src;
613 : 0 : req->dst = dst;
614 : 0 : req->cryptlen = cryptlen;
615 : 0 : req->iv = iv;
616 : : }
617 : :
618 : : #endif /* _CRYPTO_SKCIPHER_H */
619 : :
|